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Abstract The launch of the Landsat 8 in February 2013
extended the life of the Landsat program to over
40 years, increasing the value of using Landsat to mon-
itor long-term changes in the water quality of small
lakes and reservoirs, particularly in poorly monitored
freshwater systems. Landsat-based water quality
hindcasting often incorporate several Landsat sensors
in an effort to increase the temporal range of observa-
tions; yet the transferability of water quality algorithms
across sensors remains poorly examined. In this study,
several empirical algorithms were developed to quantify
chlorophyll-a, total suspended matter (TSM), and
Secchi disk depth (SDD) from surface reflectance mea-
sured by Landsat 7 ETM+ and Landsat 8 OLI sensors.
Sensor-specific multiple linear regression models were
developed by correlating in situ water quality measure-
ments collected from a semi-arid eutrophic reservoir
with band ratios from Landsat ETM+ and OLI sensors,
along with ancillary data (water temperature and sea-
sonality) representing ecological patterns in algae
growth. Overall, ETM+-based models outperformed
(adjusted R2 chlorophyll-a = 0.70, TSM= 0.81, SDD =
0.81) their OLI counterparts (adjusted R2 chlorophyll-
a = 0.50, TSM = 0.58, SDD = 0.63). Inter-sensor

differences were most apparent for algorithms utilizing
the Blue spectral band. The inclusion of water temper-
ature and seasonality improved the power of TSM and
SDD models.
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Introduction

Water quality in many lakes and reservoirs is poorly
characterized due to data limitations associated either
with difficulty of access and/or lack of monitoring re-
sources. With limited data, assessing the ecological
status and managing these important systems over time
are severely constrained. As such, remotely sensing
changes in water quality provide an opportunity to fill
spatio-temporal gaps in the global aquatic data record.
This is particularly advantageous in developing coun-
tries, where assessment of water pollution tends to be
sporadic at best.

The Landsat program provides an important long-
term record of change in terrestrial and aquatic systems.
Its use inmonitoring water quality of freshwater systems
has been explored with varying degrees of success
(Härmä et al. 2001; Ma and Dai 2005; Olmanson et al.
2008; Svab et al. 2005; Tebbs et al. 2013; Zhou and
Zhao 2011; Olmanson et al. 2016; Gitelson and Yacobi
1995; Lim and Choi 2015; Markogianni et al. 2014).
While Landsat band allocations can be considered to be
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suboptimal for water quality quantification, the program
has proven to be particularly useful for small inland
lakes, given the relatively high spatial resolution of the
sensors (30 m), as compared to the more specialized
ocean color satellites such as MODIS (250 m–1.1 km),
MERIS (300 m), and SeaWiFS (1.1 km) (Olmanson
et al. 2015). Landsat is also advantageous as compared
to higher spatial resolution satellite sensors—such as
those aboard the SPOT satellite program, ASTER or
IKONOS—given its more extensive temporal record
(dating back to 1972), highly accessible images with
global spatial coverage, and most importantly the open
access Landsat data-archive (Woodcock et al. 2008;
Wulder et al. 2012).

While semi-analytical models have been used with
Landsat data (Allan et al. 2015; Salama et al. 2012),
Landsat-based water quality models predominantly rely
on empirical regression-based relationships that relate
satellite bands or band ratios to optically active in situ
water column characteristics, such as chlorophyll-a, to-
tal suspended matter (TSM), and water clarity (Al-
Fahdawi et al. 2015; Alparslan et al. 2007; Chao
Rodríguez et al. 2014; Duan et al. 2007; Hicks et al.
2013; Karakaya et al. 2011; Kloiber et al. 2002b; Ma
and Dai 2005; Matthews 2011; Olmanson et al. 2015,
2016; Tebbs et al. 2013; Tyler et al. 2006). The broad
spectral bands in Landsat do not allow for stable inver-
sion in bio-optical models (Allan et al. 2015). Empirical
algorithms are often developed for specific lakes (e.g.,
Brivio et al. 2001; Mayo et al. 1995; Ostlund et al. 2001;
Tyler et al. 2006; Vincent et al. 2004; Al-Fahdawi et al.
2015; Chao Rodríguez et al. 2014; Markogianni et al.
2014) or for a group of optically similar regional lakes
(e.g., Brezonik et al. 2005; Hadjimitsis and Clayton
2009; Hansen et al. 2015; Härmä et al. 2001; Hicks
et al. 2013; Kloiber et al. 2002a, b; McCullough et al.
2012; Olmanson et al. 2008, 2011; Sass et al. 2007),
where certain band ratios appear to be more generally
informative than others at characterizing water quality
parameters across systems.

In order to take advantage of the full scope of
Landsat-based water quality monitoring, empirical al-
gorithm transferability across Landsat sensors requires
proper assessment. While some have examined the ro-
bustness of developed water quality algorithms to dif-
ferences between the Landsat TM and ETM+ sensors
aboard the Landsat 4, 5, and 7 satellites (Alavipanah
et al. 2007; Chander et al. 2009; Kutser 2012; Olmanson
et al. 2008; Svab et al. 2005; Teillet et al. 2001), limited

work has been done to quantify transferability to the
new OLI sensor recently launched (February 1, 2013)
onboard the Landsat 8 satellite (Holden and Woodcock
2016; Ke et al. 2015; Lymburner et al. 2016; Olmanson
et al. 2016; Pahlevan et al. 2014; Roy et al. 2016; Zhu
et al. 2016). One recent effort showed that Landsat 7 and
8 sensors were generally comparable when it came to
assessing colored dissolved organic matter (CDOM)
concentrations and water clarity in the oligotrophic lakes
and reservoirs of Minnesota (Olmanson et al. 2016).

This study develops sensor-specific water quality
monitoring algorithms for quantifying chlorophyll-a,
TSM, and water clarity levels using in situ data collected
from a semi-arid hypereutrophic reservoir. The perfor-
mance of these models is then compared with a Bpooled
model^ that disregards sensor differences as a test of
algorithm transferability. The inclusion of ancillary en-
vironmental data is evaluated in terms of its ability to
explain seasonal variability in the lake’s optical signals
and improve model fit. The study concludes by
discussing the implications of observed algorithm dif-
ferences across sensors on the potential of using the
Landsat program for monitoring water quality in
hypereutrophic lakes and reservoirs.

Methods and materials

Pilot study area

The pilot study area, the Qaraoun Reservoir (33o 34′ N,
35o 42′ E, altitude = 840 m), is located in the Bekaa
valley Lebanon and has a surface area that fluctuates
between 4 and 10 km2 depending on seasonal precipi-
tation patterns and dam discharge rates. The maximum
depth of the reservoir is 45 m, while median depth
fluctuates between 10 and 20 m depending on seasonal
changes. Fed primarily by the Litani River, the reservoir,
which was constructed in 1959 to provide water for
hydropower as well as irrigation and domestic supply,
has a storage capacity of 220 MCM.

Since its construction, the reservoir has been subject
to the uncontrolled discharge of both point and non-
point pollution sources (BAMAS 2005; ELARD 2011;
Ministry of Environment 2011), resulting in the deteri-
oration of its water quality and the development of
highly eutrophic and turbid conditions based on report-
ed chlorophyll-a content (Fadel et al. 2014; Slim et al.
2012), with massive algae blooms and high levels of
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nutrient pollution (El-Fadel and Zeinati 2000; Shaban
and Nassif 2007).Most of the turbidity in the reservoir is
from algae growth, with sediment entering the water
body during periods of heavy rainfall in the winter
months. Past monitoring programs were short term and
generally inconsistent both in terms of the parameters
measured and in sampling locations (Fadel et al. 2014;
El-Fadel et al. 2003; Jurdi et al. 2002; Korfali et al.
2006; Shaban and Nassif 2007; International
Resources Group 2011). Establishing robust water qual-
ity inference based on remotely sensed data can thus
substantially improve the management of similar inland
freshwater systems that lack adequate in situ data.

In situ monitoring

Sixteen in situ water quality sampling campaigns were
conducted between July 2013 andMay 2015, whereby a
total of 108 surface samples were collected and ana-
lyzed. The campaigns were planned to be concurrent
with the overpass of the Landsat 7 or 8 satellites
(Table 1). Measurements were taken at sampling sta-
tions accessed by boat between 9 AM and 12 noon
(local time) to capture lake conditions around the 10
AM (local time) satellite overpass time. To ensure the
utility of the satellite images, in situ sampling was
restricted to clear days with minimal cloud cover over
the reservoir, thus limiting winter sampling because the

area experiences heavy winter precipitation typical of
the Eastern Mediterranean region.

In situ samples were collected from 9 sampling sta-
tions across the water surface of the reservoir (Fig. 1).
This number was reduced down to 5 stations in 2014
because of extreme drought conditions resulting in low
reservoir volume and surface area. Secchi disk depth
(SDD)wasmeasured in the field using a 20-cm diameter
disk to assess water transparency. Two 200 ml surface
water grab-samples were collected at ~ 10 cm below the
water surface and were subsequently analyzed in the lab
for chlorophyll-a and TSM. The laboratory analysis was
conducted in accordance to Standard Methods for the
Examination of Water and Wastewater (APHA, WEF,
AWWA 2012). For chlorophyll-a analysis, a known
volume of sample with a magnesium carbonate buffer
was filtered through a membrane filter paper, which was
stored overnight at − 20 °C to facilitate bursting of algal
cells. Chlorophyll-a was then extracted using a 90%
acetone solution and sonification. Extracts were seeped
in the acetone solution overnight and then clarified
using centrifugation. Chlorophyll-a concentrations were
calculated based on absorbance at 664, 647, and
630 nm. The 750-nm wavelength was used to correct
for turbidity (APHA, WEF, AWWA 2012). Absorbance
was measured on a HACH 4000 spectrophotometer. For
TSM, a known sample volume was filtered through pre-
dried glass fiber filter paper. Samples were then dried in

Table 1 Summary of in situ
sampling dates and associated
Landsat satellite

Date Image number Sample points Parameters

Jul 4, 2013 LC81740372013185 9 Chl-a, TSM, SDD

Jul 20, 2013 LC81740372013201 9 Chl-a, TSM, SDD

Aug 13, 2013 LE71740372013225 9 Chl-a, TSM, SDD

Sep 6, 2013 LC81740372013249 9 Chl-a, TSM, SDD

Sep 30, 2013 LE71740372013273 9 Chl-a, TSM, SDD

Oct 24, 2013 LC81740372013297 9 Chl-a, TSM, SDD

Nov 17, 2013 LE71740372013321 8 Chl-a, TSM, SDD

Apr 2, 2014 LC81740372014092 5 Chl-a, TSM, SDD

Apr 26, 2014 LE71740372014116 5 Chl-a, TSM, SDD

Jul 15, 2014 LE71740372014196 7 Chl-a, TSM, SDD

Aug 16, 2014 LE71740372014228 6 Chl-a, TSM, SDD

Sep 9, 2014 LC81740372014252 3 Chl-a, TSM, SDD

Dec 30, 2014 LC81740372014364 5 Chl-a, TSM, SDD

April 21, 2015 LC81740372015111 5 Chl-a, TSM, SDD

May 15, 2015 LE71740372015135 5 Chl-a, TSM, SDD

Oct 6, 2015 LE71740372015279 5 Chl-a, TSM, SDD
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a 105 °C oven and weighed. The total fixed matter
content (i.e., mineral sediments) was also measured by
igniting the TSM samples in a 550 °C furnace to assess
the proportion of non-organic faction within the total
matter (APHA, WEF, AWWA 2012). Non-fixed
(organic) matter content consists of algae and CDOM
and can be highly correlated to chlorophyll-a depending
on the proportional representation of algae in the TSM.

Image processing

Available Landsat ETM+ and OLI surface reflectance
image products of the study area were obtained from the
USGS Earth Explorer website, http://earthexplorer.usgs.
gov/ (Row 174, Path 037). These products include
conversion to top-of-atmosphere (TOA) reflectance

(ρp). Atmospheric correction of Landsat 7 images was
based on the USGS Landsat Ecosystem Disturbance
Adaptive Processing System (LEDAPS) algorithm
(Masek et al. 2006). LEDAPS uses MODIS atmospher-
ic correction routines on Landsat Level-1 data, with the
Second Simulation of a Satellite Signal in the Solar
Spectrum (6S) radiative transfer model. The use of the
6S model was found to improve the reliability of water
quality algorithms developed for reservoirs and eutro-
phic lakes (Bonansea et al. 2015; Tebbs et al. 2013). For
Landsat 8, the atmospheric correction was based on the
provisional USGS L8SR algorithm, which uses an in-
ternal radiative transfer model with input from aMODIS
climate modeling grid. Both LEDAPS and L8SR
Surface Reflectance datasets have been compared to
other atmospheric correction algorithms including

Fig. 1 General location of study reservoir and sampling locations. True color image is a Landsat 8 image taken on July 4, 2013 showing an
algal bloom
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ATCOR-2 (Vuolo et al. 2015), AERONET (Claverie
et al. 2015; Maiersperger et al. 2013), MODIS NBAR
(Feng et al. 2013), 6S and ELM (Nazeer et al. 2014), and
a MODTRAN-based model (Sendra et al. 2015). These
studies have found that LEDAPS and L8SR compared
favorably with the rest of the atmospheric correction
algorithms. Note that all images underwent standard
geometric and terrain correction.

The Landsat images were further processed using the
Raster (Hijmans and van Etten 2014) and Landsat
(Goslee 2011) packages in the software R (R Core
Team 2015). Landsat 7 images were corrected for the
failure of the Scan Line Corrector (SLC) on the ETM+
sensor by using the gap masks provided with the Level
1T products. As Qaraoun Reservoir is positioned to-
wards the center of the Row 174, Path 037 scene, only
a small proportion of the reservoir surface area was
affected by missing SLC data (with the exact proportion
of missing data varying by image acquisition date).
Additionally, land mask layers were developed for both
Landsat 7 and 8 images using histogram splicing to trace
the outline of the reservoir and remove contamination
with land pixels (Frazier and Page 2000).

Water quality algorithm development

Remote sensing-based algorithm development favors
the use of band ratios as opposed to single bands as
predictor variables, since band ratios tend to eliminate
noise in the reflectance signal relating to underlying
water body characteristics (Lee et al. 2006; O’Reilly
et al. 1998; O’Reilly et al. 2001). The most effective
Landsat TM or ETM+ band ratios for quantifying chlo-
rophyll-a, TSM, and SDD in lakes and reservoirs were
defined by analysis of previous studies and selecting of
spectral band ratios that showed clear linkages to the
radiometric properties of the measured water quality
variables used (Table 2). Several single band combina-
tions were also explored due to their prevalence in the
literature. Both the NIR (Onderka and Pekárová 2008;
Long and Pavelsky 2013; Tebbs et al. 2013; Hicks et al.
2013) and the Red band (Ma and Dai 2005; Ritchie et al.
1987; Nellis et al. 1998; Svab et al. 2005; Tyler et al.
2006; Long and Pavelsky 2013; Pahlevan et al. 2014)
have been used to determine TSM concentrations.
Similarly, for SDD, the use of the Red band (Brezonik
et al. 2005; Dekker et al. 2001;McCullough et al. 2012),
and the Blue band (Kloiber et al. 2002a; McCullough
et al. 2012; Olmanson et al. 2011, 2008; Sawaya et al.

2003), or their ratio (Chipman et al. 2004; Greb et al.
2009; Olmanson et al. 2016; Fuller et al. 2004) have
been reported to be effective.While both Landsat 7 and
8 have similar spectral band placements for the Blue
(ETM+ band 1, 0.45–0.52 μm; OLI band 2, 0.45–
0.51 μm), Green (ETM+ band 2, 0.52–0.60 μm; OLI
band 3: 0.53–0.59 μm), Red (ETM+ band 3, 0.63–
0.69 μm; OLI band 4, 0.64–0.67 μm), and NIR
(ETM+ band 4, 0.76–0.90 μm; OLI band 5, 0.85–
0.88 μm) bands, the latter features a new band that has
been termed the BUltra-Blue^ (OLI band 1: 0.43–
0.45 μm) that promises to be effective in coastal studies
as well as for tracking atmospheric aerosols.

In situ data were matched with Landsat data by first
generating 30 and 60 m buffers around each sampling
station; pixel values in each buffer were then averaged.
While the buffering distance can have a significant role
in algorithm development (McCullough et al. 2012),
this was not the case in this study. As such, the analysis
proceeded based on the 30-m buffer distance. Although
there can be significant variations in the concentration of
water quality parameters within the 30 m boundary of
the satellite pixel area, it is common in remote sensing
work to assume that in situ point measurements are
representative of their immediate neighborhood
(Bonansea et al. 2015; Brezonik et al. 2005; Cheng
and Lei 2001; Dekker and Peters 1993; Olmanson
et al. 2011; Serwan and Baban 1993; Sun et al. 2015;
Tebbs et al. 2013; Yacobi et al. 1995). Such an assess-
ment my not be valid in the event of a localized algal
bloom. In this study, only two data point exceeded the
500 μg/L threshold defined for algal scums (Matthews
et al. 2012); one of which was excluded from the anal-
ysis (Chl-a = 5500 μg/L). It should be emphasized that
comparing a point measurement to an aerial prediction
can introduce errors associated with scale mismatch
(Banerjee et al. 2014).

One in situ sampling point was removed from the
analysis of images between August 13 and November
17 2013 (5 data points in total) due to its close proximity
to the reservoir shoreline in an effort to minimize land
contamination of water spectrum. Exploratory data anal-
ysis also identified 11 potential chlorophyll-a outliers
out of the remaining 103 samples. One measurement of
chlorophyll-a exceeded 5500 μg/L and therefore was
excluded. Similarly, 10 low chlorophyll-a values clus-
tered away from the main distribution (in situ
chlorophyll-a values < 10 μg/L) and were also omitted
from the analysis as we believe they represent atypical
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chlorophyll-a conditions in the reservoir. As such, the
chlorophyll-a model development was based on a total
of 92 in situ sampling points, while the TSM and SDD
model development was based on 103 in situ sampling
points.

Initial Spearman’s Rank correlations were deter-
mined between in situ chlorophyll-a, TSM and SDD
and the extracted information from the Blue, Green,
Red, and NIR bands for Landsat 7 and 8 satellites
separately to facilitate interpretation of band-ratio re-
sults. For Landsat 8, the BUltra Blue^ band was also
included in the correlation analysis given that it proved
to be useful in predicting CDOM and water clarity in the
predominantly oligotrophic waters of Minnesota’s lakes
and reservoirs (Olmanson et al. 2016). Band ratios from
Table 2 were then used to develop empirical algorithms
using simple linear regression. Band ratios that included
the Blue band in the numerator or denominator (Blue−RedGreen

and Blue
Red for chlorophyll-a, NIR

Blue for TSM, and Blue
Red for

SDD) were tested with both the Blue and Ultra Blue

bands for Landsat 8 data. Algorithms were developed
separately for Landsat 7 and 8. The single-sensor
models were compared with the algorithms that were
developed through pooling (combining) the data from
both sensors to generate algorithms that do not account
for inter-sensor differences. Pooling assumes that the
data collected from the two sensors are interchangeable
and as such it can be considered as a test of algorithm
robustness between the two sensors. Full sensor trans-
ferability between algorithms will occur if there is no
difference between the algorithm functional form and
coefficients across the two sensors. Log transformation
of all dependent variables (chlorophyll-a, TSM, SDD)
and many of the predictor variables ( NIR

Red , Blue
Red ,

NIR
Blue,

Ultra Blue
Red , NIR

Ultra Blue) was required to meet the assump-
tions of parametric regression.

Single predictor variable water quality algorithms
were then expanded using stepwise regressions to assess
if more complexmodels could improve the quantification
of chlorophyll-a, TSM, and SDD. All band ratios listed in

Table 2 Landsat band ratios tested in this study for chlorophyll-a, TSM, and SDD and reference to their successful use in the remote
sensing literature

Algorithm Physical Basis Applications

Chlorophyll-a*

∝ NIR
Red

Less sensitive to sediment and CDOM interference than Blue/Green.
NIR is positively responsive to chlorophyll-a concentration through
the backscatter of TSM, when the TSM is mainly composed of algae;
the Red band acts as a reference.

(Gitelson and Yacobi 1995; Tebbs et al. 2013;
Matthews 2011; Duan et al. 2007)

∝ Blue−Red
Green

Blue/Green is the most common ocean color algorithm. Chlorophyll-a
absorbs in the Blue region and reflects in the green region. Red is
subtracted to account for the effects of suspended sediments.

(Brivio et al. 2001; Gitelson and Yacobi 1995;
Mayo et al. 1995)

∝BlueRed

Most common SDD algorithm, its use for chlorophyll-a reflects the
strong correlation between water clarity and chlorophyll-a in highly
productive lakes.

(Brezonik et al. 2005; Olmanson et al. 2011;
Sass et al. 2007)

TSM

∝ NIR
Blue

TSM backscatters in NIR with decreased reflectance in the Blue region. (Ma and Dai 2005; Tebbs et al. 2013)

∝ NIR
Red

Successful chlorophyll-a algorithm in highly eutrophic lakes. Effective
if TSM is dominated by chlorophyll and shows a positive response
in backscatter in the NIR band.

(Ma and Dai 2005; Tebbs et al. 2013)

Water clarity (SDD)

∝BlueRed

Generally, reflectance in the Blue band decreases in turbid waters,
while it increases in the Red band, although the causes of turbidity
can impact this relationship.

(Brezonik et al. 2005; Nelson et al. 2003;
Olmanson et al. 2011; Sass et al. 2007)

*Although successful empirical algorithms for quantifying chlorophyll-a concentrations have been developed using Landsat data, the lack
of information on the chlorophyll-a fluorescence peak at ~ 705 nm in Landsat sensors is a limitation. As such, mineral suspended sediments
may be falsely classified as chlorophyll-a when mineral content is high. Nonetheless, the study reservoir has a relatively low mineral
suspended matter content compared to the organic content from algae growth, and is therefore deemed acceptable for chlorophyll analysis
using Landsat sensors. See (Gitelson et al. 2008; Gitelson 1992; Moses et al. 2012; Olmanson et al. 2013) for further discussion on the
subject
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Table 2, along with the single Red and NIR bands for
TSM models, and the Red and Blue bands for SDD
models, were used in the stepwise process. In an effort
to reduce overfitting, the models were restricted to have a
maximum of two band-based predictors. The best models
were chosen based on Akaike’s Information Criteria
(AIC) (Akaike 1974), with the lowest AIC value indicat-
ing the most parsimonious model. If two competing
models were found to be equally supported by the data,
a common functional form for the Landsat 7, 8 and
combined models was given priority. Multiple regression
models were also tested for collinearity between predic-
tor variables using the variance inflation factor (VIF),
with models rejected if the VIF is greater than 5
(Craney and Surles 2002; Mason et al. 2003). Ancillary
data in the form of water temperature and seasonality
were then included to expand these models to better
capture changes in algae growth and community

dynamics, sediment and nutrient inputs, changes in the
coupling of optically active water column constituents,
and internal lake mixing. Lake surface temperatures were
based on the thermal bands of Landsat 7 and 8. The
remotely sensed sensor-based temperatures were locally
corrected based on in situ measurements (Eqs. 1 and 2).
Temperature results indicated a strong model correspon-
dence between Landsat and in situ-based measurements,
with a slope very close to 1. Seasonality was estimated by
using a sine wave based on the Julian day of image

capture sin 2π Julian Day
365

� �� �
. Note that both temperature

(after local correction with either Eqs. 1 or 2) and sea-
sonality require no additional in situ measurements and
can be easily incorporated in future Landsat-based water
quality monitoring initiatives. Including temperature and/
or seasonality in the final model was based on improve-
ments in the AIC model scores (lower scores) and reduc-
tion in standard errors of model coefficients.

Landsat 7 Corrected Temp oC
� � ¼ 0:47þ 0:96*

Band 6:1þ Band 6:2
2

� �
; R2 ¼ 0:95; n ¼ 41
� � ð1Þ

Landsat 8 Corrected Temp oC
� � ¼ 0:90þ 0:92*

Band 10þ Band 11
2

� �
; R2 ¼ 0:94; n ¼ 41
� � ð2Þ

ð2Þ

Model validation

A fourfold (k-fold) cross-validation was performed on
the data using the DAAG package (Maindonald and
Braun 2014) in the software R (R Core Team 2015).
The data was partitioned into 4 equal subsamples, with 1
subsample used for validation and 3 used as training
data. This process was repeated 4 times so that each
subsample was used once for validation. R2 shrinkage
was assessed for the cross-validation models using the
bootstrap package (Tibshirani and Leisch 2015) in R.

Results

Spatio-temporal variations of in situ chlorophyll-a,
TSM, and SDD across the 15 sampling campaigns are
shown in Fig. 2. Overall chlorophyll-a concentrations
were consistently high in the reservoir, with a median
value of 71.0 μg/L (n = 102, range = 4.8–5502 μg/L).
Chlorophyll-a concentrations were generally higher in

the summer although algae blooms were also apparent
in the fall and spring. TSM concentrations were moder-
ate over the sampling period, with a median value of
12.5 mg/L (n = 103, range = 1.0–69.0 mg/L).
Additionally, most of the TSM was found to be organic
(median % organic = 79.6%, range = 43.8–100%). The
median SDD level was 1.0 m (n = 103, range = 0.18–
4.2 m). All three in situ parameters examined in this
study highlight the eutrophic to hypereutrophic status of
the reservoir, a direct consequence of excessive nutrient
discharge upstream. Both TSM and SDD exhibited
strong correlations with chlorophyll-a concentrations
(Table 3). The high correlation between chlorophyll-a
and SDD indicates that algae is the dominant factor
impacting light penetration in the reservoir. Also, the
high proportion of organic material in the TSM sug-
gests that suspended matter in the reservoir are also
dominated by algae and their byproducts. Thus, all
three parameters are in some respects acting as different
indicators of algae biomass in this study, yet with clear
seasonal variability.
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While correlations between in situ water constituents
(chlorophyll-a, TSM, and SDD) and the Landsat bands
exhibited similar patterns between the two sensors,

Landsat 8 bands generally had lower correlations with
the three water quality parameters (Table 4).
Reflectance values are expected to generally increase
with increasing chlorophyll-a and TSM, and with de-
creasing SDD, in the Green, Red, and NIR bands due to
high reflectance and low absorbance of chlorophyll-a
and suspended sediments in these spectral regions
(Arenz et al. 1996; Gitelson 1992; Gitelson et al.
1993; Gitelson and Yacobi 1995; Le et al. 2009;
Odermatt et al. 2012; Yacobi et al. 1995). Reflectance
in the visible Blue spectrum is expected to be dictated
by chlorophyll-a absorption on one hand and the back-
scattering of TSM (Mayo et al. 1995).

Fig. 2 Variation in in situ
chlorophyll-a, TSM, and SDD.
Points represent individual
sampling stations. Open circles
represent field sampling values
during LE7 overpass. Closed
circles represent field sampling
values during LC8 overpass

Table 3 Spearman’s Rank correlation coefficients (rho) for in situ
water quality parameters. All correlations are significant
(p < 0.0001, n = 92)

Chlorophyll-a TSM SDD

Chlorophyll-a 1.00

TSM 0.84 1.00

SDD − 0.77 − 0.87 1.00
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The observed differences in the correlations
established between the sensor bands on one hand and
the water quality parameters of interest on the other
(Table 4) could be due to changes in band placement
in the new Landsat 8 OLI sensor as compared to the
Landsat 7 ETM+ and/or to the adoption of different
atmospheric correction algorithms between the two sen-
sors (Holden and Woodcock 2016). Differences in band
placement are particularly pronounced in the NIR and
Red regions. The weakest correlations were found be-
tween the water quality parameters and the Blue
band(s), particularly for Landsat 8. The conflicting
chlorophyll-a absorption and TSM backscattering fea-
tures in the Landsat Blue bands can affect correlations
with the monitored water quality parameters (Arenz
et al. 1996; Gitelson and Yacobi 1995; Le et al. 2009;
Odermatt et al. 2012). Tebbs et al. (2013) have also
reported that in hypereutrophic systems, where algae
cells concentrate at the surface, scattering tends to in-
crease, thus diminishing light penetration and absorp-
tion. Moreover, the coarse spectral resolution in the Blue
bands in Landsat (ETM+ band 1, 0.45–0.52 μm; OLI
band 2, 0.45–0.51 μm) is expected to further complicate
establishing robust relationships between chlorophyll-a
concentrations and reflectance values in the Blue band.

Simple linear regression models developed for
chlorophyll-a with band ratios showed stronger relation-
ships with Landsat 7 images for all models that incor-
porated the Blue band. Conversely, the chlorophyll-a
model based on the NIR

Red

� �
band ratio performed well

for both sensors (Table 5). Upon pooling the results to
develop a common algorithm for the two sensors, the
performance of the Blue−Red

Green

� �
and the Blue

Red

� �
-based

models was generally weak, highlighting the differences
found in the sensor-specific models. The common algo-
rithm based on the NIR

Red

� �
ratio was found to be largely

stable across sensors. The robustness of the NIR
Red

� �
algo-

rithm across sensors, as compared to the Blue based
algorithms, can be attributed to the diminished spectral
interference by sediment particles and CDOM on the
NIR/Red ratio in turbid and highly eutrophic waters
(Gitelson and Yacobi 1995; Gurlin et al. 2011; Han
et al. 1994; Stumpf et al. 2016). Expanding the models
to incorporate multiple band ratios improved model fit
across both sensors (adjusted R2 Landsat 7 = 0.70;
adjusted R2 Landsat 8 = 0.50). Multiple regression
models were not found to exhibit collinearity (VIF
for Landsat 7 + 8 model = 2.04; VIF for Landsat 7
model = 3.54; VIF for Landsat 8 model = 2.09). The
best models across the two sensors shared the same
functional form, which highlights their robustness
(Table 5).

Landsat 7-based TSM regression algorithms were
also better than those based on Landsat 8 for models
that incorporated the Blue band. Pooling the data from
both sensors did not improve the models (Table 6).
Expanding the TSM models to include multiple bands
significantly improved model quantification of TSM for
both sensors with no evidence of collinearity (VIF for
Landsat 7 + 8 model = 2.56; VIF for Landsat 7 model =
3.90; VIF for Landsat 8 model = 2.29). The inclusion of
a seasonal term and/or water temperature as a covariate
proved advantageous. The best overall TSM model for
Landsat 7 and 8 had an adjusted R2 of 0.81 and 0.58,
respectively. The across-sensor pooled model had an
adjusted R2 of 0.63.

Table 4 Spearman’ Rank correlation coefficients (rho) between
in situ water quality parameters and Landsat 7 (Blue = band 1,
Green = band 2, Red = band 3, NIR = band 4), and Landsat 8

(Blue = band 2, Green = band 3, Red = band 4, NIR = band 5,
Ultra Blue = band 1) bands. Bands represent surface reflectance

Band Chl-a TSM SDD

Landsat 7
n = 38

Landsat 8
n = 47

Landsat 7
n = 45

Landsat 8
n = 53

Landsat 7
n = 34

Landsat 8
n = 40

Blue 0.76*** 0.04 0.83*** 0.38* − 0.86*** − 0.51***
Green 0.85*** 0.31* 0.83*** 0.68*** − 0.89*** − 0.78***
Red 0.82*** 0.24 0.90*** 0.55*** − 0.93*** − 0.67***
NIR 0.84*** 0.64*** 0.90*** 0.66*** − 0.86*** − 0.60***
Ultra Blue – −0.08 – 0.23 – − 0.33*

*p ≤ 0.05; **p ≤ 0.001; *** p ≤ 0.0001
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Models relating SDD to the Blue
Red

� �
ratio proved to

be effective for both satellites, with an adjusted R2 of
0.76 and 0.57 for Landsat 7 and 8, respectively
(Table 7). The relationship reflects the increase in
the reflectance in the Red band as SDD levels drop.
Regression models resulting from the addition of the
Red band provided an improvement of all algorithm
R2, while also reducing their residual standard errors.
Multiple regression models were not found to suffer
from collinearity defined at a VIF > 5 (VIF for
Landsat 7 + 8 model = 2.64; VIF for Landsat 7 mod-
el = 4.22; VIF for Landsat 8 model = 2.46). Inclusion
of season as an additional covariate also improved all
models significantly. The best overall SDD model for
Landsat 7 had an adjusted R2 of 0.81, while the best
overall SDD model for Landsat 8 had an adjusted R2

of 0.63. The best across-sensor model shared the
structural form of the individual sensor models, and
had an adjusted R2 of 0.66.

In an attempt to evaluate the robustness of the models
and to ensure no over-fitting, a fourfold cross-validation
analysis was conducted. The results (Tables 5, 6, and 7)
showed that the models were generally robust with no
evidence of over-fitting, given the minimal drop in the
original R2 of all models. Overall, the chlorophyll-a
models exhibited slightly lower robustness as compared
to the TSM and SDD models, especially for models
based on a single band ratio. Moreover, expanding the
models beyond a single band ratio appeared to increase
robustness across the three water quality parameters,
which further confirms that the models do not suffer
from over-fitting.

Table 5 Chlorophyll-a regression models based on band ratios.
Band ratios are based on surface reflectance; Water temperature
(Temp) is in °C for corrected Landsat thermal bands; Season is

calculated as sin((2πJ)/365), where J = Julian Day; Cross-validat-
ed R2 are based on fourfold cross-validation

Satellite Model Adjusted
R2

Residual standard
error

Cross-validated
R2

NIR/Red

7 + 8 ln(Chl.a) = 4.7 + 1.2 ln(NIR/Red) 0.41*** 0.58 0.35

7 ln(Chl.a) = 5.0+ 2.6 ln(NIR/Red) 0.52*** 0.48 0.50

8 ln(Chl.a) = 4.6 + 1.0 ln(NIR/Red) 0.41*** 0.62 0.35

(Blue-Red)/Green

7 + 8 ln(Chl.a) = 4.4–2.6 ((Blue-Red)/Green) 0.14** 0.71 0.11

7 ln(Chl.a) = 5.0–5.3 ((Blue-Red)/Green) 0.60*** 0.44 0.54

8 ln(Chl.a) = 4.0–5.5 ((Blue-Red)/Green) 0.26** 0.69 0.22

(Ultra Blue-Red)/Green

8 ln(Chl.a) = 3.4–5.6 ((Ultra Blue-Red)/Green) 0.31*** 0.67 0.26

Blue/Red

7 + 8 ln(Chl.a) = 4.4–1.5 ln(Blue/Red) 0.13** 0.71 0.10

7 ln(Chl.a) = 5.1–3.8 ln(Blue/Red) 0.62*** 0.42 0.58

8 ln(Chl.a) = 4.0–2.7 ln(Blue/Red) 0.24** 0.70 0.20

Ultra Blue/Red

8 ln(Chl.a) = 3.5–2.2 ln(Ultra Blue/Red) 0.29*** 0.68 0.24

Multiple regression

7 + 8 ln(Chl.a) = 4.7 + 1.1 ln(NIR/Red) – 2.1 ((Blue-Red)/Green) 0.50*** 0.54 0.44

7 ln(Chl.a) = 5.1 + 1.4 ln(NIR/Red) – 3.6 ((Blue-Red)/Green) 0.70*** 0.38 0.66

8 ln(Chl.a) = 4.4 + 0.8 ln(NIR/Red) – 3.5 ((Blue-Red)/Green) 0.50*** 0.57 0.43

Multiple regression with covariate

7 + 8 ln(Chl.a) = 4.7 + 1.1 ln(NIR/Red) – 2.1((Blue-Red)/Green) 0.50*** 0.54 0.44

7 ln(Chl.a) = 5.1 + 1.4 ln(NIR/Red) – 3.6 ((Blue-Red)/Green) 0.70*** 0.38 0.66

8 ln(Chl.a) = 4.4 + 0.8 ln(NIR/Red) – 3.5((Blue-Red)/Green) 0.50*** 0.57 0.43

*p ≤ 0.05; **p ≤ 0.001; ***p ≤ 0.0001
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Table 6 TSM regression models based on band ratios and single
bands. Band ratios are based on surface reflectance. Water tem-
perature (Temp) is in °C for corrected Landsat thermal bands;

Season is calculated as sin((2πJ)/365), where J = Julian Day;
Cross-validated R2 and residual sum of squares are based on
fourfold cross-validation

Satellite Model Adjusted
R2

Residual standard
error

Cross-validated
R2

NIR/Blue

7 + 8 ln(TSM) = 2.8 + 1.1 ln(NIR/Blue) 0.37*** 0.67 0.32

7 ln(TSM) = 3.4 + 2.3 ln(NIR/Blue) 0.68*** 0.45 0.68

8 ln(TSM) = 2.7 + 0.8 ln(NIR/Blue) 0.33*** 0.71 0.30

NIR/Ultra Blue

8 ln(TSM) = 2.5 + 0.8 ln(NIR/Ultra Blue) 0.35*** 0.70 0.32

NIR/Red

7 + 8 ln(TSM) = 2.8 + 0.9 ln(NIR/Red) 0.20** 0.75 0.18

7 ln(TSM) = 3.0 + 2.4 ln(NIR/Red) 0.29*** 0.68 0.28

8 ln(TSM) = 2.7 + 0.7 ln(NIR/Red) 0.20** 0.78 0.16

Multiple regression

7 + 8 ln(TSM) = 6.2 + 0.8 ln(NIR/Blue) + 1.1 ln (Red) 0.60*** 0.53 0.58

7 ln(TSM) = 6.1–1.2 ln(NIR/Blue) + 1.0 ln(Red) 0.75*** 0.40 0.70

8 ln(TSM) = 2.3–3.4 ln(NIR/Red) + 3.8 ln(NIR/Blue) 0.55 0.59 0.53

Multiple regression with covariate

7 + 8 ln(TSM) = 5.8 + 0.9 ln(NIR/Blue) + 1.0 ln(Red) – 0.2 Season 0.63*** 0.51 0.59

7 ln(TSM) = 1.7 + 1.5 ln(NIR/Blue) + 0.2 ln(Red + 0.1 (Temp) 0.81*** 0.35 0.78

8 ln(TSM) = 2.3–3.1 ln(NIR/Red) + 3.5 ln(NIR/Blue) – 0.3 (Season) 0.58*** 0.57 0.51

*P ≤ 0.05; **P ≤ 0.001; ***P ≤ 0.0001

Table 7 SDD regression models based on band ratios and single
bands. Band ratios are based on surface reflectance. Water tem-
perature (Temp) is in °C for corrected Landsat thermal bands;

Season is calculated as sin((2πJ)/365), where J = Julian Day;
Cross-validated R2 and residual sum of squares are based on
fourfold cross-validation

Satellite Model Adjusted
R2

Residual standard
error

Cross-validated
R2

Blue/Red

7 + 8 ln(SDD) = −1.5 + 1.4 (Blue/Red) 0.26*** 0.50 0.25

7 ln(SDD) = −2.9 + 2.3 (Blue/Red) 0.75*** 0.29 0.69

8 ln(SDD) = −3.1 + 3.4 (Blue/Red) 0.57*** 0.38 0.55

Ultra Blue/Red

8 ln(SDD) = −1.9 + 2.7 (Ultra Blue/Red) 0.46*** 0.43 0.44

Multiple regression

7 + 8 ln(SDD) = 0.4 + 0.5 (Blue/Red) – 22.5 (Red) 0.61*** 0.36 0.60

7 ln(SDD) = −1.2 + 1.4 (Blue/Red) – 12.2 (Red) 0.80*** 0.26 0.76

8 ln(SDD) = −2.1 + 2.6 (Blue/Red) – 8.4 (Red) 0.58*** 0.38 0.55

Covariate multiple regression

7 + 8 ln(SDD) = 0.4 + 0.5 (Blue/Red) – 20.9 (Red) + 0.2 (Season) 0.66*** 0.34 0.65

7 ln(SDD) = −1.1 + 1.3 (Blue/Red) – 11.1 (Red) + 0.1 (Season) 0.81*** 0.25 0.76

8 ln(SDD) = −1.7 + 2.4 (Blue/Red) – 10.4 (Red) + 0.2 (Season) 0.63*** 0.35 0.61

*P ≤ 0.05; **P ≤ 0.001; ***P ≤ 0.0001
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Discussion

The results confirmed the effectiveness of Landsat-
based algorithms in quantifying water quality in a
semi-arid hypereutrophic reservoir. This reinforces the
important role that both sensors can play in assessing
current eutrophication status, particularly Landsat 8 as
the most recent Landsat mission, and Landsat 7 given its
long-term viability (in operation since 1999) despite
malfunctions in its SLC. Overall, the predictive power
of the models developed from both Landsat satellites
can be considered good (adjusted R2 for chlorophyll-a
0.50–0.70; adjusted R2 for TSM 0.58–0.81; adjusted R2

for SDD 0.63–0.81), particularly given that these
models were calibrated using in situ data collected from
an optically complex reservoir over multiple seasons
and across 3 years (Table 1). While models with higher
R2 have been reported in the literature for chlorophyll-a
(Giardino et al. 2001; He et al. 2008; Kallio et al. 2005;
Karakaya et al. 2011; Tebbs et al. 2013; Torbick et al.
2008; Alparslan et al. 2007), TSM (Ma and Dai 2005;
Wu et al. 2015; Alparslan et al. 2007) and SDD
(Karakaya et al. 2011; Khattab and Merkel 2014;
Kloiber et al. 2002a; McCullough et al. 2012;
Olmanson et al. 2016), they were either calibrated with
data collected over a limited period of time, used spatio-
temporal averaging, worked in high clarity lakes, and/or
resorted to data-mining techniques. A detailed literature
review of Landsat-based chlorophyll-a algorithms de-
veloped for lakes and reservoirs indicates that only 6 out
of 24 studies that were conducted between 1990 and
2015 calibrated their water quality algorithms on data
collected from more than one season (Allan et al. 2015;
Bonansea et al. 2015; Chao Rodríguez et al. 2014;
Cheng and Lei 2001; Ritchie et al. 1990; Tebbs et al.
2013). Increasing the span of the calibration period
increases robustness and reduces overfitting.

The models for TSM and SDD were more robust
than chlorophyll-a models, likely because they represent
more generalized parameters, and because Landsat band
placement is sub-optimum for measuring the latter. The
lack of a Red-edge band (around 705 nm) in the Landsat
sensors has proven to be challenging in waters with high
mineral suspended matter, where the latter can interfere
with chlorophyll-a algorithms (Gitelson et al. 2008;
Gitelson 1992; Moses et al. 2012; Olmanson et al.
2013). Shortcomings of Landsat-based chlorophyll-a
monitoring in optically complex waters have been rec-
ognized (Olmanson et al. 2015; Olmanson et al. 2016).

Moreover, the proliferation of cyanobacteria in the res-
ervoir in the summer and autumn can play a role in
diminishing the predictive power of the chlorophyll-a
models because they contain phycocyanin, which is
indistinguishable from chlorophyll-a with regard to ab-
sorbance within the red bands of both Landsat 7 and 8
(Olmanson et al. 2015; Stumpf et al. 2016).

The expansion of the models beyond a single band
ratio in this study generally improved model fit (im-
proved adjusted R2 and lower residual standard error),
with little evidence of over-fitting as supported by the
cross-validation and variance inflation factors (VIF) anal-
yses. Similarly, the inclusion of ancillary data improved
model fit for TSM and SDD, with little evidence of over-
fitting, particularly for across-sensor models (Fig. 3).
Residual standard errors were lowest for all TSM and
SDD algorithms when temperature and/or season were
included in models for Landsat 7, 8, and the combined
sensor models. Hence, the models demonstrate seasonal
differences in how the optically active water quality
parameters produce spectral signals measurable through
remote sensing. Both water temperature and seasonality
affect algae growth and community dynamics, cycles of
nutrient inputs (including internal lake mixing), cycles of
sediment inputs from river flow, as well as light and wind
patterns, and therefore can be expected to produce some
degree of predictable difference in reflectance signals
over the year. These covariates act as surrogates of algae
ecology and compositional changes in suspended matter
in the regression models and are particularly advanta-
geous from a management perspective in that they do not
rely on in situ data collection to generate required mea-
surements; thus they are easy to incorporate in future
predictions as well as for hindcasting.

The best covariate multiple regression water quality
models exhibited strong similarities between the two
sensor-types with regard to their functional forms, indi-
cating that both sensors are capable of providing valu-
able and realistic information on the water quality of
hypereutrophic lakes and reservoirs. Yet, differences in
the model coefficients between the ETM+- and OLI-
based models indicate that sensor transferability can
introduce biases in eutrophic systems like Qaraoun
Reservoir (refer to online Supplementary Material).
Therefore, given current sensor calibration and
Landsat atmospheric correction regimes, the develop-
ment of sensor-specific algorithms calibrated with in
situ data remains necessary to properly capture water
quality dynamics.
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The differences in model performance can be partial-
ly attributed to differences in band placements between
sensor types, which is the case for the NIR band (Band 4
for Landsat 7 = 0.76–0.90 μm; Band 5 for Landsat 8 =
0.85–0.88 μm), and to a lesser extent for the Red band
(Band 3 for Landsat 7 = 0.63–0.69 μm; Band 4 for
Landsat 8 = 0.64–0.67 μm). Single band correlations
for both the Red and NIR showed superior relationships
with the water quality parameters for Landsat 7. While
the repositioning of the NIR band in Landsat 8 was
introduced in an effort to remove the water vapor

absorption feature at 0.825 μm (Irons et al. 2012), this
shift may have interfered with the reflectance character-
istics of the water quality parameters, particularly of
TSM. For instance, Shafique et al. (2003) reported that
small differences in the NIR reflectance had a large
impact on turbidity predictions for Ohio rivers. The
splitting of the Blue spectral region into two bands in
Landsat 8 (Band 1 Ultra-Blue = 0.43–0.45 μm, Band 2
Blue = 0.45–0.51 μm) versus one band in Landsat 7
(Band 1 Blue = 0.45–0.52 μm) may have also contrib-
uted to the observed differences in band correlation and

Fig. 3 Predicted versus observed plot for the final multiple re-
gression models developed for chlorophyll-a (first row), TSM
(second row), and SDD (third row). Gray circles represent the
mean predicted value to the observed value for Landsat 7 Gray
vertical lines show the 95% confidence interval of prediction for

Landsat 7 Black circles represent the mean predicted value to the
observed value for Landsat 8 Black vertical lines show the 95%
confidence interval of prediction for Landsat 8 Diagonal lines
represent the 1:1 line
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overall model fit. In this study, the use of Ultra-Blue
instead of Blue for Landsat 8-based models resulted in
minimal change when predicting chlorophyll-a and TSM
concentrations; differences were more noticeable in the
case of the SDD algorithms. Note that differences in
model performance (adjusted R2 and residual standard
errors) between Landsat 7 and 8 were most pronounced
for algorithms that made use of the Blue band ((Blue-
Red)/Green and Blue/Red for chlorophyll-a; NIR/Blue
for TSM; and Blue/Red for SDD). Correlation coefficient
differences were alsomost pronounced for the Blue band,
with water quality parameters showing stronger correla-
tions with the Blue band for Landsat 7 images. The
observed discrepancies between the Landsat 7 and 8
Blue bands is unexpected given their nearly identical
placement along the electromagnetic spectrum. Other
studies have reported low OLI reflectance responses in
the Blue band (Helder et al. 2013; Holden andWoodcock
2016; Pahlevan et al. 2014; Zhu et al. 2016). Holden and
Woodcock (2016) interpreted the darker OLI Blue band
reflectance as resulting from better masking of cirrus
clouds in the current Landsat 8 atmospheric correction
regimes, which make use of the new OLI Ultra-Blue
coastal aerosol band (Vermote et al. 2016). Pahlevan
et al. (2014) attributed the reflectance differences to
sensor calibration based on pre-launch practices.
Moreover, the adoption of the push broom design for
the OLI sensor, as compared to the whiskbroom design
of the ETM+ could also affect radiometric calibration
(Czapla-Myers et al. 2013). Future developments to the
L8SR atmospheric correction algorithm currently being
used with OLI could further reduce the observed differ-
ences in future Landsat products.

Differences in the range of in situ measurements
between the two sensors could have also impacted the
observed differences in sensor performance. The data
shows that while the range of the in situ data for TSM
and SDD was smaller for Landsat 7 as compared to
Landsat 8, median values and interquartile ranges (first
and third quartile) were nearly identical for the two
sensors. With respect to chlorophyll-a, the Landsat 7
data showed a wider range of variability. Nevertheless,
the Landsat 8 data had 25% of its chlorophyll-a concen-
trations below 40 μg/L, while Landsat 7 had less than
14% of its in situ measurements below that threshold.
This mismatch could have negatively affected the per-
formance of the Landsat 8 models, as they had to predict
under a wider set of trophic states. Summary statistics of
the measured in situ Chlorophyll-a, TSM, and SDD

concentrations by sensor type are presented in the elec-
tronic supplementary material.

In closure, it is worth emphasizing that Landsat-
based chlorophyll-a, TSM, and SDD monitoring are
dependent on the lake or reservoir trophic state (Brivio
et al. 2001; Gitelson and Yacobi 1995; McCullough
et al. 2012) and hence model results in this study can
be pertinent to other reservoirs that exist in a eutrophic
or hypereutrophic state with low levels of mineral
suspended matter. Differences between the two
Landsat sensors (ETM+ and OLI) may be less pro-
nounced in oligotrophic systems and/or systems not
dominated with cyanobacteria as those tend to be more
homogeneous and less optically complex in comparison
to eutrophic systems. Recent studies of oligotrophic
systems reported more acceptable correspondence in
the predictive skill between the two sensors when
predicting TSM, water clarity, and CDOM (Lymburner
et al. 2016; Olmanson et al. 2016). Ultimately, more
studies are needed across the trophic spectrum of diverse
inland lakes and reservoirs, both in the semi-arid and in
the temperate zones, to ascertain sensor transferability
between Landsat 7 versus Landsat 8 and to properly
evaluate the accuracies of these two important water
quality monitoring sensors.

Conclusion

Landsat-based remote sensing of water quality offers the
advantage of improving the spatial and temporal cover-
age of data in a cost-effective way. If properly applied, it
has the potential to improve our understanding of poorly
monitored lakes and reservoirs. While algorithm transfer-
ability between Landsat sensors would be ideal for gen-
erating long-term data-sets and thus improving manage-
ment outcomes, this study shows that differences exist
between the ETM+ and the OLI-based water quality
models given current sensor calibrations and atmospheric
routines. Yet, both sensors performed satisfactorily when
independently quantifying chlorophyll-a, TSM, and
SDD. Moreover, the functional forms of the developed
algorithms were often similar across sensors, which indi-
cates a degree of robustness in the developed algorithms.
Overall, the Landsat program offers an opportunity for
water managers to better assess the quality of lakes and
reservoirs, track harmful algal blooms, and assess the
success of river-basin point and non-point source pollu-
tion plans in limiting anthropogenic eutrophication.
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