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Abstract This paper presents a new methodology for
analyzing the spatiotemporal variability of water table
levels and redesigning a groundwater level monitoring
network (GLMN) using the Bayesian Maximum Entro-
py (BME) technique and a multi-criteria decision-mak-
ing approach based on ordered weighted averaging
(OWA). The spatial sampling is determined using a
hexagonal gridding pattern and a new method, which
is proposed to assign a removal priority number to each
pre-existing station. To design temporal sampling, a new
approach is also applied to consider uncertainty caused
by lack of information. In this approach, different time
lag values are tested by regarding another source of
information, which is simulation result of a numerical
groundwater flow model. Furthermore, to incorporate
the existing uncertainties in available monitoring data,
the flexibility of the BME interpolation technique is
taken into account in applying soft data and improving
the accuracy of the calculations. To examine the meth-
odology, it is applied to the Dehgolan plain in north-
western Iran. Based on the results, a configuration of 33
monitoring stations for a regular hexagonal grid of side
length 3600 m is proposed, in which the time lag

between samples is equal to 5 weeks. Since the variance
estimation errors of the BME method are almost identi-
cal for redesigned and existing networks, the redesigned
monitoring network is more cost-effective and efficient
than the existing monitoring network with 52 stations
and monthly sampling frequency.

Keywords Groundwater level . Bayesianmaximum
entropy (BME) . Spatiotemporal analysis . Ordered
weighted averaging (OWA) .Monitoring network

Introduction

Spatiotemporal variability analysis of water table levels
is of great importance for managers of groundwater
resources. In this regard, geostatistical interpolation
techniques have been mostly used for spatial groundwa-
ter level monitoring network (GLMN) design. However,
less direct consideration is given to determine sampling
frequencies (temporal variability analysis). Some exam-
ples of spatial and temporal sampling in GLMN design
have been reviewed in subsections 1.1 and 1.2. In addi-
tion, due to the importance of spatial sampling patterns
in GLMN design, various sampling schemes used in
different studies are introduced in subsection 1.3.

Overview of classical geostatistics used in GLMN
design

The theoretical basis of geostatistics has been described
in detail by several authors (Goovaerts 1997; Isaaks and
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Srivastava 1989; Kitanidis 1997). This branch of statis-
tics focuses on spatial or spatiotemporal (S-T) datasets
and originally developed to predict probability distribu-
tion of ore grades at locations where no observed data
points are available (Krige 1951). There are several
studies which have been conducted to assess or design
GLMN from a geostatistical viewpoint. A number of
recent researches on this issue are reviewed here.
Fasbender et al. (2008) applied a Bayesian data fusion
technique to integrate the results of a spatial Kriging
interpolation method with information obtained from a
drainage network and a digital elevation model (DEM).
Peeters et al. (2010) extended the approach presented by
Fasbender et al. (2008) to consider the results of a
numerical groundwater model in the data fusion tech-
nique. Nourani et al. (2011) applied a hybrid, an artifi-
cial neural network-geostatistics method for the predic-
tion of water table level in time and space. In their work,
a calibrated geostatistical model is used to produce a
spatial pattern of water table level. Manzione et al.
(2012) presented an integration of time series analysis
and geostatistics to estimate water table level for land-
use planning and groundwater management. In their
research, the kriging method has been utilized for
spatial interpolation of the simulated water levels.
Varouchakis and Hristopulos (2013) compared a num-
ber of deterministic and stochastic methods to investi-
gate water table level spatial variability in the Mires
Basin of Mesara Valley in Greece. The results showed
that ordinary and universal kriging techniques outper-
form deterministic counterparts (i.e., Inverse Distance
Weighting (IDW) and Minimum Curvature (MC)). Re-
cently, Barca et al. (2015) and Ran et al. (2015) also
used the kriging method for designing GLMN.
Chikodzi andMutowo (2016) also utilized linear regres-
sion analysis to obtain a relationship between ground-
water levels and river stages. In their study, the kriging
interpolationmethodwas used to estimate the river stage
in several random points. The results showed the good
performance of applying the river stage for groundwater
level estimation. The main shortcoming of these studies
is that the correlations that exist between temporal and
spatial measured data are not considered in the kriging
interpolation method. In other words, several studies,
which have been carried out to design GLMN through
geostatistical methods, are believed to be in the category
of spatiotemporal analysis. But in fact, these studies
only represent a number of spatial analyses performed
at different times and do not consider the correlations

existed between temporal and spatial data obtained from
monitoring stations. For example, Delbari et al. (2013)
investigated groundwater depth variations over 13 years
during wet and dry periods using the simple kriging
(SK), ordinary kriging (OK), and inverse distance
weighting (IDW) methods. The results of the experi-
ment showed that OK can outperform other techniques.
The variogram modeling was spatially conducted by
using the GS+ software and was utilized during
interpolation methods in different years. As another
example, Barca et al. (2013) employed the evolutionary
polynomial regressions (EPR) technique to calibrate and
validate a groundwater level predictive tool. A nested
variogram model was utilized to construct S-T maps of
groundwater level. They applied the kriging standard
deviation as a criterion to optimize sampling sites and
frequencies. Recently, Hosseini and Kerachian (2017)
utilized a spatiotemporal kriging interpolation method
which considered the spatiotemporal correlations
existed between samples.

Researchers have often employed different criteria
(i.e., the kriging variance or standard deviation of the
estimation error) to identify the regions of highest pri-
ority to set up new monitoring stations. Sometimes,
these criteria have been applied in optimization prob-
lems. For example, Sophocleous et al. (1982) utilized
error analysis of universal kriging to examine a GLMN
located in northwest Kansas, USA. Olea (1984) applied
universal kriging to minimize the sampling require-
ments in Equus Beds of Kansas, USA. The average
and maximum standard error of estimation were used
as global criteria of sampling efficiency. Kumar et al.
(2005) examined the accuracy of the existing observa-
tion wells in a GLMN using universal kriging. They
proposed some additional observation wells to improve
the present level of accuracy in the areas having a high
estimation error. Recently, Zhou et al. (2013) proposed a
methodology to design a regional GLMN based on
groundwater regime zone mapping in the Beijing plain,
China. They applied a linear variogram model to calcu-
late the standard deviation of interpolation error between
the designed and existingGLMN. Triki et al. (2013) also
utilized the universal kriging variances to optimize the
existing GLMN in an aquifer in Tunisia. This optimiza-
tion problem has been performed through a cross-
validation test. Their findings demonstrated that by set-
ting up 33 new monitoring wells, the average standard
kriging deviation would be reduced from 26 to 11 m.
Bhat et al. (2015) applied a geostatistical method to
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optimize numbers and locations of monitoring stations
situated in the Upper Florida aquifer based on a
predefined groundwater level prediction error. They
recommended a hexagonal grid network to obtain a
uniform level of information about GLMN as well as
the minimum required accuracy. Barca et al. (2015) and
Ran et al. (2015) also utilized the kriging variance in
their research. The above reviews show that
geostatistical estimation errors have been widely used
in previous studies. However, these criteria alone do not
seem enough for designing GLMNs and should be
considered in combination with other criteria. In this
paper, in addition to the BME estimation error, some
new criteria are proposed to provide a more comprehen-
sive approach for GLMN design.

Overview of Bayesian maximum entropy approach
used in GLMN design

Bayesian maximum entropy (BME), as a powerful
member of modern geostatistics, was initially proposed
by Christakos (1990, 1991). In the previous studies,
BME has been utilized to integrate general knowledge
(obtained from general laws and principles) and specific
knowledge (obtained through experiences and the spe-
cific situation) into S-T analysis (Serre and Christakos
1999). The ability of the BME paradigm to provide
more accurate estimation than classical geostatistics
has been shown in previous studies (Christakos and Li
1998; Christakos 1998).

Based on the authors’ knowledge, there are only a
few scientific studies that have been carried out by
considering the BME approach in estimation of water
depth in a GLMN. For example, Yu and Chu (2009); Yu
and Lin (2012, 2015) applied the BME technique to
evaluate S-T variations of piezometric heads in some
observation wells. Yu and Chu (2009) also utilized some
rotated empirical orthogonal functions (REOF) to ana-
lyze the spatiotemporal groundwater level variations. To
minimize systematic biases resulted from sampling, the
BME technique was used to generate evenly distributed
spatiotemporal estimations. In addition, the REOF
method was applied to examine the spatiotemporal
groundwater level data estimated using the BME
technique.

The flexibility of the BME approach in the combina-
tion of uncertain (soft) data and measured (hard) data as
well as its spatiotemporal mapping ability, which con-
siders the S-T dependencies, was the motivation to

apply this method in the proposed methodology. It
should be noted that soft data refers to data not obtained
through field measurements and can be of interval or
probabilistic type (Christakos et al. 2002). Recently,
Alizadeh and Mahjouri (2017), applied soft data to
effectively improve BME estimations for redesigning
the groundwater quality monitoring network of the Teh-
ran aquifer in Iran. Based on the authors’ knowledge, in
previous applications of BME in designing GLMNs,
only observed data have been considered in S-T analy-
sis, while one of the main features of the BMEmethod is
the use of soft data to improve the accuracy of the
estimations. In the current paper, both hard and soft data
are used for the spatiotemporal design of GLMNs.

Spatial sampling patterns (strategies) of groundwater
networks

Spatial sampling patterns can affect the accuracy of
geostatistical analysis and should be taken into consid-
eration before any measurement. In monitoring net-
works, various sampling schemes have been used by
different researchers. In the following sections, several
papers, which deal with the application of hexagonal
sampling patterns in GLMN, are reviewed.

Olea (1984) examined the efficiency of different
sampling patterns, such as uniform hexagonal, square,
triangular, and cluster data points used for analyzing
data obtained by a GLMN in the Equus Beds aquifer
of Kansas, USA. Based on the findings, a regular hex-
agonal pattern, in which monitoring stations are placed
in cell centers, has been the most efficient pattern in
terms of predefined indices of sampling accuracy (i.e.,
average standard error). Davis and Olea (1998) also
proposed a stratified hexagonal sampling network, in
which the region is divided into regular hexagonal cells.
In this structure, observation wells are randomly located
within hexagonal cells. Recently, Bhat et al. (2015)
adopted a hexagonal gridding to achieve a uniform level
of data. Three different stratified hexagonal grids were
proposed in their research. Furthermore, the relation
among prediction standard error, the number of required
monitoring stations, and well spacing were investigated.
Hosseini and Kerachian (2017) also proposed a new
methodology for spatiotemporal redesigning of a
groundwater level monitoring network in Iran using a
hexagonal gridding pattern. The concept of Value of
Information (VOI) and a data fusion technique were
considered in their research. These studies show that
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hexagonal gridding patterns are very efficient; however,
their applications in the optimal design of monitoring
systems have been very limited.

In this paper, a combination of hexagonal gridding
pattern and the BME technique is utilized in a new
methodology to analyze the S-T variability of water
table level and redesign a GLMN. Review of the litera-
ture shows that previous works on GLMN design have
been based on only observed data obtained from mon-
itoring wells, but the methodology proposed here inte-
grates soft (uncertain) information available at unmea-
sured points from a numerical groundwater model as
well as hard (measured) information at observation
wells. Furthermore, some new design criteria are de-
fined to have a more comprehensive GLMNdesign. The
ordered weighted averaging (OWA) operator is also
utilized for aggregating the opinion of several experts
about the multiple criteria considered in a decision-
making process for selecting the best S-T configuration.
The methodology has been applied to designing optimal
S-T sampling schemes for the Dehgolan plain in Kurdi-
stan Province located in northwestern Iran.

The rest of this paper is arranged as follows. In
Section 2, a flowchart of the proposed methodology is
presented. Then, each step is described separately in
more detail to provide a better understanding of the
process. The study area of this paper is introduced in
Section 3. Finally, the results and main findings are
presented in Section 4.

Methodology

Figure 1 illustrates a flowchart of the proposed method-
ology. In the following sections, different parts of the
flowchart are described in detail.

Data collection

Groundwater table level observations, which are
considered as hard data, are required in the BME
estimation process. On the other hand, outputs of a
numerical groundwater simulation model can be
taken into account as a valuable source of informa-
tion available throughout the system. In general,
spatial and temporal groundwater level estimations
obtained using geostatistical methods are more ac-
curate than the results of numerical simulation
models, except in areas where monitoring wells are

limited but large variations can be seen in water
table level. Considering the existing uncertainty, in
this paper, the outputs of a calibrated MODFLOW
simulation model are taken into account as soft data
(uncertain data). So, the BME method can be uti-
lized due to its flexibility considering uncertain kind
of information (soft data) in combination with mea-
sured information (hard data). In previous studies,
the capability of the BME method to improve the
accuracy of the estimations when additional infor-
mation is available has been proved.

According to the above explanations, all required
information including observed water level data and
groundwater level values (calculated using a calibrated
numerical simulation model) should be collected.

Data analysis

Geostatistical techniques are more appropriate for
normally distributed and no trend variables
(Finkenstadt et al. 2006). So, in the presence of
spatial or temporal trends, it is necessary to deter-
mine the trends and subtract them from the original
non-stationary and non-homogeneous random field.
In addition, parametric tests, such as variance anal-
ysis, are based on the assumption that the data set
follows a Gaussian distribution. In this paper, trend
analysis is performed and then different normality
tests are utilized to the residual being spatially ho-
mogeneous and temporally stationary using the
SPSS software. If the residuals fail the assumption
of normality, they are transformed to be normal
using a suitable transformation function.

Identifying potential monitoring locations

Determining potential locations for monitoring wells
are of great importance in monitoring network de-
sign. In this paper, these candidate points are iden-
tified using a regular hexagonal gridding pattern.
Since application of different hexagons’ side lengths
results in various configurations of monitoring
wells, the regular hexagonal grids of different size
obtained using the Geographical Information System
(GIS) are considered to cover different situations.

Figure 2 shows an example of monitoring wells
configuration obtained based on a hexagonal gridding
pattern. For each of the hexagonal grids, new moni-
toring wells (new stations) are proposed to add to the
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center of hexagonal cells not containing any pre-
existing monitoring stations in the area within a de-
fined threshold being a circle with a radius equal to
half of the hexagon’s side length. If the new stations

are located outside the boundary of the study area (i.e.,
point 'A' in Fig. 2), they are shifted from the cell
centers to points near the boundary of the region
(i.e., point 'B' in Fig. 2). The pre-existing stations
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Fig. 1 A flowchart of the proposed methodology for spatiotemporal groundwater level monitoring network design
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being outside the defined threshold value are not con-
sidered in the calculations and are proposed to remove
from the monitoring network (removed stations). On
the other hand, all the pre-existing stations located in
the area within a defined threshold value are retained
in the network (retained stations). By this way, there
may be more than one retained station within the
threshold per grid cell. Finally, at the end of this step,
spatial sampling patterns in which new, retained, and
removed stations are known will be identified for each
hexagon’s side length.

Spatiotemporal simulation using Bayesian maximum
entropy

In this paper, the Bayesian maximum entropy (BME)
approach is implemented for estimating the S-T distri-
bution of water table level in the study area.

The BME approach seeks to provide an efficient
framework for organizing and incorporating one’s
scientific experience in terms of the general (G)
knowledge base, which refers to background knowl-
edge, and specific (S) knowledge base, which is
obtained through one’s experiences with the specific
situation. Naturally, the union of the G and S knowl-
edge bases is physical knowledge (K) (Christakos
et al. 2002). This nonlinear estimator, BME, is a
much more accurate and powerful method than any
type of classical kriging technique, because it can

provide an efficient way to incorporate different
sources of physical knowledge bases (KBs), uncer-
tain information, higher statistical moments, etc. into
S-T analysis (Christakos et al. 2001). There are three
main stages in BME analysis including prior stage,
pre-posterior stage, and posterior stage, which are
briefly summarized below (Christakos et al. (2002)):

(i) Prior stage: This stage includes G knowledge and a
basic set of assumptions. The consideration of the
G knowledge base at this stage expresses the fact
that physical applications are not started with com-
plete ignorance. The goal of this stage is to maxi-
mize the prior information given G knowledge.

(ii) Pre-posterior stage: This stage corresponds to the S
knowledge base including hard data, which are
accurate measurements obtained from the field
observations, and soft data, which are uncertain
information that can be represented as interval
values or probability statements.

(iii) Posterior stage: This stage is also called the
integration stage in which the former two
stages are integrated. This integration leads to
the final outcome of the BME analysis, which
is the posterior probability distribution func-
tion (PDF).

A more detailed description of the mentioned stages
is discussed in Christakos et al. (2002).

Defined threshold

New proposed monitoring wells shifted to locate in the region inside the boundary

New proposed monitoring wells

Existing monitoring wells removed from the system

Existing monitoring wells retained in the system               

Cell number

Boundary of the 

study area B

A

2

3

4

1

5 6

7

8

Fig. 2 An example of monitoring
wells configuration based on a
hexagonal gridding pattern

433 Page 6 of 24 Environ Monit Assess (2017) 189: 433



Calculation of the space-time covariance
for the water-level random field

Variogram/covariance function, which indicates the re-
lation between the data points and their distances, is a
kind of statistical correlation function. Making a good
variogram is of great importance prior to any estimation
process of a random variable. After calculation of ex-
perimental variogram/covariance obtained based on the
all observed data, a number of theoretical variogram/
covariance functions, such as the linear, the spherical,
the Gaussian, and the exponential models, are needed to
fit the experimental variogram/covariance. The shape of
a theoretical variogram/covariance model is character-
ized in terms of its particular parameters, which are the
sill, the range, and the nugget effect. A more detailed
description of variogram parameters can be found in any
textbook of geostatistics.

Since the BME method uses covariance model pa-
rameters for its estimation, a S-T covariance model has
been developed in this paper using hard data. It is also
possible to make a theoretical variogram model because
parameters of this model can easily be transformed to
those of theoretical covariance model.

There are different structures of separable variogram/
covariance models such as sum, product, and product-
sum that have been used in previous studies (De Cesare
et al. 1997; De Cesare et al. 2001). Furthermore, several
non-separable S-T variogram/covariance models have
also been proposed in the literature (Cressie and Huang
1999). In this paper, several separable spatiotemporal
covariance models are made and the best-fitted model is
selected based on the most common measure of good-
ness of fit, which is the coefficient of determination (R2).
Then, the parameters of the selected model are used in
the estimation process.

Performing a spatiotemporal analysis using hard data
and defining priorities for reducing a number
of pre-existing stations

In this paper, a kriging method, which is a special case
of limited application of BME, is used to do a S-T
analysis based on the S-T covariance model prepared
in the previous section. In this kind of BME method,
only hard data of desired stations are considered in
calculations. To this end, a square grid with cells of size
2000 × 2000 square-meter is considered in the estima-
tion process. The outcomes of each S-T analysis are the

mean value of the posterior pdf and the related estima-
tion error variance on the grid of points covering the
study area. These outputs are extracted for each month
during which ground truth data are available.

In this paper, a new methodology is proposed for a
reduction in the number of pre-existing stations located
in the plain. A goal of this methodology is to assign a
reduction priority number to each station. Given that N
is the number of pre-existing stations located in the
region, the procedures of the method are described as
follows:

Step 1: Choose one of the pre-existing stations
Step 2: Do a S-T analysis using the rest of the stations
Step 3: Calculate the value of S1 expressed as Eq. 1

and substitute it into Eq. 2:

S1 ¼ ∑Tx
x¼1∑

Tt
t¼1Vxt

n
ð1Þ

S2 ¼

ffiffiffiffiffiffi
S1
n

r
� 4

2
ð2Þ

In the above equations, S1 and S2 are, respectively,
average value of the estimation error variances and the
standard deviation of S1, which is obtained based on
95.4% of the data being within ±2× standard deviations
from the mean. Vxt, denotes the value of the estimation
error variance at location x and time t; Tt is total number
of time steps; Tx is total number of grid points located
inside the study area; and n is the total number of the
estimation points at time and space.

Step 4: Return the removed station, select another
station for reduction and repeat steps 2 and 3

Step 5: Repeat step 4 until all pre-existing stations
have been selected

Step 6: Remove the station associated with the mini-
mum amount calculated in step 3 and assign its
reduction priority number (RPN)

Step 7: Repeat steps 1 through 6 for the rest of the pre-
existing stations, which their numbers are
equal to N-RPN until the priority number of
each pre-existing station in the region has been
assigned

It should be noted that the priority number of the first
removed station is equal to 1. For the rest of the stations,
this approach will also be continued in the same way. In
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addition, reduction of a station associated with the min-
imum amount of S2 reflects the fact that such station has
the least impact on the total variance estimation error of
the system. So, it has the first priority over other stations
for removal.

Computing the mean and variance estimation error
for different hexagons’ side lengths and sampling
frequencies

In this part, the flexibility of BME in applying soft data
is taken into consideration in the estimation process to
improve the accuracy of the calculations and incorporate
uncertainty of other sources of information. To define
the spatial sampling location, the approach described in
section 2.3 is used. As mentioned before, for several
hexagonal grids, the locations of new stations, removed
stations, and retained stations have been determined. So,
for any hexagonal grids, spatial sampling is specified
using the geographical locations of new stations and
retained stations. To design temporal sampling also
called sampling frequency, a new approach is proposed
to consider uncertainty caused by limited information.
In this approach, different water table level data (a time
lag value of 4 weeks) are available from the existing
monitoring system. The weeks containing these data are
shown in Fig. 3a, which displays ellipses drawn around
their names. It is clear that the simulation of the system
at each time lag requires having the complete access to
the information. For example, if a time lag value of
2 weeks is chosen, information should be available
every 2 weeks as shown in Fig. 3a. This figure displays
temporal sampling which should be taken at weeks
which their related pictures contain stations inside (red
points). Since this information does not always exist,
another source of information is required for data gap
filling. In this paper, simulation results of a numerical
groundwater flow model are used as another source of
information and soft data are generated using the cali-
brated simulation model. These soft data can be used to
fill data gap of 2nd, 6th and 10th weeks, and so on.
Another important point taken into account in this ap-
proach is to incorporate the uncertainty resulting from
considering different starting points for system analysis.
For example, by choosing a time lag value of 2 weeks,
the first sample can be taken during the second week as
shown in Fig. 3a or first week as shown in Fig. 3b. In the
former case, measured data of fourth week, eighth week
and so on are considered in the calculation process. In

the later one, these data are not used; therefore, only soft
data can be considered in BME estimation. By this way,
this kind of uncertainty can be incorporated. As another
example, for a time lag value of 3 weeks, the starting
point for sampling can be during the first week, second
week, or third week that use of any one of them can lead
to different results.

In addition to the application of soft data mentioned
above, there are similar cases that need to be considered.
In new stations, there are not any data even during
weeks in which observed data are available. Therefore,
in such cases, soft data are also used in the estimation
process.

In this paper, a large number of scenarios are defined
to examine the use of different hexagonal grids and time
lag values and incorporate the uncertainty caused by
considering different starting points for temporal sam-
pling. In each scenario, estimation error variances are
calculated on the grid of points covering the study area.
Details of this gridding were presented in section 2.4.2.
Furthermore, from the perspective of time, the estima-
tions are calculated during each week. For each hexag-
onal grid, due to the use of various starting points,
different values of estimation error variances are obtain-
ed for each time lag value. The average of these vari-
ances is considered in the calculation process. It should
also be noted that, in this paper, the estimation at a given
time step is only calculated by considering the data from
previous time steps. Finally, in each scenario, 2× stan-
dard deviation of the average value of the estimation
error variances, S2 in Eq. 2, is calculated and is later
considered in the decision-making process. It should
also be noted that the Eq. 1 in which different starting
points are considered, can be represented as Eq. 3,
where, j denotes different starting points and Δt indicates
time lag between samples:

S1 ¼ ∑Tx
x¼1∑

Tt
t¼ jVxt

n
; j ¼ 1;…;Δt; t

¼ j; jþΔt; jþ 2Δt;……;Tt ð3Þ

Redesigning a monitoring network using different
criteria and engineering judgments

Defining different criteria

In this paper, a multi-criteria decision-making technique
is utilized to decide upon the optimum alternative.
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Therefore, different criteria are established to be used for
the evaluation of an available set of alternatives intro-
duced in the previous section as different scenarios.
These criteria are listed in Table 1 and described in detail
in the following sections:

Maximizing the number of pre-existing stations retained
in the system Asmentioned in section 2.3, for each of the
hexagonal grids, some of the pre-existing stations located
in the area within a defined threshold value are retained in
the network and are used in the BME estimation process.
Because of the importance of preserving historical re-
cords of the pre-existing stations, it is necessary to keep

these stations in the system as much as possible. There-
fore, in this paper, maximizing the number of pre-existing
stations retained in the study area is defined as one of the
criteria involved in decision-making process.

Minimizing the number of new stations proposed based
on the regular hexagonal gridding Application of hex-
agonal sampling patterns in GLMN requires that several
new stations be added to the center of hexagonal cells
which not contain any pre-existing monitoring stations
in the area within a defined threshold. Because of the
high cost of drilling and maintaining new stations, min-
imizing the number of new proposed stations is consid-
ered as another criterion.

Minimizing the standard deviation of the average value
of the estimation error variances The main feature of
geostatistical techniques is to provide the estimation
error variances being the measure of the accuracy of
estimates at data points with no observations. Minimiz-
ing these variances is also defined as a criterion. These
variances are calculated in a manner previously de-
scribed in section 2.4.3.

Minimizing the sum of the priority rankings related to
removed stations In this paper, removal priority number
of each pre-existing station located in the study area is
assigned as described in section 2.4.2. On the other hand,
as mentioned in section 2.3, pre-existing stations being
outside the defined threshold are proposed to be removed
from the monitoring network. The location of these

(a)

(b)

Fig. 3 A temporal sampling strategy based on a time lag value of 2 weeks: the starting point for taking the first sample is the a second week,
b first week

Table 1 Criteria established for utilizing in the multi-criteria
decision-making technique

Criteria
no.

Criteria

1 Maximizing the number of pre-existing stations
retained in the system

2 Minimizing the number of new stations proposed
based on the regular hexagonal gridding pattern

3 Minimizing the standard deviation of the average
value of the estimation error variances

4 Minimizing the sum of the priority rankings related
to removed stations

5 Minimizing the mean absolute error (MAE) calcu-
lated
using removed stations

6 Maximizing time lag between samples
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stations may be different depending on the hexagonal grid
taken into consideration. The priority rankings of these
removed stations are also assigned based on the proposed
removal priority number. The lower value of the sum of
the priority rankings can reflect that removed stations
based on the hexagonal gridding pattern are more consis-
tent with the stations resulted from the methodology pro-
posed for assigning the removal priority numbers in sec-
tion 2.4.2. So, the other criterion designed to involve in the
decision-making process is to minimize the sum of the
priority rankings of removed stations for each scenario.

Minimizing the mean absolute error calculated using
removed stations Mean absolute error (MAE) is a com-
mon quantity used to measure the accuracy of estimations
by calculating the average magnitude of a set of forecasts
errors. In this section, removed stations, which are not
considered in the estimation process, are applied to exam-
ine the accuracy of the BME method. To this end, the
estimation values at removed stations are compared to the
corresponding ground truth values via MAE index, which
its minimization is considered as another criterion.

Maximizing time lag between samples Sampling can be
quite a time-consuming and expensive process. Therefore,
the maximizing time lag between samples can be one of
the criteria of decision makers in designing a GLMN.

It should be noted that the cost factor is implicitly
considered in both criteria introduced in sections 2.5.1.2
and 2.5.1.6.

Gathering experts’ opinions on each criterion and using
fuzzy linguistic quantifiers to identify the weight of each
criterion based on each expert’s relative power

To enhance the quality of decision-making, the opinions
of some experts about each criterion are gathered using
fuzzy linguistic quantifiers and quantified by using

triangular fuzzy numbers shown in Fig. 4. The maxi-
mum membership principle is applied here as the
defuzzification method.

In addition, decision-making powers of experts are
different from each other. Therefore, different weights
are considered for experts to obtain a group opinion on
each criterion. In this paper, the group weight of each
criterion is calculated as follows:

Gw ið Þ ¼ ∑
Ne

j¼1
wj:Cnij;∀i i ¼ 1; 2;…6 ð4Þ

where Gw(i) is the group weight of criterion i; wj is the
weight assigned to decision maker j; and Cnij denotes
expert j’s opinion on criterion i quantified by using
triangular fuzzy numbers. Ne, the upper limit of summa-
tion, indicates the number of experts involved in deci-
sion-making.

The Gw(i) obtained from Eq. 4 is multiplied by the
calculated values of criterion i normalized using the
following equation:

X n;i ¼ xi−xu;i
xb;i−xu;i

;∀i i ¼ 1; 2;…6 ð5Þ

where Xn , i is the data point xi normalized between 0 and
1. xb , i and xu , i are, respectively, the ideal and unfavor-
able values among all alternatives for criterion i.

Application of the OWA operator for decision-making

In this paper, the ordered weighted averaging (OWA) is
utilized as an aggregation operator (Yager 1988). The
framework of this operator is briefly introduced below:

An OWA operator of dimension M is a mapping fof
IM to I (f : IM→ I , I = [0, 1]). Mapping f has an asso-
ciated weighting vector w (w = [w1 w2 w3… .wM]

T,
∑
k
wk ¼ 1; wk ∈ [0, 1], where wis are ordered weights

of OWA operator). The main equation of this operator
is presented as follows (Yager (1988)):

f a1; a2;…; aMð Þ ¼ ∑
M

k¼1
wk :bk ð6Þ

where bkis the kth largest member of the data set a (a =
a1 , a2 , … , aM)). In this equation, the members of data
set a are ranked in descending order.M is the number of
data considered in the aggregation process. In this paper,
the data set a of each scenario is arranged according to
the numerical values of each criterion.

Fig. 4 An example of linguistic variables (fuzzy quantifiers) and
their equivalent triangular fuzzy numbers
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It should also be noted that the ordered weights of
OWA operator, wk, are determined based on optimism
degree of the decision maker. An optimistic decision
maker assigns the largest weight to the first rank and the
smallest weight to the last rank. In contrast, a pessimistic
decision maker does the reverse action. In this paper, the
method proposed by Fullér and Majlender (2003) is
used to derive the ordered weights. This method is a
nonlinear optimization problem exploring weights
based on the entropy model proposed by O’Hagan
(1990). By solving this optimization problem for differ-
ent optimism degrees, each time a unique vector of
ordered weights will be obtained. Fullér and Majlender
(2003) have solved this problem by applying the Kuhn-
Tucker second order condition. Their results are present-
ed in Eqs. 7–9:

w*
1 ¼

2 2M−1ð Þ−6 M−1ð Þ 1−θð Þ
M M þ 1ð Þ ð7Þ

w*
M ¼ 6 M−1ð Þ 1−θð Þ−2 M−2ð Þ

M M þ 1ð Þ ð8Þ

w*
k ¼

M−k
M−1

w1 þ k−1
M−1

wM if k∈ 2;…;M−1f g ð9Þ

where θ is the optimism degree of the decision maker. In
this paper, different optimism degrees varying from zero
to one are considered to solve the decision-making
problem and, therefore, different ordered weights are
obtained.

Analysis of the selected alternative as final decision

In this section, for a certain optimism degree, the best
scenario is selected and examined in detail to determine
the final configuration for sampling locations and fre-
quencies. It should be noted that the configuration of the
final GLMN may be partially revised based on engi-
neering judgments.

It is worth mentioning that the data obtained from the
revised monitoring network should also present the
variations of actual hydrogeological characteristics of
the aquifer. As a calibrated groundwater flow simulation
model is used in the proposed methodology, it can
consider the spatial and temporal variations of the
groundwater conditions. In addition, due to the nature
of the hexagonal sampling patterns, the stations of the
redesigned monitoring network are distributed over the
entire area. Therefore, the changes in hydrogeological

characteristics of the aquifer can be adequately covered
by applying the final configuration.

Case study

The study area of this paper is the Dehgolan plain,
which contains an unconfined aquifer, in Kurdistan
Province located in northwestern Iran. Groundwa-
ter is a major natural resource in this region and
proper use of it can lead to the agricultural devel-
opment. On the other hand, uncontrolled exploita-
tion of groundwater resources in some parts of this
plain has caused a significant drop in water table
levels. The Dehgolan plain has an arid to semi-
arid climate in flat areas and a very cold climate
in the upper elevations. The average annual rain-
fall of this plain is about 380 mm. The boundaries
of the groundwater balance area utilized in this
paper are shown in Fig. 5. These boundaries cover
an area of 632.91 km2. The locations of 52 obser-
vation wells used in this paper are also indicated
in Fig. 5. Monthly water table level data for the
period of observations from 1987 to 2009 are
considered in this paper.

An MODFLOW-based groundwater flow simu-
lation model has been calibrated and verified
(validated) for the Dehgolan plain by the Mahab
Ghods Consulting Engineering Company (2014).
The model consisted of a square grid with a cell
size of 500 × 500 m2, which contains 2603 active
cells in a single layer. A steady-state model has
been calibrated using the monitoring data obtained
in 2006 in order to estimate aquifer hydraulic
conductivities in different cells. In addition, due
to the need for long-term simulation, a transient
model has also been calibrated to obtain a specific
yield of the aquifer media in different zones. The
root mean square error (RMSE), mean error (ME),
and mean absolute error (MAE) of simulated water
level fluctuations for the verification period from
September 2001 to September 2006 are 1.82, 0.29,
and 1.33 m, respectively, which represent the good
performance of the model. Except in areas where
the large variations can be seen in water level
fluctuations, the kriging methods outperform the
MODFLOW-based model. So, the simulated water
level values of the numerical model can be utilized
as uncertain kind of data (i.e., soft data). In this
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paper, the MODFLOW results are used for gener-
ating soft data as interval values. The soft data are
used in the BME model to improve the accuracy
of estimations.

Results

In this section, the proposed methodology described in
detail in section 2 has been applied for designing opti-
mal spatiotemporal sampling schemes for the Dehgolan

plain. The results obtained in different steps of the
flowchart have been presented in the following sections:

Initial data analysis

In this paper, the monthly water table level values of 52
pre-existing monitoring wells have been utilized as hard
data during 1987–2009. Fortunately, there are no miss-
ing data over an entire period of observations. In addi-
tion, water table level values obtained based on a nu-
merical simulation model are also available, which have
been used for generating soft data. It should also be

Fig. 5 Study area and the
location of existing monitoring
wells
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noted that, in this paper, a probabilistic soft data type is
considered. In the probabilistic type, it is possible to
derive the probability density function (pdf) by using
available evidence. Before generating soft data, a sea-
sonal difference-based trend analysis is performed on
model outputs as well as ground truth values. Figure 6a,
b displays point scatter plots of ground truth data before
and after the removal of linear trend along different
directions, in which the x-axes represent longitude, lat-
itude, and time, respectively. According to Fig. 6a,
linear spatial and temporal trends can be detected. In
addition, the time series displays seasonal components
that have been estimated and subtracted from the orig-
inal data as shown in Fig. 6b. The same point scatter
plots are drawn for the groundwater flow model outputs
being available since October 2001 through September
2006 (Fig. 7a, b).

After trend analysis, different normality tests have
been utilized to the residual being spatially homoge-
neous and temporally stationary using the SPSS soft-
ware. Since the residual random fields of both sources of
data fail the assumption of normality, they have been
transformed into a normally distributed variable.

Potential monitoring location

In this paper, for defining potential monitoring locations
based on the hexagonal gridding pattern, different hexa-
gons’ side lengths obtained using GIS have been con-
sidered to cover various configurations of monitoring
wells. Figure 8a, b, c indicates examples of regular
hexagonal grids of side lengths 2000, 3600, and
5000 m in the Dehgolan plain under an ideal condition
in which there is a potential monitoring station at each
hexagon center. Some of these stations have been
shifted to points near the boundary of the study area
by considering a threshold value as described in section
2.3.

Due to the importance of preserving historical
records of the pre-existing stations, potential moni-
toring locations differ from those existing under ideal
condition. Figure 9 shows two configurations of po-
tential monitoring stations derived by a regular hex-
agonal grid of side length 4000 m obtained based on
both the ideal condition and proposed methodology
described in subsection 2.3. According to this figure,
nine new monitoring wells have been added to the

(a)

(b)

7 7.1 7.2 7.3 7.4 7.5

x 10
5

1750

1800

1850

1900

1950

2000

Longitude (m)

3.88 3.89 3.9 3.91 3.92

x 10
6

1750

1800

1850

1900

1950

2000

Latitude (m)

0 100 200 300
1750

1800

1850

1900

1950

2000

Time (Month)

7 7.1 7.2 7.3 7.4 7.5

x 10
5

-30

-20

-10

0

10

20

Longitude (m)

3.88 3.89 3.9 3.91 3.92

x 10
6

-30

-20

-10

0

10

20

Latitude (m)

0 100 200 300
-30

-20

-10

0

10

20

Time (Month)

G
ro

u
n

d
w

a
te

r 
L

ev
el

 (
m

)

G
ro

u
n

d
w

a
te

r 
L

ev
el

 (
m

))
m(

le
ve

L
r

et
a

w
d

n
u

or
G

le
v

e
L

ret
a

w
d

n
u

or
G

V
a

ri
a

ti
o

n
s 

(m
)

G
ro

u
n

d
w

a
te

r 
L

ev
el

 V
a

ri
a

ti
o

n
s 

(m
)

G
ro

u
n

d
w

a
te

r 
L

ev
el

 V
a

r
ia

ti
o

n
s 

(m
)

Fig. 6 Point scatter plots of water table level observations (meters above sea level) plotted against longitude, latitude, and time before (a)
and after (b) trend removal using a seasonal difference
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center of hexagonal cells not containing any pre-
existing monitoring stations in the area within a de-
fined threshold (a circle with a radius equal to half of
the hexagon’s side length) and a limited number of
them have been shifted to points near the boundary of
the region. As noted before, the procedures men-
tioned above have been implemented for different
hexagons’ side lengths. In addition, spatial sampling
patterns in which new, retained, and removed stations
are known to have been identified for each hexagon’s
side length. Furthermore, it is also possible to remove
some of the pre-existing stations from cells, which
contains more than one pre-existing station, based on
engineering judgments.

Space-time covariance model

In this paper, several different separable covariancemodels
have been tested and finally, an exponential/Gaussian
model, which contains an exponential spatial covariance
model and a Gaussian temporal covariance model, has
been selected as the best theoretical model obtained by
fitting its parameters to experimental data. Figure 10 indi-
cates the best S-T covariance model obtained here using
the water table level observations of 52 pre-existing mon-
itoring wells. This model can describe important charac-
teristics of the S-T random field. The mathematical struc-
ture of the S-T separable covariance function developed
here is as follows:
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Fig. 7 Point scatter plots of groundwater flowmodel outputs (meters above sea level) plotted against longitude, latitude, and time before (a)
and after (b) trend removal

(a) (b) (c)

Fig. 8 Examples of the regular hexagonal gridding pattern with different sizes of 2000 m (a), 3600 m (b), and 5000 m (c)
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C r; τð Þ ¼ S:e
−3r
SRð Þ:e −

ffiffi
3

p
τ

TR

� �2
� �

ð10Þ

where C(r, τ) represents the S-T covariance function in
spatial lag r and time lag τ. S, SR, and TR are, respectively,
the sill, spatial range, and temporal range parameters. The
values of these parameters are calculated as 1.37, 5.75e +
004, and 7.42, respectively. Later, these parameters are
used in the estimation process.

Removal priority numbers assigned to each pre-existing
station

Table 2 shows the removal priority numbers calculated
using the methodology proposed in subsection 2.4.2. The
location of each station is shown in Fig. 5. The priority
numbers presented in Table 2 are obtained using the S-T
covariance model shown in Fig. 10. These results have
been utilized for assigning a priority ranking to each
removed station. According to Table 2, for stations num-
bers 5, 27, 36, and 46, the priority numbers cannot be

obtained. The reason is that it is impossible to do a
spatiotemporal analysis because the number of stations
involved in the estimation process is not enough. To make
better use of the results shown in Table 2, relative changes
in total variance estimation error have been plotted against
the number of removed stations in Fig. 11. It is clear that
increasing the number of removed stations results in more
changes in total variance estimation error compared to the
existing situation in which there are 52 observation wells

(a) (b)

Fig. 9 A configuration of potential monitoring stations for a regular hexagonal grid of side length 4000 m obtained based on a ideal
condition and b proposed methodology

Fig. 10 A space-time covariance surface fitted to experimental
space-time covariance values (blue dots)

Table 2 Removal priority numbers assigned to each pre-existing
station

Station
no.

Priority
no.

Station
no.

Priority
no.

Station
no.

Priority
no.

22 1 15 21 34 41

42 2 49 22 26 42

4 3 25 23 43 43

48 4 32 24 2 44

30 5 37 25 18 45

24 6 51 26 31 46

14 7 6 27 39 47

40 8 19 28 9 48

10 9 17 29
41 10 45 30

23 11 35 31

33 12 29 32

52 13 11 33

13 14 47 34

38 15 12 35

3 16 1 36

20 17 7 37

44 18 28 38

16 19 50 39

8 20 21 40
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in the region. As can be seen in Fig. 11, removal of eight
stations having the eight higher priorities leads to a 3.6%
increase in the total variance estimation error, which is not
a significant increase.

Application of BME

The methodology proposed in subsection 2.4.3 has been
implemented here to compute the mean and variance
estimation error for different hexagons’ side lengths
and sampling frequencies. Figure 12a displays 2× stan-
dard deviation of the average value of the estimation
error variances, S2 in Eq. 2, plotted against time lag for
a regular hexagonal grid of side length 2000 m. It should
be noted that the same plot for a regular hexagonal grid

of side length 4000m is slightly different from that given
in Fig. 12a. In this paper, different time lag values of 1 to
16 weeks (4 months) are tested. As shown in Fig. 12a, an
increase in time lag value results in a higher S2. A greater
magnification of Fig. 12a has been displayed in Fig. 12b
to illustrate the differences among S2 values related to
different starting points. The average of these differences
has been considered in the decision-making process.

As noted before, a large number of scenarios have
been defined to examine the use of different hexag-
onal grids as well as consider various time lag
values. Figure 13 displays S2 values plotted against
the hexagon’s side length considering different time
lags. Indeed, this figure shows the S2 values calcu-
lated for all scenarios defined in this paper.

0

50

100

150

200

250

300

0 10 20 30 40 50

R
el

a
ti

v
e 

in
cr

ea
se

 i
n

 t
o
ta

l 
v
a
ri

a
n

ce

es
ti

m
a
ti

o
n

 e
rr

o
Number of removed stations 

Fig. 11 The relationship between
the relative increase in total
variance estimation error and
number of removed stations

(a) (c)

2.0735

2.074

2.0745

2.075

2.0755

2.076

2.0765

8 8.5 9 9.5 10

2
 ×

e
ht

f
o

e
ul

a
v

e
g

ar
e

v
a

e
ht

f
o

n
oit

ai
ve

d
d

r
a

d
n

at
S

s
e

c
n

ai
r

a
v

r
o

r
r

e
n

oit
a

mits
e

Time Lag (1-Week)

Hexagon's side length=2000m

y = -0.0047x2 + 0.1317x + 1.2677

R² = 0.9003

1

1.2

1.4

1.6

1.8

2

2.2

2.4

0 2 4 6 8 10 12 14 16 18

2
×

e
ht

f
o

n
oit

ai
v

e
d

d
r

a
d

n
at

S

n
oit

a
mits

e
e

ht
f

o
e

ul
a

v
e

g
a

r
e

v
a

s
e

c
n

ai
r

a
v

r
o

r
r

e

Time Lag (1-Week)

Hexagon's side length=2000m

Fig. 12 An example of the relationship between 2× standard deviation of the average value of the estimation error variances and time lag

433 Page 16 of 24 Environ Monit Assess (2017) 189: 433



Redesign of the water table level monitoring network

Application and comparison of different criteria

In this paper, different scenarios have been established,
each of which has been evaluated based on multiple
conflicting criteria. In Figs. 14 through 18, the calcu-
lated values of different criteria have been plotted
against the hexagon’s side length by considering a
specific time lag value of 2 weeks in criteria 3 and 5.
The calculated values of criteria 1, 2, and 6, which were
explained in subsection 2.5.1, are the same for all time
lag values.

Figure 14 displays the relationship between relative
numbers of retained stations and the hexagon’s side
length. This figure does not show a consistent trend
but indicates an upward trend in the first part of the
chart up to about 0.37 and a downward trend afterward.
Also, it can be replaced by a linear trend. As noted
before, maximizing this criterion is one of the objectives
considered in this paper. In Fig. 15, the calculated values
of the second criterion have been plotted against the
hexagon’s side length and a downward trend can be
easily recognized. Figure 16 indicates the relationship
between 2× standard deviation of the average value of
the estimation error variances, criterion 3, and the
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hexagon’s side length. Unlike the previous figure, this
figure displays an upward trend. Figure 16 is the same as
Fig. 13 but has only been shown for a time lag value of
2 weeks. In Fig. 17, the criterion 4, the sum of the
priority rankings related to the removed stations has
been considered. According to this figure, a downward
trend can be seen. Finally, the fifth criterion being mean
absolute error (MAE) calculated using removed stations
has been plotted against the hexagon’s side length for all
time lag values (Fig. 18). This figure does not display
any particular trend, but it is the same for different time
lag values. As mentioned in section 2.5.1, in this paper,
the minimization of the criteria 2, 3, 4, and 5 have been
taken into consideration. Furthermore, the maximization
of the time lag between samples described in section
2.5.1.6 is the last objective considered in the decision-
making problem. There is not any need to plot the values
of this criterion against the hexagon’s side length; this is
because, for a specific time lag, it will be constant over
the hexagon’s side length.

It is necessary to mention that the relative number of
stations in criteria 1 and 2 are utilized here, which are,
respectively, the number of retained stations divided by
the number of pre-existing stations and the number of
new stations divided by the total number of hexagonal
cells. The results obtained from this section have been
utilized in the decision-making process.

Multiple criteria decision-making

In this paper, the opinions of three experts have been
gathered for decision-making. Since decision-making
powers of experts are different from each other, the
weight values of the first, second, and third expert have
been considered as 0.5, 0.3, and 0.2, respectively. Ta-
ble 3 presents group weights of the criteria calculated
using Eq. 4 based on opinions of the three experts.
According to this table, the maximum group weight
has been assigned to criterion 3 being the standard
deviation of the average value of the estimation error
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variances. The group weight of each criterion has been
multiplied by the respective normalized value obtained
from Eq. 5.

Application of OWA operator requires that the or-
dered weights be properly determined based on different
optimism degrees of the decision maker(s). These
weights have been obtained through Eqs. 7 to 9 and
have been shown in Table 4 for different optimism
degree. In this table, the elements b1 to b6 , in which bkis
the kth largest member of the data set,have been ranked
in descending order for each scenario. Finally, the OWA
operator has been utilized to aggregate the calculated
value of each criterion for all scenarios defined in this
paper.

After obtaining the aggregated results for each sce-
nario, both the hexagon’s side length and time lag have
been plotted against the ranking order for different op-
timism degree (Fig. 19). It should be noted that due to
administrative problems, it is not possible to conduct
sampling every day. Therefore, time lag values of 2 to

16 weeks have been considered for decision-making. As
shown in Fig. 19, for each value on the horizontal axis,
two values have been obtained. One of the values rep-
resents the selected length and the other is related to the
selected time lag. Due to space limitation, only the 20
better ranking have been displayed for each optimism
degree. The results presented in Fig. 19 can be effec-
tively used for designing a water table level monitoring
network in the Dehgolan plain. Based on the optimism
degree and preferences of a decision maker, one of the
scenarios can be easily chosen using Fig. 19.

In the following, the first ranking order of a specific
optimism degree (i.e., 0.1) is examined. The character-
istics of this scenario have been listed in Table 5. Fur-
thermore, Fig. 20a displays the configuration of moni-
toring stations for a regular hexagonal grid of side length
3600 m obtained based on proposed methodology. Ac-
cording to this figure, 16 new monitoring stations have
been added to the center of hexagonal cells not contain-
ing any pre-existing monitoring stations in the area
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within a defined threshold and a limited number of them
have been shifted to points near the boundary of the
region. In addition, the number of pre-existing stations
retained in the system is equal to 17 in this configura-
tion. For better comparison, the existing situation of
GLMN is also represented in Table 5 and Fig. 20b.
Considering the hexagonal gridding pattern, Fig. 20b
shows an inappropriate distribution of the stations in the
current GLMN of the Dehgolan plain.

According to Fig. 20a, the stations of the redesigned
monitoring network are distributed over the entire area.
This suggests that the changes in hydrogeological char-
acteristics of the aquifer can be adequately covered by
applying the final configuration.

Since it is necessary to examine the performance of
the methodology proposed here, the 2× standard devia-
tion of the average value of the estimation error

variances obtained based on the new designed monitor-
ing network has been compared with those of the
existing situation. According to Table 6, this value has
increased by about 2.1%, which is not significant. It
should be noted that this small increase in 2× standard
deviation could be due to using soft data for filling data
gaps. It is necessary to mention that the number of
stations suggested in the selected scenario is equal to
33, representing a significant decrease compared with
the existing situation (52 stations). So, it can be con-
cluded that the selected scenario can significantly reduce
maintenance and operational costs of the monitoring
stations. It is also possible to remove one of the pre-
existing stations from cell A shown in Fig. 20 based on
engineering judgments. It should also be noted that the
results presented in Table 5 and Fig. 20 can also be
obtained for other cases shown in Fig. 19 by considering
the optimism degree and preferences of a decision mak-
er. Finally, due to the good performance of the proposed
methodology, its application for revision of the GLMN
of the Dehgolan plain is suggested.

Summary and conclusion

In this paper, a new methodology was proposed and
applied for redesigning an optimal spatiotemporal sam-
pling network for the Dehgolan plain in the Kurdistan
Province located in northwestern Iran. At first, a new
method, which can accurately be used for removing
stations based on kriging estimation variances, was sug-
gested to assign a removal priority number to each pre-
existing station. Then, a new hexagonal gridding pattern
was used to determine the spatial sampling. Despite the

Table 3 Group opinions on each criterion

Criteria
no.

Criteria Group
weights

1 Maximizing the number of pre-existing
stations retained in the system

0.81

2 Minimizing the number of new stations
proposed based on the regular hexagonal
gridding

0.84

3 Minimizing the standard deviation of the
average value of the estimation error
variances

0.96

4 Minimizing the sum of the priority rankings
related to removed stations

0.84

5 Minimizing the mean absolute error (MAE)
calculated using removed stations

0.32

6 Maximizing time lag between samples 0.9

Table 4 Ordered weights of the OWA operator

Elements related to the ordered weights Optimism degree

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ordered weights

b1
a −0.19 −0.12 −0.05 0.02 0.10 0.17 0.24 0.31 0.38 0.45 0.52

b2 −0.05 0.00 0.04 0.08 0.12 0.17 0.21 0.25 0.30 0.34 0.38

b3 0.10 0.11 0.12 0.14 0.15 0.17 0.18 0.20 0.21 0.22 0.24

b4 0.24 0.22 0.21 0.20 0.18 0.17 0.15 0.14 0.12 0.11 0.10

b5 0.38 0.34 0.30 0.25 0.21 0.17 0.12 0.08 0.04 0.00 −0.05
b6 0.52 0.45 0.38 0.31 0.24 0.17 0.10 0.02 −0.05 −0.12 −0.19

a bk is the kth largest member of the data set
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Fig. 19 Examples of the hexagon’s side length (natural numbers between 1200 and 5800m) and time lag values (natural numbers between 2
and 16 weeks) plotted against the ranking order for different optimism degree
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good performance of this pattern, especially when using
geostatistical techniques, it has rarely been used in pre-
vious studies. In this paper, to design temporal sam-
pling, a new approach was proposed to consider uncer-
tainty caused by lack of information in areas with no
monitoring station. In this approach, different time lag
values of 1 to 16 weeks were tested by considering
another source of information (i.e., results of the numer-
ical groundwater flow model) for data gap filling. In
addition, the uncertainty resulted from considering dif-
ferent starting times for modeling was regarded. The
flexibility of the BME method was taken into consider-
ation to incorporate the uncertainties mentioned above
under a large number of scenarios (i.e., different

hexagons’ side lengths and time lags). To improve the
accuracy of the BME estimations, the results of a cali-
brated MODFLOW-based groundwater flow simulation
model were used for generating soft data as interval
values. Using this new idea, estimations of the ground-
water flow model have been considered as a new source
of information in the designing process. In addition, a
multi-criteria decision-making technique (i.e., the or-
dered weighted averaging (OWA)) considering six main
criteria was applied for aggregating the group opinions
of some experts about the criteria by regarding their
relative powers. By this way, the final monitoring net-
work can be chosen based on the different criteria, rather
than using only the kriging estimation variance, which

Table 5 Characteristics of the selected scenario and existing
monitoring network

Characteristic Selected scenario Existing situation
Values

Hexagon’s side length 3600 –

Time lag between samples 5 weeks 4 weeks

Retained stations 17 52

Removed stations 35 –

New stations 16 –

(a)

(b)

Fig. 20 The configuration of
monitoring stations for a a regular
hexagonal grid of side length
3600 m obtained based on the
proposed methodology and b the
existing situation. The letter A
represents a cell covering an area
with more than one station

Table 6 Comparison of network monitoring systems

Monitoring network 2× standard deviation of the
average value of the estimation
error variances

Existing network with 52
monitoring stations and
monthly observations

1.84

Newly designed network with
33 monitoring stations and
every 5-week observations

1.878
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has widely been used in literature. After obtaining the
aggregated results for each scenario, both the hexagon’s
side length and time lag were plotted against the ranking
order of scenarios considering different optimism de-
grees in the OWA technique. The results provided the
required information for choosing a GLMN for the
Dehgolan plain under different construction and opera-
tional costs constraints. In the selected scenario, a con-
figuration of 33 monitoring stations for a regular hexag-
onal grid of side length 3600 m was proposed, in which
the time lag between samples is equal to 5 weeks. The
results showed that the new monitoring network is more
cost-effective and efficient than the existing network,
which includes 52 stations with the monthly sampling
frequency. It should be noted that the methodology
proposed here is general and can be applied for
redesigning any kind of monitoring network. To simpli-
fy the proposed methodology, the number of criteria in
section 5 of the flowchart (Fig. 1) can be decreased. In
the spatial and temporal analysis, the hexagons’ side
lengths and time lags between samples can be also
increased to reduce the computational cost of the
methodology.

In this paper, a regular hexagonal gridding pattern
with fixed side length was considered for redesigning
GLMNs. As the density of potential monitoring stations
can vary in different parts of the network, application of
hexagonal gridding patterns with varying side lengths is
suggested for future works. Furthermore, some other
criteria related to time series characteristics of observed
data (e.g., power of statistical trends) can be considered
in temporal sampling design. The irregular temporal
sampling can be also investigated.
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