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Abstract Future climate characteristics of the south-
ern Kilimanjaro region, Tanzania, are mainly deter-
mined by local land-use and global climate change.
Reinforcing increasing dryness throughout the twen-
tieth century, ongoing land transformation processes
emphasize the need for a proper understanding of
the regional-scale water budget and possible impli-
cations on related ecosystem functioning and ser-
vices. Here, we present an analysis of scintillometer-
based evapotranspiration (ET) covering seven dis-
tinct habitat types across a massive climate gradient
from the colline savanna woodlands to the upper-
mountain Helichrysum zone (940 to 3960 m.a.s.l.).
Random forest-based mean variable importance indi-
cates an outstanding significance of net radiation
(Rpet) on the observed ET across all elevation lev-
els. Accordingly, topography and frequent cloud/fog
events have a dampening effect at high elevations,
whereas no such constraints affect the energy and
moisture-rich submontane coffee/grassland level. By
contrast, long-term moisture availability is likely to
impose restrictions upon evapotranspirative net water
loss in savanna, which particularly applies to the pro-
nounced dry season. At plot scale, ET can thereby
be approximated reasonably using Rpe, soil heat flux,
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and to a lesser degree, vapor pressure deficit and rain-
fall as predictor variables (R? 0.59 to 1.00). While
multivariate regression based on pooled meteorolog-
ical data from all plots proves itself useful for pre-
dicting hourly ET rates across a broader range of
ecosystems (R> = 0.71), additional gains in explained
variance can be achieved when vegetation character-
istics as seen from the NDVI are considered (R2 =
0.87). To sum up, our results indicate that valuable
insights into land cover-specific ET dynamics, includ-
ing underlying drivers, may be derived even from
explicitly short-term measurements in an ecologically
highly diverse landscape.

Keywords Evapotranspiration - Land-use change -
Global climate change - Elevation gradient -
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Introduction

Land-use change influences the local to regional-scale
water balance (Jung et al. 2010), including precipita-
tion on the credit side and surface run-off, ground-
water flow, evaporation, and transpiration on the debit
side (DeFries and Eshleman 2004; Foley et al. 2005).
Deforestation concomitant with a declining leaf area
index, for instance, results in decreased evapotranspi-
ration (ET) in favor of higher surface temperatures and
a higher temporal variability of related energy fluxes
(Biudes et al. 2015). Global environmental change, on
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the other hand, is likely to have a crucial impact on the
trans-regional water budget (Glenn et al. 2010) which
is particularly applicable to tropical mountain regions
and their unique ecosystems (Buytaert et al. 2011).

In this scope, the species-rich Kilimanjaro region is
one of the most famous hot spots of global warming in
the tropics (Thompson et al. 2002). Of the numerous
climate zones, and hence vegetation zones, aligned
along the mountainsides (Duane et al. 2008), chang-
ing climate conditions especially affect the upper-
mountain regions starting from 3,000 meters above sea
level (m.a.s.l.) upwards (Torbick et al. 2009). More-
over, the associated increase in evaporative demand
over East Africa (Cook et al. 2014) presumably ampli-
fies net water loss throughout the drought-prone area
(Afifi et al. 2014).

Simultaneously, extensive land-use change in the
densely vegetated foothills accounted for an expansion
of cultivated land from 54% in 1973 to 63% in 2000
(Misana et al. 2012) at the expense of natural vegeta-
tion (Hemp 2006a)—a trend that seemingly endured
beyond the turn of the millennium (Tracewski et al.
2016). While human intervention primarily affects
ecosystems outside the protective realms of Kiliman-
jaro National Park, natural disturbance regimes pro-
foundly modify the upper-mountain vegetation struc-
tures. Hemp (2005), for instance, demonstrated the
fire-driven expansion of Erica bush at the expense of
domiciled Erica forest.

From a hydrological viewpoint, such massive con-
version processes in an area facing a steadily increas-
ing population pressure (Misana et al. 2012) severely
affect the regional water cycle, perhaps even more so
than climate change (Hardwick et al. 2015). Although
an appropriate quantification of land cover-specific
water release through ET is of vital importance (Sav-
age 2009), only little data on biosphere-atmosphere
water exchange has been available until now. In this
regard, the surface-layer scintillometer (SLS) method
(Odhiambo and Savage 2009) might help to overcome
limitations associated with the highly heterogeneous
terrain as it only requires several tens of meters to
operate properly. Weiss (2002), for instance, success-
fully applied the SLS method to derive turbulent
fluxes of sensible heat and momentum over complex
terrain in an alpine valley. In the African context,
Savage (2009) and Odhiambo and Ain (2011) per-
formed scintillometer-based measurements of evapo-
ration over an open grassland site and demonstrated
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broad agreement with results obtained from eddy
covariance (EC).

Encouraged by such flagship studies, we would like
to take a step towards assessing the implications of
ET and its underlying driving forces on ecosystem
functioning and services in the highly fragile Kili-
manjaro region. Therefore, the aims of our study are
formulated as follows:

— Firstly, we run short-term SLS-based ET mea-
surements over numerous natural and disturbed
habitat types characteristic for the Kilimanjaro
region, thus establishing an ET-elevation gradient
spanning a height range of more than 3000 m.

— Secondly, we analyze the relative importance of
short-term meteorological drivers on ET (e.g.,
temperature, radiation, rainfall) and establish a
link between ET-elevation patterns and long-term
eco-climatological influences.

— Thirdly, we assess the degree to which vegeta-
tion characteristics per ecosystem are capable of
contributing to the complex interplay between
meteorological factors and the observed net water
loss through ET.

Material and methods
Study area and sampling design

The Kilimanjaro region is located in the north-east
of Tanzania and spans an elevation gradient from the
colline savanna plains (~ 700 m.a.s.l.) to the glaciated
areas encircling Kibo summit (5895 m.a.s.1.). Its equa-
torial daytime climate is shaped by the passing of the
intertropical convergence zone, with more than half of
the annual rainfall occurring during the so-called long-
rains (March to May; Appelhans et al. (2016)) as a
consequence of moist south-easterly winds (Oettli and
Camberlin 2005). While annual precipitation amounts
to more than 2500 mm in the southern montane forest
belt, the northern mountainside receives hardly more
than 1000 mm (Hemp 2006c). The mountain’s belt-
like vegetation zonation (Fig. 1a) is characterized by
major land-cover transitions at short horizontal dis-
tances resulting from changing climate conditions and
anthropogenic interference (Buytaert et al. 2011).
Embedded in a German-Tanzanian research pro-
gram, a total of 65 sampling sites have been selected
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Fig. 1 a Location of Kilimanjaro (top-right panel) and sampling plots superimposed upon a satellite image of the study area
(EPSG:4326; Google and TerraMetrics (2017)). b, ¢ Impressions from the field campaign at dry-season sav5 and hell, respectively

with respect to plant taxonomic aspects along the
southern slopes (Peters et al. 2016, and Supplemen-
tary Fig. 1 therein). The resulting altitude gradient
spans more than 3600 m and includes a variety of
natural and disturbed habitat types stretching from
the intensely cultivated savanna woodlands to the
lower alpine Helichrysum belt (Roder et al. 2016). For
detailed information about the sampling design, mete-
orological, and vegetation characteristics of the single
habitats, the reader is kindly referred to the profound
works by Hemp (2006c), Appelhans et al. (2016),
Roder et al. (2016), and Peters et al. (2016).

In order to investigate habitat-specific ET and its
underlying drivers within the scope of this research
project, our study features a subset of the land-cover
types included therein, namely

— atthe colline level (7001000 m.a.s.1.), (i) savanna
woodland (“sav”) characterized by Acacia-
Commiphora vegetation with average canopy
heights of 4.6 m (Fig. 1b; Ensslin et al. (2015)),
sampled both during the dry and rain season, and
(i1) green maize fields (“mai”; Zea mays) close to
tasseling with heights up to 1.8 m;

— at the submontane level (1000-1800 m.a.s.l.),
(1) coffee plantations (“‘cof”’) with pruned (0.3—
0.5 m) and mature coffee shrubs (1.5-2.5 m)

at cof3 and cof2, respectively, shaded by large
Albizia trees (e.g., A. schimperiana; Hemp
(2006b)), and (ii) frequently cut grasslands
(“gra”) with explicitly low canopies (< 0.2 m);

— atthe subalpine level (3100-4000 m.a.s.1.), (i) nat-
ural Erica forest (“fer”’) dominated by E. excelsa
and up to 10 m high, and (ii) primarily fire-
disturbed Erica bushland (“fed”’) dominated by E.
arborea and E. trimera (= 1.5 m; Hemp (2005));

— at the lower alpine level (40004500 m.a.s.l.),
low-canopy Helichrysum cushion (“hel”; Fig. 1c)
with H. newii and H. citrispinum as “climatic
climax vegetation” (Hemp 2009, p. 1017).

Note that due to high canopies (Odhiambo and Sav-
age 2009), neither the famous Chagga homegardens
at the submontane level (plots located from 1170 to
1832 m.a.s.l.; Hemp (2006b)) nor the montane for-
est belt (plots located from 1737 to 3015 m.a.s.l;
Appelhans et al. (2016)) could be considered within
the scope of this study. Moreover, ease of accessibil-
ity and topographic suitability limited measurement
capabilities in high elevations. Nonetheless, appro-
priate plots for all designated habitat types could be
established (Fig. 1a), of which some topographic and
beam path characteristics are given in Table 1. Beam
path lengths ranged between 64 to 120 m and were
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Table 1 Date range,
topography and beam path
characteristics per plot.
‘(d)’ indicates dry-season
measurements

PlotID  Date range Topography Beam path
Start (no. of days) Elevation Slope angle Aspect Length Height Inclination
(masl) () ©) (m) (m) ©)
fer0 2014329 (6) 3956 17.2 196 100 4 —10.7
hell 2014335 (5) 3849 9.7 310 120 3 0.8
fedl 2014323 (6) 3498 17.2 264 70 4 -7.8
gra2 2014076 (4) 1754 20.4 94 70 2 -0.5
gral 2014056 (4) 1742 6.8 146 64 2 4.1
cof2 2014081 (5) 1353 2.8 175 68 5.4 -0.3
cof3 2014070 (3) 1288 18.3 270 103 22 4.7
mai0 2014137 (5) 1010 1 177 71 53 0.5
mai4 2014133 (5) 962 1.5 273 79 53 -1.6
sav0 (d) 2014259 (5) 953 0.8 23 104 54 -0.8
sav0 2014125 (5) 953 0.8 23 77 54 -0.8
sav5 (d) 2014255 (5) 943 1.2 13 94 5.4 -0.9
sav5 2014129 (5) 943 1.1 13 79 53 -0.9

primarily determined by (i) habitat size at low ele-
vations, class “sav” excluded and (ii) topographic
suitability at high elevations. Path heights, on the other
hand, were adapted to canopy height and ranged from
2 to 5.4 m above ground.

Theoretical and technical background

As regards ground-based remote sensing systems as
an alternative to conventional methods such as EC,
scintillometer-based techniques (Kite and Droogers
2000; Meijninger and de Bruin 2000) have lately
received considerable attention regarding their capa-
bilities of yielding reliable ET estimates in rather
short time intervals. In this context, the comprehensive
works by Odhiambo and Savage (2009) and Savage
(2009) provide essential information on theoretical
background, history, and relevant applications of the
SLS method. Briefly, the general principle of scin-
tillometry assumes that turbulent fluctuations of air
temperature (7), and to a lesser degree, relative air
humidity (rH) induce small-scale fluctuations of the
refractive index of air. This, in turn, affects a laser
beam propagating along a given path and hence allows
the derivation of turbulence-related parameters from
the resulting intensity fluctuations.

The continuous monitoring of the radiation sig-
nal requires a stationary field setup with a transmitter
and receiver unit typically positioned 50 to 300 m
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apart from each other. Among the advantages associ-
ated with the SLS technique (Odhiambo and Savage
2009), Nakaya et al. (2007) highlight the represen-
tative nature of the path-averaged flux measurements
due to the larger source area, which makes the tech-
nique particularly suitable for small research sites.
While requiring no simultaneous wind speed measure-
ments in order to derive ET, the SLS results show a
more plausible behavior on short time scales as com-
pared to EC while maintaining consistent data quality
(Thiermann and Grassl 1992).

The herein presented data is derived from a dual-
beam SLS of the type SLS40 (Scintec AG, Rot-
tenburg, Germany). Complementing factory-certified
calibration parameters for wavelength and separation
of the laser beam (Van Kesteren et al. 2014), additional
calibration is carried out in the field through quanti-
fying the background signal and crosstalk coefficients
before launching the actual measurement. An accom-
panying automated weather station (AWS; Scintec
(2013a)) records T, and rH, from which the vapor
pressure deficit (VPD) as an important explanatory
variable of ET in mountainous terrain (Nullet and
Juvik 1994) can be calculated, at 1-min intervals. Fur-
ther parameters collected by the AWS are air pressure
(p), net radiation (Rpe), soil heat flux (S), and rain-
fall, among others (Scintec 2013c). Note that wind
speed and direction were not collected within this
scope.
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Estimation of latent heat flux

Odhiambo and Savage (2009) argue that canopy-
related flux terms are negligible for short and open
canopies and, moreover, advection can be left unat-
tended when dealing with rather homogeneous sur-
faces. Considering the characteristics of the selected
research plots (“Study area and sampling design”), the
application of the shortened energy balance equation
to derive the latent heat flux (LE; as a surrogate for
ET) from

Rt =LE+H+S (D

therefore seems justified (Odhiambo and Savage
2009). Here, Ry is net radiation, whereas H and § are
sensible and soil heat flux, respectively. It becomes
evident that the SLS-based derivation of H allows the
estimation of LE given that R, and S are available.
Note, however, that Eq. 1 cannot be closed entirely
which, in a more practical sense, means that the resid-
ual value (i.e., Rhet — H — S) and the actual LE are
not exactly the same (Tagesson et al. 2015). Despite
this well-known closure issue in boundary-layer mete-
orology (e.g., Foken (2008)), Tagesson et al. (2015)
underline that averaged daily flux estimates calculated
from Eq. 1 may still provide valuable information
within the scope of eco-climatological research (e.g.,
model validation).

Data processing

The SRun software for automated SLS data retrieval
combines simultaneous optical and meteorological
recordings at 1-min intervals (Scintec 2013b), from
which hourly ET rates (mm/h) are calculated. Mea-
surement gaps introduced during times of power short-
age, strong wind and fog add up to 7.2% of all hourly
values and are partly refilled using a random forest
algorithm (RF; Breiman (2001)). While filling missing
data introduced by sensor instabilities based on con-
comitantly recorded environmental variables is gener-
ally considered unproblematic (Goulden et al. 2012),
gaps resulting from fog involve a number of unknowns
(Dawson 1998) and are hence not recomputed.
Internal validation of the implemented gap-filling
routine consists of tenfold cross validation (CV) per-
formed upon randomly selected training data (75%
of all complete records). For a varying number of
split variables, the model with the smallest root mean

square error (RMSEcy) is used to predict the remain-
ing 25% of the complete records. The thus derived ET
rates are subsequently compared with the test data by
calculating the test RMSE (RMSET), mean absolute
error (MAET) and R%. The entire procedure is car-
ried out ten times for each plot separately to determine
the optimum number of split variables and the mean
values of all error metrics.

Complementing model validation, the mean vari-
able importance of each meteorological input in terms
of predicting ET is determined. Briefly, RF-based
variable importance can be derived through randomly
permuting the values of a given predictor while leav-
ing all remaining variables unchanged (Altmann et al.
2010). The resulting changes in prediction error (as
seen from MAE in regression-based scenarios) serve
as a variable-specific measure for the mean decrease
in model accuracy (Liaw and Wiener 2002), and
therefore, deploying such an approach is expected to
provide deeper insights for our analysis.

Satellite data

The amount to which vegetation characteristics of
ecosystems contribute to ET-elevation relationships
has been broadly discussed in the literature. In order
to assess potential impacts across multiple land covers
in the Kilimanjaro region, our analysis is comple-
mented by satellite-borne estimates of the Normalized
Difference Vegetation Index (NDVI) derived from
the Moderate Resolution Imaging Spectroradiometer
(MODIS) aboard the Terra and Aqua satellites. Being
a measure of photosynthetic activity at the Earth’s sur-
face, the index distinctly varies between ecosystems
and closely correlates with daytime land surface tem-
perature (LST; Maeda and Hurskainen (2014)) and
ET (Maeda et al. 2011). It is calculated from (Tucker
1979)

NDVI = (pNIR — Pred)/ (ONIR + Pred) 2

where pnir and preq are reflectances from the near-
infrared (841-876 nm) and red MODIS bands (620-
670 nm), respectively.

Terra and Aqua-MODIS provide best value com-
posites of two selected “Vegetation Indices” (VI),
namely Enhanced Vegetation Index (EVI) and NDVI,
at a spatial and temporal resolution of 250 m
and 16 days, respectively (MOD/MYD13Q1 V006),
released with a time lag of 8 days and downloaded
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Table 2 Plot-specific

training and test statistics of Plot ID Training Testing

the random forest-based gap

filling RMSEcy RZ, MAEr RMSET R2
fer0 0.03 £ 0.006 0.96 0.01 £ 0.001 0.03 0 0.96
hell 0.03 & 0.005 0.97 0.01 £ 0.001 0.03£0 0.97
fedl 0.07 & 0.007 0.85 0.03 & 0.002 0.07 & 0.001 0.85
gra2 0.03 & 0.002 0.99 0.01 £ 0.001 0.03 0 0.99
gral 0.06 & 0.011 0.93 0.02 & 0.002 0.05 & 0.001 0.94

Included are the root mean cof2 0.07 % 0.009 0.94 0.04 % 0.002 0.06 % 0.001 0.94

square error (RMSE),

coefficient of determination cof3 0.03 & 0.003 0.99 0.02 & 0.001 0.03£0 0.99

(R?) and, in the case of model mai0 0.05 £ 0.005 0.96 0.02 £ 0.001 0.04£0 0.96

testing, mean absolute error mai4 0.04 = 0.004 0.97 0.02 = 0.001 0.04£0 0.97

(MAE). Subscripts "CV”and 6 () 0.05 + 0.003 0.76 0.02 + 0.001 0.05 + 0 0.77

T” signify results from model

raining and testing, sav0 0.07 £ 0.011 0.9 0.03 & 0.002 0.07 & 0.001 0.9

respectively, whereas “(d)” savs (d) 0.05 + 0.014 0.58 0.02 & 0.002 0.06 £ 0.001 0.64

indicates dry-season savs 0.04 = 0.004 0.85 0.03 = 0.001 0.04 +£0 0.86

measurements

from the Land Processes Distributed Active Archive
Center (LP DAAC:; https://Ipdaac.usgs.gov/). Follow-
ing two-fold quality control based on the companion
“pixel reliability” and “VI quality” layers to retain
reliable pixels only, the two datasets are merged
into a continuous 8-day time series. Finally, a modi-
fied Whittaker Smoother (Atzberger and Eilers 2011)
is applied for down-weighting remainders of nega-
tively biased, low-confidence values in favor of a
non-disturbed vegetation signal (Detsch et al. 2016).

Results
Evaluation of ET gap filling

The calculated training and test statistics (Table 2)
confirm that the RF-based algorithm used to refill
missing hourly ET rates based on simultaneous mete-
orological recordings performs reasonably well. As
for model training, RMSEcy ranges from 0.03 to
0.07 mm/h, whereby the associated values of R%V
(0.58 to 0.99) indicate considerably strong linear rela-
tionships. A similar picture is drawn by the test statis-
tics, where RMSET and MAET also range from 0.03
to 0.07 and 0.01 to 0.04 mm/h, respectively, and R%
lies between 0.64 to 0.99.

Complementing the training and test statistics, the
corresponding mean variable importance from internal
CV (Fig. 2) indicates that Ry is the most important
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parameter for explaining variations in ET. While p,
S, and VPD follow in descending order, T, and rtH—
from which VPD is calculated—play only a minor
role. Finally, the relative importance of rainfall is vir-
tually zero across all plots, with two minor exceptions
(sav5 (d), cof2).

Mean variable importance
0 20 40 60 80 100

1 1 1 1 1 1
fer0 -

hel1 -
fed1 -

gra2 =
gral -
cof2 A

cof3

Plot ID

mai0
mai4
sav0 (d)
sav0

sav5 (d)

savb

I B R T T T T T
Roet P S VD T, H Ran

Fig. 2 Mean relative variable importance per sampling plot
(sorted from left to right in descending order of overall impor-
tance). Rpet net radiation, p air pressure, S soil heat flux, VPD
vapor pressure deficit, T, air temperature, rH relative humidity.
“(d)” indicates dry-season measurements
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Elevation profiles

In order to assess the actual influence of the single
meteorological drivers, further analyses on their short-
term interplay with ET are required. As a starting
point, Fig. 3 depicts the elevation profiles of plot-
specific mean daily values of the four most relevant
driving factors.

Rpet lacks a clear altitude gradient as it varies
considerably between plots even at similar elevation
levels (Fig. 3a). It peaks at the colline maize (mai4,
135.7 W/m?) and submontane grassland level (gral,
134.0 W/mz), whereas smaller values become evi-
dent from both low (e.g. sav5 (d), 86.0 W/m?) and
high elevations (e.g. fedl, 65.8 W/m?). Remarkably,
dry- and wet-season measurements at sav5 clearly dif-
fer, whereas no such seasonal pattern is evident from

sav(. On the other hand, p reveals a much more uni-
form distribution as it linearly declines with elevation
from savanna (sav5, 916.9 hPa) to Helichrysum (hell,
639.6 hPa; Fig. 3b). Rather similar to Ry, a consid-
erably diverse picture is drawn by S, which cannot
easily be subdivided into elevation levels and hence
requires further analysis (Fig. 3c). Interestingly, two
out of three high-elevation plots (hell, ferQ) show
positive flux rates, whereas negative fluxes become
evident from fedl. At the low-lying sites, the coffee
and grassland habitats as well as sav5 (wet and dry)
reveal positive flux rates, whereas sav0 (wet and dry)
and maize are characterized by negative or only minor
positive fluxes. Finally, the VPD-elevation relation-
ship closely tallies with a strong linear decrease of
T. with elevation (Appelhans et al. 2016, and Fig. 6
therein) and reveals highest and lowest deficits at

a) Rnet (W/m?) b) p (hPa) C) s (Wim?)
a000f X = 1 % ] X -
- + -
3000 . i
2000 . i
O @) @) (ONG)
~ m O = O
3w g kA A Q@ Z L X o Ay
g 80 100 120 700 800 900 6 3 0 3 6
S d) vPD (Pa) e) ET (mm)
©
uij 0% X ] X Plot ID
+ + A savs v sav5 (d)
A sav0 v savo (d)
3000 i
<> mai4 O mai0
B cofs [J cof2
2000 i Q gat O gra2
@O @0 —|—fed1 X et
D D D D >< fer0
1000 1 LY A 7 N A AR
250 500 750 i 2 3 4 5

Fig. 3 Elevation profiles of mean daily a net radiation (Ryey),
b air pressure (p), ¢ soil heat flux (S), d vapor pressure deficit
(VPD), and e evapotranspiration (ET). In the legend, “(d)”

indicates dry-season measurements, and point shapes and fill
colors signify different land covers and plots per land cover,
respectively
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dry-season sav5 (858.1 Pa) and hell (46.6 Pa), respec-
tively (Fig. 3d).

Depicted in Fig. 3e is the determined ET-elevation
gradient which vaguely resembles a combination
of the described progression curves of Ry and S.
Accordingly, the highest ET rates are observable at
cof2 (5.7 mm/day) that decline both uphill (fedl,
2.0 mm/day) and downhill (sav5, 2.5 mm/day). By
far, the smallest rates become evident during the dry
season in savanna (up to 0.9 mm/day at sav5).

For all variables displayed in Fig. 3a—d, including
rainfall, univariate linear models are fitted to estimate
the degree of variation explained in the observed ET
(Table 3). Clearly, Ry is capable of explaining the
broadest range of variance (R> 0.26 to 0.99), the sole
exceptions being dry-season sav5 as well as cof2. S
follows closely behind and reveals very similar corre-
lations as Ryet (R2 0.22 to 0.85), again with the afore-
mentioned exceptions. VPD proves to be an important
co-explanatory variable at least at some of the colline
and submontane plots (up to R? 0.57 at mai0)
without following a particular habitat-related pattern.
At higher elevations, by contrast, the vapor pressure
gradient seems to be of no further relevance. Despite
designated runner up in terms of RF-based variable
importance, p generally has only little explanatory
power for ET across all elevation levels. Rainfall plays
a particular role at dry-season savS5—where the Rpe¢-
based R? drops to zero—and, to a lesser extent, at cof2

and sav(, while no or only minor showers occurred at
the remaining plots.

The results obtained from multivariate linear
regression (Table 3, right column) confirm that,
when taking all of the aforementioned variables into
account, ET may be reasonably estimated at plot scale
in most cases (up to R* = 1 at gra2). Moreover, when
pooling all data available and building one multivari-
ate model for all plots, a comfortably high value of
R? = 0.71 remains. Still, some deviations downwards
persist at plot scale, which particularly include dry-
season sav5 as well as cof2 and sav0, thus pointing
towards additional influence factors that have not been
considered so far.

Vegetation characteristics

In terms of vegetation characteristics, the highest NDVI
values occur at the grassland sites (& 0.85; Fig. 4)
and at cof3 (0.81), which moderately decrease
towards cof2, the two maize fields and the rain-
season savanna measurements. With the exception
of fedl, the upper-mountain habitats and the dry-
season savanna measurements reveal explicitly
smaller values between 0.35 and 0.43. Despite the
short measurement periods, the corresponding ET-
NDVI relationship proves itself noticeably linear
(R* = 0.33). Plot-specific standard errors thereby
tend to increase towards the points lying above the

Table 3 Plot-specific

coefficients of PlotID R? (univariate) R? (multivariate)

determination (R2) derived

from univariate and Ruet p N VPD Rain

multivariate linear

regression against hourly fer0 0.70 0.09 0.44 0.06 0.10 0.85

ET rates. Abbreviations are hell 0.88 0.02 0.49 0.03 0.02 0.96

the same as in Figs. 2 and 3 fed1 0.56 0.14 0.26 0.02 0.22 0.89
gra2 0.99 0.03 0.85 0.27 0 1
gral 0.97 0.11 0.82 0.46 0 0.99
cof2 0.11 0.17 0.10 0.02 0.32 0.63
cof3 0.96 0 0.70 0.16 0 0.98
mai0 0.84 0.03 0.67 0.57 0.03 0.89
mai4 0.75 0 0.68 0.24 0.07 0.87
sav0 (d) 0.83 0.03 0.56 0.14 0 0.88
sav0 0.26 0.02 0.22 0.04 0.29 0.62
sav5 (d) 0.01 0 0 0.04 0.47 0.59
sav5 0.80 0 0.71 0.52 0 0.81
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Fig. 4 Relationship
between average daily ET
and NDVI on a plot basis. In

A savs
W sav5 (d) 7 sav0 (d) O maio O cof2

A sa0 @ mai4 @ cof3 @ gral  — fedt X fer0

O gra2 ¥ hell

the legend, “(d)” indicates ~
dry-season measurements,

whereas point shapes and © -
fill colors identify different

land covers and plots per o0 -

land cover, respectively.
Included are plot-specific
standard errors (gray solid)
and the overall linear
function (red dashed)

ET (mm/d)

iv

R%=0.33

0.3

fitted curve, suggesting considerable fluctuations of
daily ET rates at otherwise constant NDVTI values.

In order to establish a link between vegetation
and meteorological characteristics, we incorporate
the determined linear ET-NDVI relationship into the
initially meteorologically driven multivariate model
to estimate ET from data pooled across all plots
(“Elevation profiles”). This time, however, hourly
meteorological recordings are combined into average
daily values which should improve comparability with
our 8-day MODIS NDVI dataset. While the corre-
sponding R? of the solely meteorology-driven model
thereby increases to 0.78 owing to this temporal aggre-
gation alone (as compared to R> = 0.71 for hourly
observations), including the NDVI leads to consider-
able additional gains of R? = + 0.09 (or R? = 0.87).

Discussion

Meteorological controls on ET

Short-term controls

Clearly, Ryg; is the superior short-term meteorological
driver of ET at plot scale (Fig. 3). This becomes par-
ticularly obvious from high-elevation habitats, where

higher cloud/fog frequencies (Buytaert et al. 2011)
restrain the amount of available energy and hence

0.4 0.5 0.6 0.7 0.8 0.9
NDVI

attenuate ET. At the low-lying plots, by contrast,
energy is presumably not a limiting factor. The out-
standing role of Ry is further evidenced from plot-
based linear regression (Table 3), where it explains the
largest amount of ET variance without taking other
variables into account. Similar ET-elevation gradients
have been reported previously, e.g., by Goulden et al.
(2012) for California’s Sierra Nevada, and in this
context, the amount of available energy has been iden-
tified as a major driver of ET (Nullet and Juvik 1994).
In addition, Camberlin et al. (2014) reported an out-
standing impact of global radiation not only on actual
but also on potential ET (ETp) along elevation gra-
dients at Mt. Kenya. Moving along horizontal rather
than vertical climate gradients, Biudes et al. (2015)
and Negrén Judrez et al. (2007) found an equally
strong dependency of ET on radiative input during
the wet and dry season, respectively, in Brazil. Con-
sidering this flood of studies coming to roughly the
same conclusion, we see the validity of our short-term
approach, and hence, our interpretation of Ry being
the primary driver of ET in the study area confirmed.

In a slightly attenuated form, these findings also
apply to S which is directly linked to Ry and LE
through the surface energy balance (Eq. 1). Possi-
bly owing to their joint key role in determining ET
(Allen et al. 1998), our measurements indicate a strong
statistical relationship between S and Ry across all
sampling sites (R from 0.82 to 0.97; data not shown).
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While this is well in agreement with findings from
West Africa (Kakane 2004), the fact that S gener-
ally makes up only a smaller fraction of Rye (e.g.,
Da Rocha et al. (2004)) is likely responsible for
the slightly smaller amounts of explained variance in
observed ET (Table 3). Although the underlying S
to Ryet ratio considerably varies with land-cover type
and season, which has also been one of the key out-
comes in Kakane (2004, and references therein), our
results obtained from univariate regression hence lead
us to the conclusion that, complementing Ry, S is an
important co-explanatory variable for plot-based ET
in the region.

In fact, it is only at those plots where precipitation
occurred during our measurements that the relative
importance of Rper and S declines (Table 3). In particu-
lar, this applies to dry-season sav5 where the impact of
Ryt and S practically approaches zero, whereas ET is
governed almost exclusively by sudden rainfall events.
Similar findings were, e.g., reported from semi-arid
grassland and shrubland sites (Nagler et al. 2007),
where peak ET rates occurred simultaneous to precip-
itation events and, moreover, long-term ET could be
best approximated using rainfall in combination with
EVI (R? = 0.74). Ryt and T, on the other hand, were
only of subordinate importance.

As indicated by previous studies on evaporation
profiles of tropical mountains (e.g., Nullet and Juvik
(1994)), linear modeling also suggests that VPD might
be an essential co-factor impacting ET at least at some
of our plots. However, greater uncertainties remain as
regards a proper interpretation of this interesting find-
ing as higher explanatory power is restricted to some
of the lower plots only. At the same time, the amount
of explained variance varies considerably between sin-
gle land covers and even among plots of the same
habitat type, as seen for example from wet-season
savanna sampling. We assume that this behavior can-
not entirely be resolved based on the data presented
herein, and therefore, future studies on similar topics
might provide valuable insights.

Despite indicated otherwise (Fig. 2), we believe
that p plays only a minor part in controlling ET. This
is not only evidenced by plot-based linear regression
(Table 3) but also by the fact that the RF procedure
indicates a greater significance almost exclusively for
wet-season savanna. Here, p typically peaks at around
lunchtime and drops to a minimum in the late after-
noon (data not shown), thus strongly resembling the

@ Springer

diurnal cycle of ET related primarily to Rpe;. In con-
trast to the remaining habitats, however, no explicit
maximums or minimums are observable during the
night (Hardy et al. 1998), thus agreeing with nocturnal
ET rates approaching zero.

Possible long-term influences

In addition to short-term controls, we assume the dis-
covered ET gradient to be influenced by long-term
climatological factors. Associated with the climate
gradient are changes in the amount of available mois-
ture, with a gradual increase in annual rainfall from
savanna to the grassland level of roughly + 1300 mm
(Appelhans et al. 2016). Of course, these spatial dif-
ferences in moisture availability throughout the year
cannot be adequately captured during only a few days
of measurement. However, distinct quantitative devi-
ations between dry- and wet-season ET amounts in
savanna (Fig. 3e) suggest that water might indeed be
a limiting factor at the colline level. This is supported
by the results obtained for maize which is tradition-
ally cultivated during the long rains (March to May;
Kimaro et al. (2009)) and likewise outweighs ET rates
in dry-season savanna by far. As demonstrated by
Appelhans et al. (2016, and Fig. 5 therein), the semi-
arid savanna receives most of its annual precipita-
tion during the long rains (i.e., wet-season sampling),
whereas hardly any rain occurs during the long dry
season from June to September (i.e., dry-season sam-
pling). The resulting downregulation of plant stomatal
conductance as an adaption of plants to rather dry
environments (van den Bergh et al. 2013) might con-
tribute further to attenuated transpiration rates. On the
other hand, intra-annual water availability might not
be such a crucial factor starting from the submontane
level upwards.

Similar limitations have been reported in quite a
variety of eco-climatological studies. Biudes et al.
(2015), for instance, found that energy exchange pro-
cesses in Brazil savannas were markedly reduced dur-
ing the dry season. Moreover, Goulden et al. (2012)
reported a rapid ET decline from Sierra Nevada’s
montane forest level towards the low-lying savanna
areas resulting from less annual rainfall observable
even during the wet season.

In high elevations, by contrast, we assume that
moisture is not a limiting factor since annual precip-
itation amounts do not significantly differ from the
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submontane grassland level (Appelhans et al. 2016).
Instead, we expect (i) less Ry resulting from higher
cloud/fog frequencies (Hemp 2009) and topographic
exposure (Nyman et al. 2014) and (ii) reduced VPD
resulting from lower 7, to have a dampening effect
on ET (van den Bergh et al. 2013). The influence of
exposure becomes particularly evident from the west-
exposed and rather steep fedl (Table 1) that receives
less incident radiation than the south-exposed ferO or
the flat hell plateau.

Vegetation controls on ET

In terms of vegetation properties, we identify a rather
good linear correspondence between ET and NDVI
(Fig. 4) documenting that ET in the Kilimanjaro
region is not subject to meteorological influences
alone. Instead, NDVI-based land cover characteristics
seemingly play an important additional role as they
explain a considerable amount of variation in mean
daily ET rates. Accordingly, the highest NDVI val-
ues at the submontane grassland/coffee level and the
moderate (massive) decline towards lower (higher)
situated plots resemble the vaguely hump-shaped ele-
vation gradient of ET (Fig. 3e). This is not least
evidenced by the fact that, when adding NDVI to
the already well-performing meteorological model, an
additional boost in explained ET variance (AR?> =
+ 0.09) can be achieved. In this context, Nagler et al.
(2007) already demonstrated that land cover-specific
ET could reasonably be estimated as a function of
green vegetation derived from EVI (r = 0.80 to 0.94)
without deploying meteorological drivers. Moreover,
the regional validity of our findings is confirmed by
Maeda and Hurskainen (2014) who demonstrated that
land cover properties as seen from the NDVI could
explain between 26 to 39% of additional spatial vari-
ation in daytime LST in the Kilimanjaro region. As
evidenced from the nearby Taita Hills, Kenya (Maeda
etal. 2011), LST exerts a substantial impact on poten-
tial and actual ET, thus confirming that the hydro-
logical cycle is subject to a complex interplay of
meteorological and land cover-specific factors.

Conclusions

In the study presented herein, we aimed at establishing
a short-term ET-elevation gradient along the highly

fragmented southern slopes of Kilimanjaro. Within
this scope, the major environmental driving factors of
ET should be identified to make a step towards assess-
ing the consequences of local land-use and global cli-
mate change on ecosystem functioning through mod-
ifications in the regional-scale water budget. Need-
less to say, such ambitious goals—particularly their
generalizability—are hard to accomplish with only
a handful of measurement days available. However,
we demonstrate that considerable information on the
complex interplay between ET and its underlying
driving forces may be deduced even from such explic-
itly short-term observations of meteorological and
vegetation-related parameters.

As regards the overall elevation profile, ET
revealed a roughly hump-shaped progression curve
which, in the short term, was strongly linked to the net
radiation budget at each elevation level. Topographic
influences and high cloud/fog frequencies attenuated
ET at higher elevations, whereas moisture limitations
were suspected to exert a restraining effect on water
release rates at the low-lying savanna woodlands.
Consequently, the highest ET amounts occurred at
the submontane coffee/grassland level where neither
moisture nor energy limitations could be identified.

In terms of environmental drivers, we found that
plot-specific ET amounts could be approximated rea-
sonably well by multivariate regression involving net
radiation, soil heat flux, and to a lesser degree, vapor
pressure deficit, air pressure (as a surrogate for ele-
vation), and rainfall (R?> 0.57 to 1.00). Further gains
could be achieved when including vegetation charac-
teristics, resulting in additionally explained variance
when comparing pooled data multivariate regression
without (R> = 0.71 and 0.78 for hourly and mean
daily values, respectively) and with NDVI included
(R* = 0.87).

Having identified the main drivers of ET in the area,
future work will presumably aim at testing physically
based ET modeling approaches to assess the impacts
of land-use and climate change on a region-wide
scale and over longer time periods. In this context,
Camberlin et al. (2014), for instance, demonstrated
that seasonal ETy variability at Mt. Kenya strongly
depended on seasonal fluctuations of moisture avail-
ability, air temperature, and global radiation. Consid-
ering the explicitly frequent cloud obscuration and the
lack of a long-term ground observation network, set-
ting up a solely remote sensing-based model on an
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appropriate temporal scale remains a challenging yet
not insolvable future goal.
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