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Abstract Many countries are utilizing reclaimed waste-
water for agriculture as water demands due to drought,
rising temperatures, and expanding human populations.
Unfortunately, wastewater often contains biologically
active, pseudopersistant pharmaceuticals, even after
treatment. Runoff from agriculture and effluent from
wastewater treatment plants also contribute high con-
centrations of pharmaceuticals to the environment. This
study assessed the effects of common pharmaceuticals
on an agricultural pest, the aphid Myzus persicae
(Sulzer, Hemiptera: Aphididae). Second instar nymphs
were transferred to bell peppers (Capsicum annuum)
that were grown hydroponically. Treatment plants were
spiked with contaminants of emerging concern (CECs)
at environmentally relevant concentrations found in
reclaimed wastewater. M. persicae displayed no differ-
ences in population growth or microbial community

differences due to chemical treatments. Plants, however,
displayed significant growth reduction in antibiotic and
mixture treatments, specifically in wet root masses.
Antibiotic treatment masses were significantly reduced
in the total and root wet masses. Mixture treatments
displayed an overall reduction in plant root wet mass.
Our results suggest that the use of reclaimed wastewater
for crop irrigation would not affect aphid populations,
but could hinder or delay crop production.
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Introduction

According to the National Center for Health Statistics
(2014), there have been increasing pharmaceutical pre-
scriptions for the past 30 years, and they have almost
tripled in the past 14 years alone (Schumock et al. 2014).
For agriculture, in 2013 over 6.6 million kg of the 9.1
million kg of antibiotics used were to increase produc-
tion (Department of Health and Human Services 2013).
Common Bcontaminants of emerging concern^ (CECs)
(pharmaceuticals, antibiotics, mental stimulants, and
surfactants) can be excreted by both humans and ani-
mals with little or no change in the chemical structures
(Hirsch et al. 1999; Ternes et al. 2004; Yamamoto et al.
2009) and, not surprisingly, they have been appearing in
wastewater, and in some cases tap water, over the past
few years (Monteiro and Boxall 2013; Sklerov and
Saucier 2011) (Table 1).
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Most wastewater treatment facilities are not capable
of removing all pharmaceuticals (Gros et al. 2010;
Hedgespeth et al. 2012), resulting in these compounds
being found in effluent. In addition, during heavy
storms, untreated wastewater overflow can release even
higher concentrations of some pharmaceuticals, which
then directly contaminate the environment (Phillips
et al. 2012). Many of these compounds can be found
at biologically active concentrations in surface waters
around the world (Alvarez et al. 2013; Fine et al. 2003;
Huang et al. 2013; Kolpin et al. 2002; Mutiyar and
Mittal 2014; Shappell et al. 2007; Wei et al. 2011). In
addition, there is also an increased effort to use
reclaimed wastewater in drought-affected areas
(Brown et al. 2013; Wu et al. 2012), resulting in in-
creased exposure. In agriculture/livestock operations,
pharmaceuticals are found in manure that is used as
fertilizer for feed and crops, effectively compounding
the pharmaceutical concentrations (Kumar et al. 2005;
Shappell et al. 2007; Wei et al. 2011). Current research
shows that these chemicals tend to be both
pseudopersistant in soil and detrimental to soil microbes

(Alvarez et al. 2013; Chefetz et al. 2008; Gan et al.
2012; Kinney et al. 2006; Thiele-Bruhn 2003).

Our recent studies of the effects of pharmaceuticals
on aquatic insects show that at concentrations found in
reclaimed water, CECs can alter development of the
medically important mosquito Culex quinquefasciatus,
its susceptibility to a common larvicide, and its larval
microbial communities (Pennington et al. 2015, 2016).
Female Megaselia scalaris, which are ecologically im-
portant detritivores, also displayed an increased devel-
opmental period, which could jeopardize the popula-
tion’s survival when exposed to CECs (Pennington
et al., 2017a, b). Also, the common agricultural pest
Trichoplusia ni (cabbage looper) was negatively affect-
ed by antibiotics through a plant matrix (Pennington,
Rothman, Dudley, et al. 2017). A common birth control
agent, 17α-ethinylestradiol, and Bisphenol-A, a com-
mon plasticizer, have been shown to cause deformities
in the midge Chironomus riparius (Watts et al. 2003).
However, aquatic insects’ constant exposure to these
CECs is likely greater than most terrestrial insects. In-
terestingly, many CECs were not designed to specifical-
ly to impact microbes but have been shown to affect
microbial communities. For example, the mental stimu-
lant caffeine can alter biofilm respiration, and diphen-
hydramine, an antihistamine, has been shown to modify
the microbial community of lake biofilms (Rosi-
Marshall et al. 2013). Therefore, accurately predicting
the consequences of specific CECs, even in model in-
sects, currently is difficult if not impossible. This prob-
lem is exacerbated by a general lack of information
regarding effects of pharmaceuticals and other CECs
on the microbial communities of terrestrial insects.

Arthropods, such as insects and crustaceans, rely on
hormones to grow, develop, mate, and produce pigmen-
tation (Jindra et al. 2013; Knowles and Carlisle 1956;
Martín et al. 2001). However, many pharmaceuticals,
especially mammalian sex hormones, are structurally
similar to chemicals that these organisms rely on for
development. These pharmaceuticals bind to receptors
and either increase or disable their counterparts’ natural
function. Endocrine disruption has been noted in birds,
reptiles, and arthropods, primarily in the modification of
primary and secondary sexual characteristics, and
changes in courtship behaviors (Gonzalez et al. 2001;
Hoffmann and Kloas 2012; Jindra et al. 2013; Segner
et al. 2003; Tompsett et al. 2012, 2013). While most
arthropod hormones do not closely match those of
mammals, their molting hormone (ecdysone) is very

Table 1 Contaminants of emerging concern (CEC) treatment
group components and concentration

Contaminant Concentration
(μg/L)

Reference

Antibiotics

Oxytetracycline 72.90 (Kolpin et al. 2002)

Lincomycin 0.730 (Kolpin et al. 2002)

Ciprofloxacin 6.500 (Mutiyar andMittal
2014)

Hormones

17α-
-Ethynylestradiol

0.831 (Kolpin et al. 2002)

17β-Estradiol 0.200 (Kolpin et al. 2002)

19-Norethindrone 0.872 (Kolpin et al. 2002)

Estrone 0.112 (Kolpin et al. 2002)

Mixture

Acetaminophen 10.00 (Kolpin et al. 2002)

Caffeine 6.000 (Kolpin et al. 2002)

Antibiotics Concentration
as above

Hormones Concentration
as above
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similar in structure to the mammalian female sex hor-
mone 17β-estradiol. Increased molting events and inhi-
bition of chitobiase, the enzyme responsible for diges-
tion of the cuticle during insect molting, have been
noted in crustaceans exposed to mammalian hormones
(Rodríguez et al. 2007; Zou and Fingerman 1997). In
addition to these effects, pharmaceuticals have been
shown to have delayed cross-generational effects
(Watts et al. 2001).

Aphids are phloem-limited hemimetabolous insects
(immature insects resemble the adults and do not under-
go complete metamorphosis). Myzus persicae (Sulzer,
Hemiptera: Aphididae) is polyphagous, highly cosmo-
politan, and an efficient vector of plant viruses (van
Emden and Harrington 2007). This insect overwinters
in the egg stage on Prunus species, and when their host
plants are over-populated and/or stressed, they begin
producing alates (winged forms) to disperse and colo-
nize new plants (Davis and Landis 1948; Ponsen 1977;
Sorensen 2009; Sylvester 1954; Taylor 1908). The sex-
ual forms are also alates and are formed in autumn
temperatures wherever peaches or suitable host plants
are available (Sorensen 2009; van Emden and
Harrington 2007). Economically, M. persicae is most
damaging in the spring, when the insects hatch and feed
on new peach leaves, and serve as vectors of over 100
different plant viruses (both persistent and non-
persistent) (van Emden and Harrington 2007). The
aphid microbiome has been extensively studied and is
well understood, making aphids excellent models for
microbial community and biological research (Davis
and Landis 1948; Singh and Singh 2016; Sorensen
2009; Sylvester 1954). Previous research has deter-
mined that antibiotics can reduce fecundity, reduce pop-
ulation growth, and increase mortality of aphids
(Baumann et al. 2013; Douglas 1998; Harries and
Mattson 1963; Jayaraj et al. 1967). Previous findings
were usually due to the reduction of Buchnera, a key
symbiont that provides required nutrients the aphids
cannot make themselves or acquire from their diet
(Douglas 1998).

Currently, there is no information regarding pharma-
ceutical effects at the concentrations found in reclaimed
water on the growth and development of phloem-limited
insects or their microbial community composition.
Many herbivores can be exposed to these contaminants
after the CECs enter surface waters, soil, and plants
from wastewater reuse and unintended discharge. There
is minimal information available regarding effects of

CECs when translocated through plants to terrestrial
insects, especially those with specialized feeding tech-
niques. Depending on the acquisition and sequestration
by their host-plant species, insects with phloem-limited
feeding methods, such as aphids, could have either
reduced or increased exposure to CECs. Because previ-
ous research demonstrated a substantial change in both
the biology and microbial communities of other insects
when treated with ecologically relevant levels of CECs
(Pennington et al. 2015, 2016; Pennington, Rothman,
Dudley, et al. 2017; Pennington, Rothman, Jones, et al.
2017), and since aphid growth and development rely on
symbionts, we hypothesized that aphids could be affect-
ed in similar ways. To test this hypothesis, we conducted
bioassays of aphids reared on a key host plant, Capsi-
cum annuum, exposed to CECs at concentrations found
in reclaimed water. Any effects would have potentially
important implications from agricultural perspectives.
Also, as there is currently little information on effects
of CECs on terrestrial insects acquired through a plant
matrix, our findings would have possible interest for
integrated pest management (IPM) research.

Methods and materials

Insect rearing

Green peach aphids (M. persicae) were obtained from a
colony maintained on bell peppers (C. annuum, variety
BIslander^) in a University of California Riverside
greenhouse at 25 ± 2 °C. The insects were in colony
for less than 1 year at the time of the experiments.
Natural light was supplemented with artificial light to
maintain a long-day photoperiod (LD 16–8). When
transfer of insects was required, second instar aphids
were moved to new host plants to eliminate mortality
that occurred when first instar insects were handled.

Population growth

Bell peppers were grown from seeds in 10.16-cm2 pots
in UC soil mix no. 3 (Matkin and Chandler 1957) and
fertilized with Miracle Gro nutrient solution (Scotts
Company, Marysville, OH) at labeled rate and watered
as needed in the UCR greenhouse. When plants were
approximately 10 cm tall, their roots were washed with
D.I. water and they were transplanted to 475-mLMason
jars (Fischers, IN). Mason jars were coated with Folk
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Art Multi-Surface acrylic paint (Plaid Enterprises, Inc.,
Norcross, GA) on the outside to prevent root exposure
to light. Jars were filled with hydroponic growth media
(Oasis Hydroponic Fertilizer 16-4-17, Oasis Grower
Solutions, Kent, OH) containing CEC concentrations
described in Table 5.1 with average pH of 7.0 ± 0.5 as
in Pennington, Rothman, Dudley, et al. (2017).

Treatment media were prepared utilizing stock solu-
tions of treatment compounds dissolved in 5:45 (v:v)
methanol:D.I. water with aliquots of < 500 μL being
dissolved in 18 L. Growth media were stored at room
temperature in blackened 19-L tanks to protect the
CECs from photodegradation and to prevent algal
growth. Hydroponic growth media were drained, by
Erlenmeyer filter flask and vacuum, and replaced every
3 days to hinder bacterial and fungal growth and main-
tain CEC concentrations. After filtering through a
HEPA-CAP (Whatman, Inc., Florham Park, NJ) air
filter, house air was bubbled into jars through black
irrigation tubing to aerate the hydroponic growth media.
Each container included one of five CEC treatments or
an untreated control hydroponic solution, and was used
to water four plants. Plants grew 3 weeks before 10
M. persicae were placed evenly on two fully expanded
leaves per plant. There were four replicate hydroponic
containers for each of the six treatments (n = 20 individ-
uals per plant; n = 480 totalM. persicae). Data regarding
population growth were collected daily and the experi-
ment was ended after 2 weeks. Three life-stage group-
ings (first and second, third and fourth, and adult life
stages) were collected from each plant, with a minimum
sample size of 20 individuals per life stage (n = 20
individuals per plant; n = 480 total M. persicae), and
stored in 200 proof ethanol at 62 ± 2 °C until DNA
extractions were performed. Plants were separated into
parts (roots and leaves), weighed, and immediately fro-
zen at − 62 ± 2 °C.

DNA extractions and Illumina sequencing of whole
body M. persicae bacteria

All DNA extractions and Illumina preparations were
performed as in McFrederick and Rehan (2016) within
1 month of − 62 ± 2 °C storage. Briefly, DNA extrac-
tions were performed using a DNeasy Blood and Tissue
Kit (Qiagen, Valencia, CA). Five pooled individuals
from each life stage (n = 3), each treatment group (n =
6), and replicate group (n = 4), along with triplicates of a
pooled blank for each treatment group (n = 9) and three

negative blanks (n = 3; total n = 84), were placed in
individual wells of a 96-well plate provided in the kit
and extracted per the kit’s directions.

Dual-index barcoding was used to prepare libraries
for sequencing on the MiSeq sequencer (Illumina Inc.,
San Diego, CA). Primers that included either the
Illumina sequencing primer, a unique eight-nucleotide
long barcode, and the forward or reverse genomic oli-
gonucleotide were used as in Kembel et al. (2014), and
the bacterial 16S rDNA sequence primers used were
799F-mod3 CMGGATTAGATACCCKGG (Hanshew
et al. 2013) and 1115R AGGGTTGCGCTCGTTG
(Kembel et al. 2014). One microliter of clean PCR
product was used as a template for the next PCR, using
the primers PCR2F (CAAGCAGAAGACGGCATAC
GAGATCGGTCTCGGCATTCCTGC) and PCR2R
(AATGATACG GCGACCACCGAGATCTACAC
TCTTTCCCTACACGACG) as in Kembel et al.
(2014). The PCR products were then normalized using
SequalPrep Normalization plates (ThermoFisher Scien-
tific, Waltham, MA). Five microliters of each normal-
ized sample was pooled together, and a 2100
Bioanalyzer (Agilent, Santa Clara, CA) was used to
assess library quality. Libraries were then sequenced
using a MiSeq sequencer with 2X 300 cycles. Raw data
are available on the NCBI Sequence Read Archive
(SRA) accession number SRR5929442.

Bioinformatics

All genomic data were processed in macQIIME version
1.9.1-20150604 (Caporaso et al. 2010; Kuczynski et al.
2012) as in Pennington, Rothman, Dudley, et al. (2017).
The R package Bgplots^ (Warnes et al. 2016) was used
to create heatmaps of the most abundant bacterial fam-
ilies; a top ten abundance was used as the cutoff.

Statistics

All statistical analyses were performed using R. Nor-
mality was determined using Shapiro-Wilk normality
tests, quantile-quantile plots, and histograms. Effects
of treatments on population growth were determined
using a generalized linear model, and post hoc tests were
performed using R’s Bsummary^ function. In all cases
when data were not considered normal, either a Poisson
distribution or a negative binomial generalized linear
model was used and best fit was determined from
Akaike’s BAn Information Criterion^ and followed with
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R’s summary function for pairwise comparisons of treat-
ment. Adonis within the R package Bvegan^ (Oksanen
et al. 2008) was used for all PERMANOVA analyses.
All Adonis analyses were conducted on weighted
UniFrac distance matrices.

Results

Aphids reared on treated pepper plants showed no dif-
ference in population growth (Fig. 1) (χ2 4.68; df 5; p =
0.46). There was significant reduction of the total mass
of the peppers (χ2 12.94; df: 5; p = 0.024) specifically in
the antibiotic (t value = − 2.18; p = 0.043) treatments
(Fig. 2). When dissected into parts, there were signifi-
cant differences in leaf (χ2 12.90; df: 5; p = 0.024) and
root mass (χ2: 13.52; df: 5; p = 0.019; Figs. 2 and 3). For

root masses, differences were predominantly in the an-
tibiotic (t value = − 2.81; p = 0.012) and mixture (t val-
ue = − 2.32; p = 0.033) treatments (Fig. 4).

The most dominant family in the aphid microbial
community was Enterobacteriaceae (genus Buchnera;
Fig. 5) across all treatments (accounting for at least
84%; Table 2) and all life stages (accounting for at least
82%; Table 3).

Discussion

Our work demonstrates that the selected CECs did not
affect population dynamics or microbial communities of
M. persicae reared on bell peppers. Many plants will
translocate CECS (Wright et al. 2012; Wu et al. 2012,
2014, 2015). However, some plants can metabolize and/

Fig. 1 Average Myzus persicae
population in each treatment by
day. *** denotes a significant (α
< 0.05) difference relative to the
control
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or sequester xenobiotics in tissues other than phloem,
thereby removing the CEC exposure to aphids (Huber
et al. 2009; Wu et al. 2015). As aphid species rely
heavily on the endosymbiont Buchnera species to grow
and develop, many aphid populations treated with high
concentrations of antibiotics will not survive (Harries
and Mattson 1963; Jayaraj et al. 1967). However, aphid
microbial communities were not affected when treated
with antibiotics and other CECs at the low concentra-
tions found in reclaimed water, which is possibly why

there were no discernable effects on the aphid popula-
tion as a whole. While treatments used in our study have
previously been demonstrated to have negative effects
for at least two other species of insects (Pennington et al.
2015, 2016; Pennington, Rothman, Jones, et al. 2017),
this work suggests that aphids are either not exposed to
CECs through their host plant, or their bacterial symbi-
onts are not sensitive to them, or depleted enough, to
alter their basic biology.

Plants treated with antibiotics typically have lower
levels of intracellular calcium due to chelation
(Bowman et al. 2011). However, in our study, we did
not notice any obvious signs of calcium stress
(discoloring or death of leaves), possibly due to the
use of a hydroponic solution which contains more than
enough metal ions to provide adequate nutrients to the
plants, even with some chelating. We did notice an
overall decrease in mass for plants treated with antibi-
otics likely due to a slowed growth rate from direct
action of the antibiotics on plant growth (Yu et al. 2001).

Overall, there were no discernible effects of CECs on
aphid growth and survival or the key bacteria in their
microbial community. However, there were reductions
in plant growth when even relatively low concentrations
of antibiotics were included in their water. This could
pose a problem for growers because antibiotics tend to
be reapplied with each watering and if manure from

Fig. 2 Average wet mass of whole plants by treatment. ***
denotes a significant (α < 0.05) difference relative to the control

Fig. 3 Average root wet mass. *** denotes a significant (α <
0.05) difference relative to the control

Fig. 4 Average wet masses of plants as total and plant parts by
treatment. Letters denote a significant (α < 0.05) difference be-
tween the column and the relative control
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Fig. 5 Heatmap of the top 10most proportionally abundant bacterial families by averageOTUs of treatment life-stage pairing. Increased red
coloration is indicative of increased proportional abundance

Table 2 Percentages of the top 10 bacterial families in each treatment (incorporating all life stages)

Family Control Acetaminophen Caffeine Antibiotics Hormones Mixture

Enterobacteriaceae 80.52 84.69 86.48 91.83 91.08 95.31

Streptococcaceae 4.35 3.72 3.07 0.96 2.17 0.64

Pseudomonadaceae 1.01 1.10 1.36 2.03 0.58 0.91

Micrococcaceae 2.43 0.75 1.00 0.10 0.40 0.19

Neisseriaceae 2.70 0.76 0.29 0.07 0.59 0.05

Rhizobiaceae 0.38 0.78 1.38 0.27 0.20 0.08

Burkholderiaceae 1.12 0.63 0.54 0.21 0.37 0.20

Comamonadaceae 0.40 0.47 0.75 0.41 0.46 0.30

Pasteurellaceae 0.98 0.71 0.43 0.06 0.71 0.03

Bradyrhizobiaceae 0.79 0.65 0.45 0.42 0.26 0.24

Total percentages 94.69 94.26 95.75 96.36 96.82 97.95

Total reads 77,031 95,718 117,524 104,246 117,125 93,503
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antibiotic-treated animals is used as fertilizer (Chari and
Halden 2013; Wu et al. 2010; Wu et al. 2015). These
antibiotics can reportedly hinder the growth of the
plant’s rhizosphere which would create additional prob-
lems when crops are rotated to reintroduce nitrogen into
the soil (Kong et al. 2006). More studies will need to be
performed to determine how CECs will affect root mi-
crobial communities in soil, the roots themselves in soil,
and degradation of CECs in soil. Nonetheless, the re-
sults are immediately applicable to hydroponic cropping
systems.

Conclusion

Results from this study add new information to the
limited literature reporting effects on plants and various
organisms. Plants (C. annuum) were negatively affected
by pharmaceuticals present in their hydroponic media.
Plant wet masses (both root and total mass) were re-
duced by the pharmaceuticals, specifically in the antibi-
otic and the mixture treatments. However, the treatments
had no discernable effects on the aphid M. persicae
reared on these treated plants. This is surprising, as
much of the literature to date has found negative effects
on insects treated with these pharmaceuticals. We pro-
pose that the plant matrix, potentially acting as a dilution
factor, along with the specialized phloem-feeding strat-
egy of the insect, provides some measure of protection
through a reduction in exposure. More studies will need
to be conducted to discern the concentration of CECs in

the phloem and the apparent resistance of some genera
of bacterial symbionts like Buchnera to these pollutants.
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