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Abstract Optimizing the classification accuracy of
a mangrove forest is of utmost importance for conserva-
tion practitioners. Mangrove forest mapping using
satellite-based remote sensing techniques is by far the
most common method of classification currently used
given the logistical difficulties of field endeavors in these
forested wetlands. However, there is now an abundance
of options from which to choose in regards to satellite
sensors, which has led to substantially different estima-
tions of mangrove forest location and extent with partic-
ular concern for degraded systems. The objective of this
study was to assess the accuracy of mangrove forest
classification using different remotely sensed data
sources (i.e., Landsat-8, SPOT-5, Sentinel-2, and

WorldView-2) for a system located along the Pacific
coast of Mexico. Specifically, we examined a stressed
semiarid mangrove forest which offers a variety of con-
ditions such as dead areas, degraded stands, healthy
mangroves, and very dense mangrove island formations.
The results indicated that Landsat-8 (30 m per pixel) had
the lowest overall accuracy at 64% and thatWorldView-2
(1.6 m per pixel) had the highest at 93%. Moreover,
the SPOT-5 and the Sentinel-2 classifications (10 m per
pixel) were very similar having accuracies of 75 and
78%, respectively. In comparison to WorldView-
2, the other sensors overestimated the extent of
Laguncularia racemosa and underestimated the extent
of Rhizophora mangle. When considering such type of
sensors, the higher spatial resolution can be particularly
important in mapping small mangrove islands that often
occur in degraded mangrove systems.

Keywords Landsat-8 . SPOT-5 . Sentinel-2 .

WorldView-2 . Forestedwetland

Introduction

Mangrove forests are located at the intertidal zone of
estuaries, coastal lagoons, and open shorelines along
tropical and subtropical coastlines (Saintilan et al.
2014). These ecosystems are of utmost importance for
local communities providing fishery products (e.g., fish,
shrimp, crabs, mollusks), timber goods (e.g., firewood,
construction materials), and recreational uses such as
eco-tourism (Walters et al. 2008; Mukherjee et al.
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2014). They also support a number of key ecosystem
services such as habitat for aquatic (Martin et al. 2015)
and non-aquatic faunal species (Ferreira et al. 2015),
coastal protection (Horstman et al. 2015), carbon se-
questration and storage (Alongi 2016), and treatment
of brackish water from aquaculture (De-León-Herrera
et al. 2015). However, mangroves undergo threats from
direct impacts such as coastal development projects
(e.g., aquaculture, tourist industry) and pollution
(Duke 2016), as well as from indirect impacts such as
changes in inland freshwater management and various
forms of hydrological modifications (e.g., roads, chan-
nels), which are threatening their health and resilience.
Of key concern is the first appearance of a great-scale
mangrove die back which is most likely attributed to
climate change (Duke et al. 2017). Indeed, current man-
grove forest destruction and degradation is equal to or
greater than that of other more appealing ecosystems
losses, such as coral reefs and rainforest (Duke et al.
2007), and not surprising, focus of great concern by the
United Nations Environment Programme (van Bochove
et al. 2014).

Given the ecological and economical importance of
mangrove forests, there is an increasing need to monitor
and evaluate their condition and geographical distribu-
tion in order to help guide conservation and restoration
efforts (Dronova 2015). Since many mangrove forests
are difficult to access, due to the flooded, soft sediment
environments in which they grow, the ability to accu-
rately estimate large areas of mangrove cover and rates
of change with remote sensing data would greatly assist
in these endeavors (Fries and Webb 2014). Remote
sensing platforms have the advantages of being large-
scale, long-term, and in some cases cost-effective mon-
itoring approaches (Kuenzer et al. 2011). Consequently,
mapping of mangrove forests using remote sensing
techniques has been widely used and is frequently a
reliable alternative to extensive ground-survey methods
of mapping, mainly in remote or inaccessible regions
(Guo et al. 2017). For instance, in mangrove forest
management, remote sensing applications could provide
key information regarding habitat inventories at species
level (e.g., Kovacs et al. 2005; Kovacs et al. 2010),
pigment content assessments (e.g., Heenkenda et al.
2015; Flores-de-Santiago et al. 2016), change detection
and monitoring (e.g., Ibharim et al. 2015; Son et al.
2016), distribution along latitudinal limits (e.g., Otero
et al. 2016; Ximenes et al. 2016), and overall ecosystem
evaluation (e.g., McCarthy et al. 2015).

Fast and accurate mapping is the key component for
sustainable conservation of mangrove forests
(Chadwick 2011). It is clear that conventional remote
sensing images are now used for operational mapping
and monitoring of mangroves (Pettorelli et al. 2014).
However, the spatial and spectral information provided
by these conventional data may not be enough for
studying mangrove forests and their species composi-
tion in detail (Ximenes et al. 2016; McCarthy et al.
2015). For example, broad separation of mangrove for-
ests from surrounding tropical rain forests or other more
arid ecosystems is feasible with traditional sensors and
digital elevation models (Alsaaideh et al. 2013), but
studies using remote sensing techniques to assess in
more detail the diversity within mangrove species are
still uncommon (e.g., Flores-de-Santiago et al. 2013a;
Heenkenda et al. 2014; Zhang et al. 2014). For instance,
Friess andWebb (2014) demonstrated that high variance
in mangrove estimates leads to highly variable defores-
tation trends, depending on the original data source and
the criteria used for classification. Moreover, detailed
mangrove forest characterization is difficult with mod-
erate spatial resolution (~ 30 m) satellite data due to the
often-narrow extent along coastlines, which sometimes
delivers contradictory results (see assessment byKovacs
et al. 2009). Consequently, in order to describe these
ecosystems more accurately in terms of their physiog-
nomic classification and diversity patterns, the combi-
nation of higher spatial (4 m or less) and spectral reso-
lutions are thus suggested (Wang et al. 2016).

Vegetation indices (VI) are widely used as key
indicators for assessing the environmental variations
of land cover among vegetative targets. The Normal-
ized Difference Vegetation Index (NDVI) is one of
the more popular methods in vegetation monitoring
(Pettorelli 2013), including mangrove forests. For
instance, Kovacs et al. (2004, 2005, 2009) used
NDVI to estimate Leaf Area Index (LAI) and con-
sidered very-high spatial resolution data a useful tool
for mangrove species discrimination analysis in order
to minimize logistical and practical difficulties of
field work in inaccessible mangrove areas. Neverthe-
less, it must be pointed out that the NDVI is not
always identified as the optimal VI for mangrove leaf
chlorophyll estimates (Flores-de-Santiago et al.
2013b; Flores-de-Santiago et al. 2016). Clearly,
higher spatial resolution improves the results at
which mangroves are mapped using satellite imag-
ery (Lee and Yeh 2009). It is for this reason that
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conventional, often freely available, satellite images
have not been extensively used for mapping man-
grove at the species level. Moreover, given the small
patch size of some degraded mangrove forests stands,
typical of many semiarid regions, it has been sug-
gested that spatial resolution plays a more important
role in discriminating different mangrove species
(Friess and Webb 2014).

Although the higher spatial resolution data are rec-
ommended, there are many concerns in their use includ-
ing increase data volume and the higher cost of data
acquisition, storage, and processing. As such, it is desir-
able to use an optimal spatial resolution for a given
study that will be affected by the spatial composition
and structure of the scene, and by the information of the
target to be extracted. In this sense, optimal spatial
resolution is the one at which the information content
per pixel is maximized (Jensen 2016) and it will depend
on the mangrove species, the forest age, and the spectral
bands used. It is apparent that distinguishing the cano-
pies of different mangrove species with conventional
medium sensors such as Landsat and SPOT is a difficult
if not impossible endeavor due to the coarse spectral and
spatial resolution of such images (Friess and Webb
2014). For example, such sensors could be unsuitable
for separating the relatively small clusters (i.e., islands)
typical of degraded mangrove stands, which in some
situations exhibit very similar spectral signatures (Flo-
res-de-Santiago et al. 2016).

The recent advancement of very-high spatial resolu-
tion, multispectral satellite sensors makes it possible to
remotely assess mangrove species at a spatial resolution
below a meter (Kuenzer et al. 2011). Hence, an im-
proved classification of individual mangrove species is
now possible. However, with this enhancement comes
the task of developing more complex analytical ap-
proaches such as object-based image analysis (e.g.,
Flores-de-Santiago et al. 2013a) that can realize the full
potential of the acquired data when attempting to sepa-
rate mangrove classes. Nevertheless, it is clear that the
development of new methods for mapping mangrove
forests by collecting information with very-high spatial
resolution sensors and VIs, particularly at the species
and physiognomic levels, is still at an early assessment
stage. Hence, the purpose of this investigation was to
assess the utility of several satellite sensors with various
spatial resolutions (i.e., Landsat-8, SPOT-5, Sentinel-2,
and WorldView-2) for mapping mangrove species and
conditions along a degraded mangrove forests of the

Mexican Pacific. Results from this investigation could
provide reliable information for future national invento-
ries particularly those with similar species and
conditions.

Materials and methods

Study area

The Teacapán-Agua Brava-Las Haciendas estuarine
system is located along the Pacific coast of Mexico on
the border between the states of Sinaloa and Nayarit
(Fig. 1). This system is considered the largest mangrove
habitat on the Pacific coast of the Americas, with an
estimated overall extension of 80,000 ha of mangroves
and 150,000 ha of seasonal floodplains (Blanco-Correa
2011). The Agua Brava Lagoon, which is located in the
south, supports an extensive mangrove community
where the red mangrove (Rhizophora mangle) is present
along the edge of the many tidal channels, and the white
mangrove (Laguncularia racemosa) is commonly
found where the tidal influence is minimal. There are
two channels that connect the system with the Pacific
Ocean, a natural inlet in Teacapán and an artificial inlet
known as the Cuautla Canal. Unfortunately, the man-
grove forests have experienced considerable degrada-
tion since the opening of the Cuautla Canal in 1973,
which was reported by local fishermen (Kovacs 2000)
and first mapped using Landsat data (Kovacs et al.
2001). Moreover, it is believed that the hypersaline
conditions, commonly found in the north section of the
study area, caused themangroves to fragment into small,
very-dense clusters, which was confirmed by the recent
oblique photos taken from a helicopter and from field
campaigns (Fig. 2).

Regarding mapping endeavors in the area, Blanco-
Correa (2011) did a comprehensive analysis about the
change in land use including hydrological and geomor-
phological assessments; more recently, Troche-Souza
et al. (2016) mapped the entire mangrove system based
on SPOT-5 data. Additional detailed analysis has been
performed in specific areas. For instance, Kovacs et al.
(2005) conducted the first study that used very-high
spatial resolution IKONOS data and in situ LAI-2000
sensor data in order to create a map of mangroves at
the species level. Moreover, Kovacs et al. (2009) point-
ed out the need of field validation and optimal spatial
resolution data for mangrove assessments.
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Satellite data processing and field survey

A variety of commonly available satellite data were ac-
quired for the study area (Table 1). Radiometric and
atmospheric corrections were performed using the soft-
ware PCI-Geomatica 2015 and QGIS. Specifically, the
ATCOR model (Richter and Schläpfer 2016) was per-
formed on the WorldView-2 data, the Geosud Toa Re-
flectance (Ose 2015) on the Landsat-8 and SPOT-5, and
the Semi-Automatic Classification Plugin (Congedo
2016) on the Sentinel-2 data. In order to geometrically
correct the images, 34 ground control points (GCP) were

employed using a UTM zone 13 map projection, then a
mask was created of open water using the near-infrared
band (NIR) for each image (Table 1). A secondmask was
manually created in order to separate agricultural fields,
aquaculture ponds, and saltpan located at the eastern part
of the study site. Specifically, in this area, it is quite
feasible to discriminate mangrove forests from the afore-
mentioned land-cover types by visual inspection.

Following a previous mangrove forest investigation at
the species level for this study area (Kovacs et al. 2005),
we selected three mangrove classes: (1) dominant red
mangrove (Rhizophora mangle) stands, (2) dominant
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Fig. 1 a Location of the mangrove forest study area at the north-
easter section of the Agua Brava coastal lagoon, Pacific coast of
Mexico (Enhanced Near infrared, Red, Green of Sentinel-2 dated
January 12, 2016). The yellow rectangle represents the boundary

for the classification process. b Degraded area test site with four
representative locations (A), (B), (C), and (D). The purple rectan-
gle denotes an example of the oblique photos taken from the
helicopter depicted in Fig. 2
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Fig. 2 a Examples of mangrove degraded islands at the north
section of the study area. The yellow rectangle represents location
of site (A) from Fig. 1. b, c, d Oblique photos taken from a

helicopter (e) (SEMAR-CONABIO 2016). f Location of a field
photo of the degraded mangrove site
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white mangrove (Laguncularia racemosa) stands, and (3)
dead mangrove stands. Based on the number of selected
classes and according to Lillesand et al. (2008), a total of
120 circular sample stations, 40 per class, were selected
within the study area. Each station was designated based
on a previous fieldwork campaign, and for each station; a
radius of 6.9 m from the center was recorded covering an
area of 0.015 ha using the software QGIS 2.18. For each
station, an NDVI value was then calculated from each of
the satellite data sources for all pixels except for those
considered open water. Specifically, we used the (NIR)
wavelengths for each data (Table 1).

Data extraction and accuracy assessment

For each image, we extracted the NDVI intervals of all
mangrove classes within the 120 stations. Specifically,
the mean, median, minimum, and maximum values
were recorded and compared using boxplots. The level
of classification was performed with the three mangrove
classes (Rhizophora mangle, Laguncularia racemosa,
dead mangrove) and open water. Based on the NDVI
intervals per class, decision trees classifications were
developed for all satellite data. For the accuracy assess-
ment, we calculated the optimum sample size for the
error matrix based on the following equation by
Congalton and Green (1999), using the multinominal
distribution approach shown in Eq. (1):

N ¼ Z2pq=E2
� �

; ð1Þ
where N is the optimum number of sample points, p is
the percentage calculated accuracy, q is the 100-p, E is
the allowed error, and Z is the standard normal deviate
for the confidence level.

The resulting minimum random point number was
204. The accuracy was assessed using the error matrices
and their associated statistics: overall accuracy, class
producer’s accuracy, class user’s accuracy, and the kappa
statistics (Jensen 2016). To test the accuracy for each

image, the same 204 ground truth validation points were
maintained. All points were verified using the previous
classification map of Kovacs et al. (2005), oblique photos
taken from a helicopter, and field knowledge of the study
site (Fig. 2). The producer’s and user’s accuracies were
examined for individual class assessments when the over-
all accuracy was deemed similar among images. Addi-
tionally, the total area (ha) and percentage of each class
were calculated for each classification.

Results

The box plots derived from the NDVI intervals among
the four-satellite data show that the dead mangrove class
is clearly separated from the live trees (Fig. 3). Overall,

Table 1 Optical data specifications collected for the study area

Sensor Date of acquisition
(month/day/year)

Time of acquisition (GMT) Pixel spacing (m) Red band (nm) Near-infrared band (nm)

Landsat-8 5/29/2015 17:29:11 30 640–670 850–880

SPOT-5 11/26/2014 16:48:37 10 610–680 780–890

Sentinel-2 1/12/2016 17:49:16 10 650–680 785–900

WorldView-2 4/4/2015 17:47:29 1.6 630–690 760–900

 0.9

 0.6

 0.3

    0

-0.3

N
D

V
I
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Rhizophora mangle
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Fig. 3 Normalized Difference Vegetation Index (NDVI) box plots
for three classes (Rhizophora mangle, Laguncularia racemosa,
and dead mangrove). Each box plot depicts the mean (small
square), the 25–75% quartiles (rectangle), and the median (line
dividing the box plot) extracted from the five remote sensing
images: Landsat-8, SPOT-5, Sentinel-2, and WorldView-2
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the Rhizophora mangle NDVI intervals were higher
compared to that of Laguncularia racemosa values for
all sensors. However, the WorldView-2 data was the
only satellite sensor in which Laguncularia racemosa
and Rhizophora mangle could be utterly separated from
each other. The remaining three satellite data presented
some degree of NDVI mixture between both live man-
grove classes, principally between the upper limit of the
Laguncularia racemosa with the lower limit of the
Rhizophora mangle values. Particularly, Sentinel-2 data
was the sensor that showed more mixed NDVI values
between mangrove species.

The overall mangrove classification results from the
four satellite data indicated that the dead mangrove zone
was located at the northeastern section of the study area,
while the Rhizophora mangle was found close to the
main tidal channels and the Laguncularia racemosa
stands in the less frequent tidal flushing zones (Fig. 4).
Regarding the accuracy assessment, Landsat-8 (30 m)

gave a minimal and overall accuracy of 64% (Table 2),
SPOT-5 (10 m) of 75% (Table 3), Sentinel-2 (10 m) of
78% (Table 4), and WorldView-2 (1.6 m) of 93%
(Table 5). With the exception of the WorldView-2 data,
there were many issues related to misclassification in
areas classified as open water typically located in the
central part of the study area. However, the NDVI
in te rva l s be tween Rhizophora mangle and
Laguncularia racemosa were well discriminated in the
box plots for the WorldView-2 data with user’s accura-
cies for both mangrove classes at 94% and 90%, respec-
tively. Moreover, the overall and user’s accuracies of the
Sentinel-2 classification performed better compared to
the Landsat-8 and SPOT-5 classifications.

The total open water area and dead mangrove
stands did not vary among the four remote sensors
covering 63% and 8% respectively (Table 6). The
most problematic classification mapping issue was
the discrimination of Rhizophora mangle from
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Laguncularia racemosa stands. For instance, if we
take into consideration the WorldView-2 image as the
best classification, all sensors overestimated, to some
extent, Laguncularia racemosa and underestimated
Rhizophora mangle hectares (Table 6). It is clear from
the classification maps (Fig. 4) that the major under-
estimation of Rhizophora mangle occurred in the
northeastern section of the study area where many
mangrove clusters are found. Nevertheless, Sentinel-2
presented higher user’s accuracies for both mangrove
classes and Landsat-8 the lowest user’s accuracies
(Tables 2 and 4).

Figure 5 depicts four representative locations in this
study area: (a) degraded mangrove islands with
Rhizophora mangle and Laguncularia racemosa stands;
(b) fringe Laguncularia racemosa; (c) dead mangrove;
and (d) healthy mangrove islands with Rhizophora man-
gle and Laguncularia racemosa stands. All but the
WorldView-2 misclassified Laguncularia racemosa in
many sections along the main tidal channels of the
degraded stands (Fig. 2 a, b, c), and for small islands

covered by Rhizophora mangle (Fig. 5 d). Hence, the
spatial resolution of the sensors played a key role in
fragmented mangrove stands.

Discussion

Results from this investigation provide quantitative
evidence that the spatial resolution is of utmost im-
portance in mapping of mangrove forests using the
same classification approach for this region of Mex-
ico. This study shows that very-high spatial resolu-
tion multispectral imagery from WorldView-2 data
can effectively map the spatial distribution of man-
grove species at regional scales. Contrary, very small
and dense clusters (i.e., islands) of mangrove forests
along the tidal creeks will not be identified from
moderate-resolution satellite data such as Landsat-8,
SPOT-5, and Sentinel-2.

Currently, the great contradictions in trends of man-
grove forests extent suggests that estimates of

Table 2 The error matrix for the Landsat-8 data classification

Class Reference data

Open water Dead mangrove Laguncularia racemosa Rhizophora mangle User’s accuracy (%)

Open water 0 6 21 8 0

Dead mangrove 0 28 5 0 85

Laguncularia racemosa 0 3 73 21 75

Rhizophora mangle 0 0 9 30 77

Producer’s accuracy (%) ND 76 68 51

Overall accuracy (%) 64

Overall kappa statistics 0.46

Table 3 The error matrix for the SPOT-5 data classification

Class Reference data

Open water Dead mangrove Laguncularia racemosa Rhizophora mangle User’s accuracy (%)

Open water 0 2 8 3 0

Dead mangrove 0 32 3 2 86

Laguncularia racemosa 0 3 86 18 80

Rhizophora mangle 0 0 11 36 77

Producer’s accuracy (%) ND 86 79 61

Overall accuracy (%) 75

Overall kappa statistics 0.61
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ecosystem health, mangrove loss, biodiversity threat
assessments, and conservation policies will be ham-
pered by low confidence in mangrove classification
(Friess and Webb 2014). In fact, isolated clusters of
mangrove stands from arid/semiarid regions influ-
ences mapping accuracies (Gao 1998). In these climati-
cally stressful zones, mangroves do not grow as exten-
sively as those in tropical latitudes (Flores-Verdugo et al.
1987). In general, each cluster of mangrove forest is
small-sized and elongated in shape due to hypersaline
conditions. Although these clusters could extent over a
large area, as seen in Fig. 3, each patch registers merely
a couple of pixels in the Landsat-8, SPOT-5, and
Sentinel-2 images. During the classification accuracy,
the isolated clusters of mangroves of a few pixels are
generalized and replaced by other classes causing mis-
classification with, for example, water bodies (Fig. 4)
resulting in lower user’s accuracies for the Landsat-8,
SPOT-5, and Sentinel-2 data. Our field work campaign
confirmed that most of this mangrove system at the test
site is under severe degradation, and the mangrove trees

are often on small islands with narrow tidal channels
(approximately 10–30 m wide strips). Hence, the
30 m × 30 m pixels of Landsat-8 did not resolve these
areas or the mixed mangrove vegetation that were ag-
gregated within each 30 m pixel. Contrary, the SPOT-5
and Sentinel-2 were able to separate at some degree both
species, but similar difficulties compared to the Landsat-
8 were found. As expected, the very-high spatial reso-
lution of the WorldView-2 data help discriminate these
mangrove classes extremely well. In theory, the results
between the SPOT-5 and the Sentinel-2 classifications
should be similar due to their identical spatial resolu-
tion. However, the overall accuracy was higher in the
Sentinel-2 data as well as the user’s accuracies for both
mangrove species. This could be a consequence of the
higher radiometric resolution of the Sentinel-2 (12
bit) in comparison to the SPOT-5 (8 bit).

Utilizing remote sensing assessments allow us to
determine the specific sites of the most vulnerable man-
grove locations (Vo et al. 2015). Such knowledge plays
a key role in the decision-making process for future

Table 4 The error matrix for the Sentinel-2 data classification

Class Reference data

Open water Dead mangrove Laguncularia racemosa Rhizophora mangle User’s accuracy (%)

Open water 0 3 8 6 0

Dead mangrove 0 33 3 0 92

Laguncularia racemosa 0 1 93 19 82

Rhizophora mangle 0 0 4 34 89

Producer’s accuracy (%) ND 89 86 58

Overall accuracy (%) 78

Overall kappa statistics 0.65

Table 5 The error matrix for the WorldView-2 data classification

Class Reference data

Open water Dead mangrove Laguncularia racemosa Rhizophora mangle User’s accuracy (%)

Open water 0 0 0 0 100

Dead mangrove 0 36 0 0 100

Laguncularia racemosa 0 1 105 11 90

Rhizophora mangle 0 0 3 48 94

Producer’s accuracy (%) ND 97 97 81

Overall accuracy (%) 93

Overall kappa statistics 0.88
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restoration efforts. It has been suggested that moderate
resolution satellite data such as Landsat contain enough
detail to capture mangrove forest distribution and

dynamics (Giri et al. 2011). In the present study, the
total mangrove extent area did not vary considerably
among the coarse spatial resolution images (Table 6).

Table 6 Land cover classification (ha) and percentage (%) of the four remote sensing platforms

Class Sensor

Landsat-8 SPOT-5 Sentinel-2 WorldView-2

Open water 13,778 (63%) 13,767 (63%) 13,763 (63%) 13,765 (63%)

Dead mangrove 1780 (8%) 1767 (8%) 1802 (8%) 1675 (8%)

Laguncularia racemosa 4861 (22%) 4652 (21%) 5106 (23%) 4514 (21%)

Rhizophora mangle 1548 (7%) 1781 (8%) 1296 (6%) 2013 (8%)

Total area 21,969 21,967 21,967 21,967

0 150 30075 m

(a)

(b)

(c)

(d)

Open water Dead mangrove
Laguncularia racemosa Rhizophora mangle

Fig. 5 Examples of representative locations from the mangrove
classifications using an NDVI approach. From left to right: True
color WorldView-2 image; Landsat-8 classification; SPOT-5 clas-
sification; Sentinel-2 classification; and WorldView-2 classifica-
tion. a Degraded mangrove islands with Rhizophora mangle and

Laguncularia racemosa stands; b fringe Laguncularia racemosa
zone; c dead mangrove area; and d healthy mangrove islands with
Rhizophora mangle and Laguncularia racemosa stands. The scale
is 1:10,000
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However, the spatial resolution of Landsat-8, SPOT-5,
and Sentinel-2 hinders the mapping of specific locations
of mangrove species within the study site (Fig. 5).
Clearly, very high-resolution images or oblique aerial
photographs are needed to assess and monitor those
very small clusters (Green et al. 1998). However, there
are only a few cases where mangrove species have been
classified at this level of detail within an individual
system due to the higher cost of very-high spatial reso-
lution data (Kovacs et al. 2005).

This study shows that very high-resolution multi-
spectral data can effectively map the spatial distribution
of mangroves at regional scales in a degraded area.
However, it is important to recognize the limitations of
this work. For instance, the use of the single NDVI
method may produce serious errors in biomass estima-
tion (Li et al. 2007). Also, the NDVI is not always
identified as the optimal estimator of chlorophyll-a con-
tent in subtropical mangroves (Flores-de-Santiago et al.
2013b) as well as chlorophyll-b and total carotenoids
(Flores-de-Santiago et al. 2016). The NDVI only re-
flects the crown information of mangrove trees, and thus
the vertical profile (e.g., tree height) cannot be retrieved
by this VI (Li et al. 2007). Additionally, the study site
presents two physiognomic communit ies of
Laguncularia racemosa that includes a relatively
healthy forest closer to the tidal channels and a more
degraded one located more inland (Kovacs et al. 2005).
Thereby, not all images will be suitable for a more
detailed classification of the various physiognomic
states of Laguncularia racemosa stands. Moreover,
WorldView-2 data could be crucial in determining pig-
ment content given the Red-edge band which could
improve mangrove discrimination (Flores-de-Santiago
et al. 2016). Indeed, Koedsin and Vaiphasa (2013) clas-
sified five mangrove species with high-spectral resolu-
tion Hyperion data (30 m per pixel) in Thailand achiev-
ing an overall accuracy of 92%. It is clear that future
studies should assess mangrove forest invento-
ries using different classification methods and differ-
ent spectral bands whenever possible.

Conclusions

Optimal spatial resolution from remote sensing data is
needed to classify andmonitor environmental variability
in mangrove forests, which are currently threatened by
coastal development, aquaculture expansion, freshwater

diversion, and climate change. Mangrove species were
difficult to discriminate in multispectral imagery with
coarse spatial resolution because of similarities in their
spectral reflectance properties. However, the failure of
the NDVI in coarse spatial resolution data does not
necessarily preclude their applicability in other more
tropical latitudes where mangrove forests thrive under
optimal conditions. Given the spatial dynamics of high-
ly dense small clusters of mangrove species, it is clear
that the type of remote sensing data used during the
classification procedure can substantially affect the ac-
curacy of the final mangrove map. Comparing man-
grove species mapping using a standard method of
classification among different remote sensing platforms
is a key step in determining the optimal spatial resolu-
tion for monitoring purposes. We believe that the pres-
ent study is the first to include a single method of
classification among different spatial resolution im-
ages for a degraded mangrove forest. The accuracy
issues presented in our results could be of utmost im-
portance for future studies regarding mangrove forests
inventories at the national level in countries where ac-
quisition of very-high spatial resolution data is limited.
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