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Abstract The diversity of forest trees as an indicator of
ecosystem health can be assessed using the spectral char-
acteristics of plant communities through remote sensing
data. The objectives of this studywere to investigate alpha
and beta tree diversity using Landsat data for six dates in
the Gönen dam watershed of Turkey. We used richness
and the Shannon and Simpson diversity indices to calcu-
late tree alpha diversity. We also represented the relation-
ship between beta diversity and remotely sensed data
using species composition similarity and spectral distance
similarity of sampling plots via quantile regression. A
total of 99 sampling units, each 20 m × 20 m, were
selected using geographically stratified random sampling
method. Within each plot, the tree species were identified,
and all of the trees with a diameter at breast height (dbh)
larger than 7 cm were measured. Presence/absence and
abundance data (tree species number and tree species
basal area) of tree species were used to determine the
relationship between richness and the Shannon and
Simpson diversity indices, which were computed with
ground field data, and spectral variables derived (2 × 2
pixels and 3 × 3 pixels) from Landsat 8 OLI data. The
Shannon-Weiner index had the highest correlation. For all

six dates, NDVI (normalized difference vegetation index)
was the spectral variable most strongly correlated with the
Shannon index and the tree diversity variables. The Ratio
of green to red (VI) was the spectral variable least corre-
lated with the tree diversity variables and the Shannon
basal area. In both beta diversity curves, the slope of the
OLS regression was low, while in the upper quantile, it
was approximately twice the lower quantiles. The Jaccard
index is closed to one with little difference in both two
beta diversity approaches. This result is due to increasing
the similarity between the sampling plots when they are
located close to each other. The intercept differences
between two investigated beta diversity were strongly
related to the development stage of a number of sampling
plots in the tree species basal area method. To obtain beta
diversity, the tree basal area method indicates better result
than the tree species number method at representing sim-
ilarity of regions which are located close together. In
conclusion, NDVI is helpful for estimating the alpha
diversity of trees over large areas when the vegetation is
at the maximum growing season. Beta diversity could be
obtained with the spectral heterogeneity of Landsat data.
Future tree diversity studies using remote sensing data
should select data sets when vegetation is at themaximum
growing season. Also, forest tree diversity investigations
can be identified by using higher-resolution remote sens-
ing data such as ESA Sentinel 2 data which is freely avail-
able since June 2015.
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Introduction

Forests contain a large amount of terrestrial biodiversity
and are considered important components of terrestrial
ecosystems that provide several crucial ecosystem
goods and services to humanity (Gamfeldt et al. 2013).
Forest biodiversity encompasses not only trees but also
all life forms found within forest ecosystems. However,
trees are essential elements of forests that cannot be
replaced with any other elements. Trees, along with
various other ecological variables, create ecological
and physical variations in forests and provide food,
shelter and living space for numerous organisms (Jones
et al. 1994). Meanwhile, they provide a humid environ-
ment for understory plants, and their fallen leaves affect
soil conditions and protect seeds, seedlings and soil
organisms (Callaway and Walker 1997). Tree species
diversity promotes timber production (Morin et al.
2011), influences carbon storage and provides more
resistance to disturbance effects (Pedro et al. 2015) and
insect herbivores (Castagneyrol et al. 2014). Gamfeldt
et al. (2013) stated that tree species richness in boreal
and temperate forests was positively affected by multi-
ple ecosystem functions, such as tree growth, topsoil
carbon storage, berry production, game production po-
tential, the presence of deadwood and biodiversity in the
understory. Therefore, knowing and conserving a varia-
tion of tree species in a forest is crucial to ensure a future
potential of high levels of multiple ecosystem services
(Gamfeldt et al. 2013).

Plant diversity maps play an outstanding role in
effective management and decision-making for vegeta-
tion landscapes. Thus, their significance is expected to
be especially considered in forested areas by the forest
managers because of the difficulty in managing and
appreciating the diversity of forest trees (Foody and
Cutler 2006). In particular, the concept of biodiversity
as a primary principle should be considered during
protection and conservation planning, management
and utilization (Foody and Cutler 2006; Kiran and
Mudaliar 2012). Enhancing, determining, assessing
and monitoring forests biodiversity have become an
important issue when protecting habitats and a huge
number of species (Wenting et al. 2004; Kiran and
Mudaliar 2012). Therefore, to plan and manage forests
in an effective and sustainable way, it is essential to
understand tree species diversity and composition of
forests (Fallah et al. 2012; Kiran and Mudaliar 2012).
Satellite remote sensing images have contributed to

identify biodiversity. These data are updatable, inexpen-
sive and available at various temporal and spatial scales
(Foody and Cutler 2003, 2006; Wenting et al. 2004;
Gillespie et al. 2008; Oldeland et al. 2010; Boyd and
Foody 2011; Pettorelli 2013; Duro et al. 2014; Rocchini
et al. 2015). Derived vegetation indices from satellite
data have generated information directly related to tree
species diversity. However, it is quite troublesome to
collect data in field-based studies when the study area is
large. Therefore, using remote sensing data sets is valu-
able and might be recognized as a convenient way to
obtain the distribution of biodiversity and their status
over large areas (Turner et al. 2003). Accuracy increases
with the acquisition of ground truth samples. Although,
field-based studies are time consuming, expensive and
limited on a large scale, especially in forest biodiversity
inventories and forest planning (Buhk et al. 2007; Fallah
et al. 2012; Dalmayne et al. 2013). Remote sensing data
can be used for accomplishing and updating (Fallah
et al. 2012) mentioned studies.

There are numerous remote sensing data sets that
could reliably be used in biodiversity studies (Carlson
et al. 2007; Kalacska et al. 2007; Nagendra and
Rocchini 2008; Oldeland et al. 2010; Ghiyamat and
Shafri 2010; Nagendra et al. 2010, 2013; Getzin et al.
2012; Ghahramany et al. 2012; Ewijk et al. 2014;
Rocchini et al. 2014; Warren et al. 2014; Hernández-
Stefanoni et al. 2014; Somers et al. 2015). Nonetheless,
using Landsat data is commonly used data. They are
freely available and images were taken since 1972.
Landsat data also have appropriate geometric, spectral,
spatial and temporal resolution over large areas
(Rocchini 2007a; Nagendra et al. 2013; Pettorelli 2013).

It should be emphasized that the utility of remote
sensing data has been increasing for determining species
richness and long-term preservation decision-making
(Carroll 1998; Gould 2000; Nagendra et al. 2013) and
identifying prominent conservation areas (Carlson et al.
2007) and ecological restoration efforts (Champagne
et al. 2004). Studies on the relationship between species
richness and remote sensing data have increasingly used
vegetation indices (VIs) and band combinations. It
should be noted that the usage of NDVI in estimating
species richness has increased. In a previous study, there
was a positive correlation between plant species rich-
ness and NDVI both in temperate and tropical ecosys-
tems (Gillespie et al. 2008). It has become possible to
calculate species turnover or beta diversity of an area
using the spectral heterogeneity of remote sensing data
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(Rocchini et al. 2009b). In this method, beta diversity
has been obtained using compositional and spectral
similarity matrices among sampling plots (Schmidtlein
and Sassin 2004; Rocchini et al. 2009b, 2015). Gener-
ally, in most conducted researches, the similarity in
species composition among pairs of sampling plots has
been characterized using the Sørensen index or the
Jaccard index of sampling plots, and the spectral dis-
tance can be accessed using Euclidean distance
(Rocchini et al. 2009a, 2015). In this method, a large
decay in the similarity of species among sites corre-
sponds to high beta diversity in terms of species com-
position (Rocchini et al. 2015).

There are more tree diversity studies in tropical for-
ests (Gillespie et al. 2009) than in temperate forests
(Fairbanks and McGwire 2004; Levin et al. 2007;
Meng et al. 2016). Temperate forest ecosystems have
high plant biodiversity, and species composition chang-
es due to climate change in high-latitude ecosystems
have been reported (Kirschbaum et al. 1995; Solomon
2007). A number of conducted studies are often less
which is considered seasonality differences impacts on
tree species diversity in temperate forests. Thus, it is
essential to do tree diversity research in temperate for-
ests. The aim of present study was to analyze the rela-
tionship between alpha diversity of trees and spectral
variables derived from freely available Landsat data in a
temperate forest. We used richness and the Shannon and
Simpson indices to calculate tree alpha diversity. The
Shannon index is recommended for landscape manage-
ment within an ecological framework because it is sen-
sitive to the presence of rare species, while the Simpson
index can be used if the dominant species is more
important (Nagendra 2001). We also investigated the
relationship between beta diversity and remotely sensed
data using species composition similarity and spectral
distance similarity of sampling plots via quantile
regression.

Material and methods

Study area

The study was conducted in the Gönen dam watershed
area, which is located in the northeast part of the
Kazdağı Mountain in Turkey (26.960–27.540° E,
39.640–40.100° N) (Fig. 1). The watershed covers ap-
proximately 113,700 ha, and the elevation ranges from

90 to 1400 m a.s.l.. The mean annual precipitation is
847.3 mm, and the mean annual temperature is 12.8 °C
according to long-term data from the nearest meteoro-
logical station located in the Yenice Province. The for-
ests are composed of pure or mixed conifer and broad-
leaf trees. The following 27 tree species are found within
the study: Pinus nigra J. F. Arnold. Subsp. pallasiana
(Lamb.) Holmboe, Pinus brutia Ten, Pinus pinea Ten.,
Abies nordmanniana (Steven) Spach subsp. equi-trojani
(Asch. & Sint. ex Boiss.) Coode & Cullen, Quercus
cerris L., Q petraea (Matt.) Liebl. subsp. iberica
(Steven ex M.Bieb.) Krassiln., Q. frainetto Ten.,
Quercus pubecens Willd., Quercus infectoria Oliv.,
Fagus orientalis Lipsky, Carpinus betulus L., Castanea
sativa Mill., Sorbus torminalis (L.) Crantz, Tilia
tomentosa Moench., Tilia platyphyllos Scop., Salix
caprea L, Populus tremula L., Acer campestre L., Acer
platanoides L., Alnus glutinosa, Arbutus anrachne, Ar-
butus unedo, Cornus mas, Phillyrea latifolia L., Prunus
sp., Ilex colchica Pojark., Robinia pseudoacacia L.

Data gathered

Field data collection and diversity variables

The watershed boundary was determined with a digital
elevation model (DEM) using GIS, and it was system-
atically divided into 3 km × 3 km grids. A total number
of 99 sampling units, each 20 m × 20 m, were selected
using geographically stratified random sampling within
these grids (plantation areas, maquis and canopy cover
less than 50% were excluded). The field data were
collected in May, June and July 2013. Within each plot,
the tree species were identified, and all of the trees with a
diameter at breast height (dbh) larger than 7 cm were
measured. The presence/absence and abundance data
(tree species number and tree species basal area) of tree
species were used to find the relationship between rich-
ness and the Shannon and Simpson diversity indices and
spectral variables (SVs), which were derived from
Landsat images. The Shannon index was computed
twice, based on tree species number and tree species
basal area.

Spectral variables

NDVI (normalized difference vegetation index), green-
ness, DVI (difference vegetation index), and EVI (en-
hanced vegetation index). They are the most widely
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used vegetation indices and are calculated from two
regions of the electromagnetic spectrum (the red band
and near-infrared [NIR] band) (Tucker 1979; Cabacinha
and Castro 2009; Boyd and Foody 2011; Baig et al.
2014; Ahmed et al. 2015). These wavelength regions
provide valuable information for vegetation studies
(Broge and Leblanc 2001). Most recent studies have
shown relatively high correlations between NDVI and
plant richness (Gould 2000; Levin et al. 2007; Gillespie
et al. 2008).

We used NDVI, DVI, EVI and greenness in our
study. In addition, the near-infrared band (OLI B5)
was evaluated because of its great potential for recog-
nizing plant species (Rocchini et al. 2007). In this paper,

we refer to NDVI, DVI, EVI, VI, greenness and OLI B5
as SVs (spectral variables), and tree richness and the
Shannon and Simpson indices as the TDVs (tree diver-
sity variables) (Table 1). Several forest studies have
illustrated the consistency of derived SVs between
Landsat OLI and ETM+, which are complementary data
sets (Li et al. 2013; Xu and Guo 2014; She et al. 2015).

Image data and processing

Landsat 8 OLI images, which have a spatial resolu-
tion of 30 m, were acquired from the US Geological
Survey for six dates in 2013 (18 May, 19 June, 21
July, 7 September, 9 October and 10 November)

Fig. 1 Location of the study area
in Turkey. The size of vegetation
sampling plot symbols
corresponds to tree richness
number (red spots indicate the
distribution of used sampling
plots in the study)
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(http://earthexplorer.usgs.gov/). It should be
emphasized that the images were selected for various
seasons due to the seasonality of vegetation vigor, which
likely changes the vegetation indices (Freitas et al. 2005;
Cabacinha and Castro 2009). All of the images were
Level 1T, precision-geocoded and terrain-corrected
products. The DN values of all of the images were
converted to the physical measure of the top of atmo-
sphere reflectance (TOA) and atmospheric correction is
done using the Dark Object Subtraction 1 method
(DOS1) (Chavez 1996; Congedo 2016).

An existing local road map conformed well to all of
the satellite images, demonstrating the appropriate geo-
metric correction of satellite data. However, to increase
the accuracy, the image taken in May was used as a
reference image, and other images were georeferenced.
Topographical correction was not considered because
the band-ratio vegetation indices significantly reduced
the noise caused by topographical variation. The SVs
were then generated for all six dates. The vector layer of
the sampling plots was overlaid on each SV. For all SVs,
the values of the corresponding pixels in each sampling
plot were obtained using the mean DN derived from
2 × 2 and 3 × 3 pixels sampling windows of images to
reduce errors caused by both image registration and plot
georeferencing between field data and satellite data
(Rocchini et al. 2009b). All image processing and GIS

analyses were performed with the Bsemi-automatic
classification^ plugin of Quantum GIS (QGIS Develop-
ment Team 2015), GRASS GIS (GRASS Development
Team 2012) and SAGAGIS (SAGADevelopment Team
2015). The applied methodology is shown in Fig. 2.

Data analysis

TDVswere calculated for the 99 plots using the Bvegan^
package (Oksanen et al. 2012) in the R-software (R
Development CoreTeam 2015). All SV values were
imported into the R environment. The Kolmogorov–
Smirnov test was used to check data normality. The
Spearman correlation test was used to assess the rela-
tionships between the SVs and the TDVs for all dates.
We then used the NDVI index, which had statistically
high correlations among dates, to identify outliers using
box plots (Fig. 3). All the outliers that were repeated
three or more times were interpreted. Heterogeneous
variation is typically found in ecological data, and it is
usually inadequate for explaining the relationship be-
tween variables in regression analyses (Cade and Noon
2003). Quantile regression was used to determine the
relationship between beta diversity and spectral values,
as proposed by Rocchini et al. (2009a). OLS regression
was used to determine the difference between classical
and quantile regressions. The quantile regression

Table 1 Variables used in this study

Variables Equations Reference

Spectral variables
(SVs)

NDVI (normalized difference
vegetation index)*

(NIR − red)/(NIR + red) (Rouse Jr. et al. 1974,
Gebreslasie et al. 2010)

Greenness* − 0.273 blue − 0.217 green − 0.551
red + 0.772NIR + 0.073
(shortwave IR-1) − 0.165
(shortwave IR-2)

(Crist et al. 1986; Huang et al. 2002)

EVI (enhanced vegetation index) EVI = (NIR − Red) × 2.5/1 +
NIR + 6 × Red − 7.5 × blue

(Huete et al. 1997; John et al. 2008)

DVI (difference vegetation index) NIR − red (Clevers 1988)

OLI5 (near-infrared band) near-infrared band

Vegetation index VI = green/red (Pommerening 2002; Meng et al. 2016)

tree diversity
variables (TDVs)

Species richness** S (Colwell 2009)

Simpson index*** D1 ¼ 1− ∑
s

i¼1
Pi2

(Hill 1973)

Shannon–Wiener index
H ¼ − ∑

S

i¼1
Pilogipi

(Shannon and Weaver 1948;
Hill 1973)

*Red = red band; NIR = near-infrared band; MIR = mid-infrared band; blue = blue band

**S = total number of species, ***p = relative proportion of each species
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analysis was performed with the Bquantreg^ package
(Koenker and Koenker 2007) in the R-software (R
Development Core Team 2015). To quantifying beta di-
versity, species composition similarity matrices were cal-
culated using the Jaccard coefficient, and spectral distance
matrices were identified using the Euclidean distance

between sampling plots to assess beta diversity. However,
pairwise species composition similarity was computed in
two distinct ways. First, we assessed tree species number
in each sampling plot. Then, tree species basal area in
each sampling plot was assessed because it better repre-
sents trees abundance, composition and structure.

Fig. 2 Flow chart of the
methodology

May June

July September

Fig. 3 Boxplots between NDVI values and tree richness and their outliers in May, June, July and September
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Results

Descriptive statistics of the variables

The results of the Kolmogorov–Smirnov test demon-
strated that SVs and TDVs were not normally distribut-
ed. Tree richness and the Shannon and Simpson indices
ranged from 1 to 6, 0.6 to 1.6, and 0.5 to 0.75, respec-
tively. In our study, from a total number of 99 sampling
plots, 28, 26, 22, 9, 9 and 5 plots contained 2, 3, 1, 4, 5
and 6 tree species, respectively.

Correlation between spectral and tree alpha diversity
variables

A significant positive correlation at the 0.001 level was
observed between selected tree alpha diversity variables
(richness and the Shannon and Simpson indices) and the
SVs in June, July and May (Table 2). The Shannon
index calculated from basal area (3 × 3 SIBA (Shannon
Index Basal Area)) of trees had the highest positive
correlation with NDVI (r = 0.685) in June. In addition,
the correlation values of all of the SVs were nearly equal
to 0.6 in 2 × 2 SIBA and 3 × 3 SIBA variables in May,
June and July. In September, October and November,
less significant and lower correlations were estimated
for all tree diversity variables (TDVs). Overall, the SVs
appeared to be more sensitive to SIBA, followed by the
Shannon index, the Simpson index and tree richness.
Generally, the correlations between the SVs and the
TDVs were moderate and statistically significant in
June, July and May. However, the highest significant
correlations between tree richness (2 × 2) and NDVI
(r = 0.594) were in June (Table 2). OLI B5(r = 0.561)
was the most significant in June, followed by EVI
(r = 0.550) in July and greenness (r = 0.538) in June.
The Shannon index was the most correlated with June
values of both NDVI and OLI B5 (r = 0.608 in both
analyses). VI was the least correlated SV with the
TDVs. All SVs had a slightly lower correlation in Oc-
tober than the other months, and NDVI has the lowest
correlation of all TDVs with other SVs in October.
There was no significant correlation in November
(Table 2). The SVs, especially NDVI, and all TDVs
(except the Simpson index) were highly positively cor-
related in June.

The boxplots of tree richness in the 4 months showed
a statistical positive relationship between NDVI and tree
richness of the study area (Fig. 3). When the boxplots

were investigated, most of the outliers of the sampling
plots were repeated two or more times. Plot numbers 54,
71, 11 and 65 had values greater than normal, and plot
numbers 132, 20 and 106 have a value lower than
normal. In particular, plot numbers 54 and 65, with
one and four tree species, respectively, were available
in May, June, July and September. Plot numbers 70 and
2, with three and four species, respectively, were outliers
in May, June and July. Additionally, plot numbers 11,
132 and 106, with 2, 3 and 5 plant species, respectively,
were outliers in June, July and September. After deter-
mining all outliers, outliers repeated three or more times
were investigated in detail with information from the
field, such as tree species, canopy closure as estimated
visually, basal area of the dominant tree, total basal area,
diameter class, number of suppressed trees and total
number of trees (Table 3).

The decay rates in the curves for both the tree species
number and tree species basal area (Fig. 4) were statis-
tically significant for OLS and quantile regression at all
τ values (Table 4). For the species number method, the
decay rate of the ordinary least square regression was
almost half of the quantile regression decay rate at all tau
values. For the tree species basal area method, the decay
rate of the OLS regression was half of the 0.90, 0.95 and
0.99 tau quantile regression decay rates. For both
methods, the intercept of the OLS regression was lower
(0.27) than all quantile regression intercepts. The tree
species basal area method had higher intercepts than the
tree species number method for all tau levels except 0.99
(0.956).

Discussion

This study was conducted to determine the relationship
between the field-based alpha and beta diversity indices
and vegetation indices derived from remote sensing
data. We used medium-resolution remote sensing data
(30 m spatial resolution) which is freely accessible for
more than 40 decades. In fact, it provides an opportunity
to do time series analysis of forest trees biodiversity. In
addition, we tried to investigate the effects of ecological
variation on spectral values. We reduced geometric error
between the field data and satellite data using the mean
DN derived from 2 × 2 pixel and 3 × 3 pixel windows.
Generally, like other studies (Rocchini et al. 2009b,
Meng et al. 2016), the 3 × 3 pixel correlation analysis
produced higher correlation values than the 2 × 2 pixel
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correlation analysis, although it was not observed a very
significant meaningful increase.

Across all six dates, the Shannon-Weiner species
diversity index calculated from two different abundance
data sets generally had the best correlation results of all

TDVs. Our results complement previous studies within
different vegetation types, including tropical dry forest
(Fairbanks and McGwire 2004; Kalacska et al. 2007),
savannah (Oldeland et al. 2010) and temperate forest
(Meng et al. 2016). The Shannon index takes into

Table 2 Spearman correlation coefficients between species diversity variables and SVs (Shannon Index Basal Area (SIBA))

Month Spectral
variable

2 × 2 Tree
Richness

2 × 2 Tree
Shannon

2 × 2 Tree
Simpson

2 × 2 SIBA 3 × 3
Richness

3 × 3
Simpson

3 × 3
Shannon

3 × 3
SIBA

May NDVI 0.474*** 0.511*** 0.448*** 0.569*** 0.432*** 0.537*** 0.536*** 0.605***

DVI 0.412*** 0.524 *** 0.526 *** 0.591*** 0.398*** 0.526*** 0.515*** 0.587***

EVI 0.442*** 0.536 *** 0.525 *** 0.606*** 0.411*** 0.533*** 0.526*** 0.598***

Greenness 0.415*** 0.527*** 0.531 *** 0.595*** 0.402*** 0.530*** 0.521*** 0.591***

OLI B5 0.373 *** 0.493 *** 0.503 *** 0.565*** 0.365*** 0.500*** 0.482*** 0.540***

VI 0.385*** 0.418*** 0.374*** 0.446*** 0.499*** 0.447*** 0.507*** 0.560***

June NDVI 0.594 *** 0.608 *** 0.521 *** 0.648*** 0.591*** 0.598*** 0.641*** 0.685***

DVI 0.535 *** 0.605 *** 0.567 *** 0.645*** 0.499*** 0.590*** 0.595*** 0.648***

EVI 0.473 *** 0.571 *** 0.557 *** 0.667*** 0.518*** 0.598*** 0.609*** 0.665***

Greenness 0.538 *** 0.596 *** 0.550 *** 0.652*** 0.501*** 0.594*** 0.599*** 0.654***

OLI B5 0.561 *** 0.608 *** 0.552 *** 0.622*** 0.463*** 0.563*** 0.563*** 0.611***

VI 0.374*** 0.396*** 0.354*** 0.399*** 0.494*** 0.388*** 0.461*** 0.466***

July NDVI 0.556 *** 0.551 *** 0.463 *** 0.584*** 0.538*** 0.572*** 0.601*** 0.671***

DVI 0.510 *** 0.587 *** 0.559 *** 0.658*** 0.509*** 0.570*** 0.588*** 0.652***

EVI 0.550 *** 0.606 *** 0.564 *** 0.672*** 0.511*** 0.571*** 0.589*** 0.657***

Greenness 0.512 *** 0.586 *** 0.561 *** 0.653*** 0.497*** 0.563*** 0.579*** 0.648***

OLI B5 0.440 *** 0.538*** 0.530 *** 0.617*** 0.455*** 0.540*** 0.544*** 0.601***

VI 0.427*** 0.440*** 0.380*** 0.474*** 0.529*** 0.400*** 0.488*** 0.516***

September NDVI 0.522 *** 0.471 *** 0.372 *** 0.531*** 0.513*** 0.407*** 0.478*** 0.520***

DVI 0.204 * 0.205 * 0.162 0.470*** 0.387*** 0.372*** 0.415*** 0.491***

EVI 0.347 *** 0.323 ** 0.257 * 0.516*** 0.432*** 0.393*** 0.442*** 0.520***

Greenness 0.255 * 0.254 * 0.214 * 0.489*** 0.402*** 0.393*** 0.431*** 0.50***

OLI B5 0.088 0.114 0.107 0.346*** 0.387*** 0.372*** 0.415*** 0.491***

VI 0.463*** 0.442*** 0.373*** 0.453*** 0.526*** 0.324*** 0.428*** 0.453***

October NDVI 0.522 *** 0.471 *** 0.372 *** 0.522*** 0.551*** 0.395*** 0.496*** 0.565***

DVI 0.204 * 0.205 * 0.162 0.272*** 0.233. 0.189. 0.229. 0.304**

EVI 0.347 *** 0.323 ** 0.257 * 0.426*** 0.347*** 0.241. 0.311* 0.413***

Greenness 0.255 * 0.254 * 0.214* 0.343 0.274* 0.205. 0.256. 0.342**

OLI B5 0.088 0.114 0.107 0.174* 0.141 0.135 0.152 0.216.

VI 0.524*** 0.511*** 0.433*** 0.517*** 0.527*** 0.307** 0.429*** 0.470***

November NDVI 0.032 −0.049 −0.086 −0.084 0.044 −0.079 −0.040 −0.052
DVI −0.108 −0.123 −0.118 −0.092 −0.088 −0.146 −0.134 −0.094
EVI −0.048 −0.087 −0.096 −0.052 −0.055 −0.120 −0.104 −0.054
Greenness −0.066 −0.084 −0.083 −0.049 −0.075 −0.112 −0.106 −0.061
OLI B5 −0.140 −0.141 −0.126 −0.101 −0.104 −0.125 −0.126 −0.079
VI − 0.003 − 0.075 − 0.115 − 0.182 − 0.183 − 0.324 − 0.295 − 0.367

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ (2-tailed)
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account species abundance and also the structural and
compositional variety of the plant community (Foody
and Cutler 2003; Dogan and Dogan 2006; Oldeland
et al. 2010). We also used the Shannon index based on
the basal area of trees (SIBA) to improve the correlation
results calculated from the Shannon index based on
number of tree species. Another forest study also found

correlations between the Shannon index and SVs. Meng
et al. (2016) found correlation coefficients of r = 0.532
for NDVI and r = 0.824 for VI calculated from 9 × 9
pixel windows of SPOT data. For the 2 × 2 pixel
windows, the correlation values between SIBA and the
SVs were similar (June had the highest values, between
0.622 and 0.667), except for VI, which had a lower

Table 3 Canopy closure, basal area of dominant tree, total basal area, diameter class, number of dominant tree and total number of tree
species at upper and lower outliers of plot numbers in 4 months. (M: May; J: June; Jy: July; S: September)

Plot
Number

Months Canopy
closure (%)

Tree species and their basal area Total basal area
(m2 ha−1)

diameter
class

Number of
dominant tree

Total
number
of trees

Upper outliers

54(1) M, J, Jy, S 90 F. orientalis (27.08) 27.08 dc 19 19

71(3) M, J, Jy 80 P. nigra (9.86), Q cerris (15.41),
F. orientalis (20.82)

46.09 de 4 14

11(2) J,Jy,S 100 F. orientalis (35.14), C. betulus (4.56) 39.70 d 21 30

65(4) M, J, Jy, S 90 P. nigra (18.92), C. sativa, (15.86)
A. equi-trojani (10.67),
A. glutinosa (3.30)

48.76 de 12 24

Lower outliers suppressed tree

132(3) J, Jy, S 90 P. nigra(38.46), P. brutia (1.80),
Q. cerris (0.89)

41.15 b 1 53

20(4) M, J, Jy 70 P. nigra (7.89), A. equi-trojani (2.57),
C. sativa(1.96), Q petraea (0.49)

12.90 b 3 52

106(5) J, Jy ,S 90 Q cerris (8.56), Q frainetto (2.21),
S. torminalis (1.21), T. tomentosa
(0.77), C. betulus (0.18)

12.93 b 1 25

Bold and italic entries represents dominant trees name, the total basal area, and diameter class of the dominant trees

b 12–20 cm, c 20–36 cm, d 36–52 cm, e > 52 cm

Fig. 4 The distance decay of species similarity was calculated
with a tree species numbers in sampling plots and b tree species
basal areas in sampling plots. Ordinary least square (red line) and

quantile regressions (dashed lines) considered four different τ
(from upper to lower lines: 0.99, 0.95, 0.9, 0.75)
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correlation (r = 0.399). For the 3 × 3 pixel windows, the
correlation values between the SVs and SIBA were
slightly higher (0.611–0.685) than those found in the
2 × 2 pixel windows, and VI had a lower correlation
(r = 0.466). These results are similar to other studies
(Meng et al. 2016). The Simpson index had a slightly
better correlation compared with tree richness. There is a
limited number of studies that have characterized a
correlation between the Simpson index and SVs in
temperate forests using Landsat TM (Meng et al. 2016).

Generally, NDVI had the best result according to corre-
lation values of the SVs and TDVs in all six dates, which is
similar to other studies that have conducted correlation and
regression analyses in temperate forests (Lassau and
Hochuli 2007; Levin et al. 2007; Mohammadi and
Shataee 2010; Meng et al. 2016) and tropical regions
(Carlson et al. 2007). Other authors have calculated corre-
lation coefficients of r = 0.85 using AVIRIS (Gould 2000),
r2 = 0.788 (Fairbanks and McGwire 2004), r = 0.79 and
r2 = 0.86 in subtropical forest (Gillespie et al. 2009),
r2 = 39% in tropical forests using Landsat ETM+ (Foody
and Cutler 2006), and r = 0.69 in tropical forests. EVI had
the highest correlation, with r= 0.672 (John et al. 2008) and
with r2 = 0.16 in Inner Mongolia (Mediterranean region).
EVI has less saturation problems (Scaggs 2007), is less
sensitive to background reflectance (Jiang et al. 2008;
Rocha and Shaver 2009) and is less influenced by atmo-
spheric conditions (Jiang et al. 2008). The near-infrared
band also had positive correlations for all dates, which
can be explained by its ability to discriminate plants species.
This finding is consistent with previous studies (Nagendra
2001; Hernández-Stefanoni and Dupuy 2007; Rocchini
2007b; Mohammadi and Shataee 2010) (Mohammadi
et al. 2011, Meng et al. 2016). The near-infrared band can
be used as a good proxy for estimating and assessing alpha
diversity at the regional and local scales.

The highest correlations between the SVs and TDVs
were in June, followed by May and then July, which are
growing season months. The correlation values were

low in September due to decreasing photosynthetic ac-
tivity and short-term water stress (Volcani et al. 2005;
Wang et al. 2016). Leaves are fully developed and have
high photosynthetic activity (Volcani et al. 2005; Wang
et al. 2016) in June. This is a known fact that is empha-
sized in our study and in similar studies that have
investigated what drives better correlations between
SVs and TDVs (Carlson et al. 2007). These studies were
conducted in tropical forest systems using AVIRIS
(Gould 2000), where r2 = 0.788, in subtropical forests
(Fairbanks and McGwire 2004; Gillespie et al. 2008),
and especially in temperate forests (Levin et al. 2007;
Mohammadi and Shataee 2010; Mohammadi et al.
2011; Simonson et al. 2012; Viedma et al. 2012;
Warren et al. 2014; Ceballos et al. 2015). Among the
SVs, VI almost had the lowest correlation with the
TDVs, which is inconsistent with Meng et al. 2016.

Although we obtained moderate correlation results,
we also investigated unexplained variation in the corre-
lations between the SVs and TDVs. In all outliers, it was
observed that the canopy closures were 70% higher than
in other plots. Thus, we identified sampling plots which
had outliers and then we have tried to investigate out-
liers that were repeated three or more times. Surprising-
ly, most of upper outliers, except for sampling plot 65,
the basal area of F. orientalis covered most of total basal
area (more than 50%) and in the lower outliers,Quercus
sp. had small diameters. The outliers with F. orientalis
had a higher reflectance in the NIR band which is likely
due to the leaf structure and higher reflectance of the
beech trees (Tittebrand et al. 2009; Vorovencii 2011). In
contrast, the basal area of suppressed trees was less than
6% of the total basal area in the lower outliers. By
comparing the upper and lower outlier trees, in most
cases, the upper outliers had nearly 50% fewer trees and
200% more basal area than the lower outliers. These
differences are likely due to differences in the develop-
ment stages of trees in the sampling plots, which affect-
ed the correlation results. However, it should be

Table 4 Linear models for both ordinary least squares and quantile regressions at different quantile tau (0.99, 0.95, 0.9, 0.75)

OLS P value 0.75quntile 0.9quntile 0.95quntile 0.99quntile

tree species number Intercept 0.272*** 2e-16 *** 0.422*** 0.680*** 0.818*** 0.987***

10−5 spectral_dist − 2.698*** 2e-11 *** − 4*** − 6*** − 6*** − 5***

tree species basal area Intercept 0.337*** 2e-16 *** 0.577*** 0.804*** 0.885*** 0.956***

10−5 spectral_dist − 3.21*** 2e-11 *** − 5*** − 6*** − 5*** − 2***

***p < 0.01
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mentioned that correlation results is likely impacted by
existing forest understory and with trees species under
10 cm as well.

Many studies have characterized the relationship be-
tween SVs and alpha diversity, but few studies have
assessed beta diversity (Rocchini 2007b; Rocchini
et al. 2009a, 2009b). Quantile regression is used to
determine the relationship between spectral diversity
and beta diversity. Beta diversity is quantified using
quantile regression and OLS regression methods
which are used by Rocchini et al. (2009c) and other
ecological works (Rocchini 2007b). In our study, the
slope of the OLS regression was low, while in the upper
quantile regression, it was about twice as high. This
result was explained by the increase in the similarity
between the sampling plots which is located close to-
gether (Nekola and White 1999; Palmer 2005; He et al.
2009). Obtained Jaccard index values were close to one,
with little difference in the two beta diversity methods.
The similarity of the sampling plots increased and when
it reached to zero indicator of increasing dissimilarity.
The intercepts were different because they were strongly
related to the tree’s development stage in a number of
sampling plots at the tree species basal area method. The
tree basal area was better than the tree species number
method at representing this similarity. In tree diversity
studies, the data continuity of Landsat products have
great advantages in long-term mapping and monitoring
forest ecosystems. Additionally, it is possible to com-
pare Landsat 4, 5 and 7 data using cross-calibration
methods (Markham and Helder 2012; Morton et al.
2012) and NDVI can be obtained using these datasets.

Conclusion

Finally, SVs, especially NDVI, can be considered a
useful method for evaluating the physiological changes
of forests in different seasons and helpful for estimating
plant alpha diversity over large areas during the maxi-
mum growing season. The near-infrared band can also
be used as a quick way to obtain plant alpha diversity in
research. In tree diversity studies, differences between
NDVI for various tree species should be considered
because each tree species has specific reflectance pat-
terns at red and near-infrared wavelengths (i.e., different
spectral signatures) depending on the season, leaf struc-
ture and other variables in both temperate and tropical
forests. Beta diversity was assessed through spectral

similarity of remote sensing data. In general, regions
that are close together are more similar and their simi-
larity will decrease with increasing distance from each
other. Additionally, remote sensing data will allow for
the assessment of habitat diversity and the identification
of areas that are likely to support relatively high or low
levels of species diversity. Further investigations can
consider the application of ESA’s Sentinel 2 which is
free optical data with a higher resolution instead of
Landsat data in forest trees diversity studies.
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