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Abstract An optical method is developed to estimate
water transparency (or underwater visibility) in terms of
Secchi depth (Zsd), which follows the remote sensing
and contrast transmittance theory. The major factors
governing the variation in Zsd, namely, turbidity and
length attenuation coefficient (1/(c + Kd), c = beam
attenuation coefficient; Kd = diffuse attenuation coeffi-
cient at 531 nm), are obtained based on band rationing
techniques. It was found that the band ratio of remote
sensing reflectance (expressed as (Rrs(443) + Rrs(490))/
(Rrs(555) + Rrs(670)) contains essential information
about the water column optical properties and thereby
positively correlates to turbidity. The beam attenuation
coefficient (c) at 531 nm is obtained by a linear relation-
ship with turbidity. To derive the vertical diffuse atten-
uation coefficient (Kd) at 531 nm, Kd(490) is estimated
as a function of reflectance ratio (Rrs(670)/Rrs(490)),
which provides the bio-optical link between chlorophyll
concentration and Kd(531). The present algorithm was
applied to MODIS-Aqua images, and the results were
evaluated by matchup comparisons between the remote-
ly estimated Zsd and in situ Zsd in coastal waters off Point
Calimere and its adjoining regions on the southeast
coast of India. The results showed the pattern of

increasing Zsd from shallow turbid waters to deep clear
waters. The statistical evaluation of the results showed
that the percent mean relative error between the
MODIS-Aqua-derived Zsd and in situ Zsd values was
within ±25%. A close agreement achieved in spatial
contours of MODIS-Aqua-derived Zsd and in situ Zsd
for the month of January 2014 and August 2013 prom-
ises the model capability to yield accurate estimates of
Zsd in coastal, estuarine, and inland waters. The spatial
contours have been included to provide the best data
visualization of the measured, modeled (in situ), and
satellite-derived Zsd products. The modeled and
satellite-derived Zsd values were compared with mea-
surement data which yielded RMSE = 0.079,
MRE = −0.016, and R2 = 0.95 for the modeled Zsd and
RMSE = 0.075, MRE = 0.020, and R2 = 0.95 for the
satellite-derived Zsd products.
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Abbreviations
TSI Trophic state index
SeaWiFS Sea-Viewing Wide Field-of-View

Sensor
DN Digital number
TM Thematic mapper
GLMs Generalized linear models
GAMs Generalized additive models
AC-S Absorption and attenuation sensors
BB9 Backscattering sensors
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IOPs Inherent optical properties
ECO Environmental characterization optics
FLNTU Turbidity and fluorescence chlorophyll

sensors
TSS Total suspended sediment
ABI Algal bloom index
RMSE Root mean square error
MRE Mean root error
NTU Nephelometric turbidity unit
SAV Submerged aquatic vegetation
CDOM Colored dissolved organic matter
a(λ) Absorption coefficient
a-aw Particulate absorption coefficient
bb(λ) Backscattering coefficient
c-cw Particulate attenuation coefficient
Zsd Secchi depth
Kd Vertical diffuse attenuation coefficient
Kd,PAR Vertical diffuse attenuation coefficient

for photosynthetically active radiation
c(λ) Beam attenuation coefficient
b(λ) Scattering coefficient
1/(c + Kd) Length attenuation coefficient
Γ Coupling coefficient
Ed,λ Spectral downwelling irradiance
Rrs Remote sensing reflectance
Lt Total radiances
nLw Normalized water leaving radiance
N Number of data-points
R2 Correlation coefficient

Introduction

The water quality mapping and its assessment on a
regional-global scale has been a field of interest to
environmentalists, marine scientists, and oceanogra-
phers over the decades (Suresh et al. 2006). One of the
standard parameters that provide the primary informa-
tion about the optical characteristics of the water column
and water transparency is the Secchi depth (denoted by
Zsd). Due to ease of measurement, it is widely used as a
tool to assess the quality of regional and global water
bodies (Holmes 1970; Steel and Neuhausser 2002;
Trees et al. 2005; Berkman and Canova 2007; Balali
et al. 2013). The Zsd parameter has assisted to develop
the trophic state index (TSI) which can be used to assess
the eutrophication status of lakes and inland water bod-
ies. The TSI has been recognized as an important

predictive tool to monitor the biological conditions (al-
gal biomass or nutrient concentration) of lakes and
inland waters (Carlson 1977). The water transparency
parameter and prediction of diver’s visibility have major
implications in port and harbor security and are quite
instrumental to recreational and commercial diving in-
dustries (Trees et al. 2005).

The in situ measurements of optical properties to
estimate the water transparency parameter are a
time-consuming and cumbersome activity on water
bodies that cover a large aerial extent. To overcome
this limitation, several algorithms have been devel-
oped for remote sensing of Zsd in regional water
bodies. Over the last three decades, remote sensing
has played a pivotal role in providing synoptic in-
formation about the water constituents and their
variations in marine and inland waters. The signifi-
cant advancement in the field of remote sensing and
its application has potentially enhanced water man-
agement and monitoring activities (Chen et al.
2007b; Moreno 2013).

Several empirical and semi-empirical algorithms
have been developed to estimate Zsd from remote sens-
ing data. Many of these algorithms deviate from the
concept of contrast transmittance theory yielding signif-
icant errors in Zsd products.

The study conducted in the sub-alpine lake Iseo
(Italy) region used Landsat TM data to map Zsd and
estimate the euphotic depth (Giardino et al. 2001). This
study showed that the blue-green band ratio provides
reliable results in inland waters despite that the regres-
sion relationships lacked consistency and highly relied
on water quality sampling during satellite passages. The
algorithm mainly depended on the correlation between
atmospherically corrected reflectance values to predict
the trend of Zsd in the lake water.

SD ¼ 8:01� ρTM1=ρTM2ð Þ−8:27 ð1Þ

where BSD^ refers to Secchi depth and ρTM1/ρTM2 rep-
resents the ratio of atmospherically corrected reflectance
values at bands TM1 and TM2.

In another study carried out in the Gulf of Finland
and Archipelago Sea, a multivariate algorithm was de-
rived by combining the digital number (DN) values of
Landsat 7 thematic mapper (TM) bands (optical) and
ERS-2 SAR (microwave) remote sensing data (Zhang
et al. 2003). The formulation consisted of regression
coefficients obtained on comparison of the measured
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sea-truth data with satellite observed data. The expres-
sion takes the form

SDDTM ¼ A0 þ ∑
7

i¼1
Ai TMið Þ ð2Þ

SDDTM=SAR ¼ B0 þ ∑
7

i¼1
Bi TMið Þ þ B SARð Þ ð3Þ

where BSDD^ = Secchi depth and A0, Ai, B0, Bi, and
B = derived regression coefficients. The neural network
algorithmwas also applied on the same data set to derive
Zsd products. This study suggested that the multivariate
algorithms and neural network technique can be an
effective way to estimate Zsd in coastal waters.

Similarly, Suresh et al. (2006) derived an empirical
formula that estimates Zsd values as a function of the
remote sensing reflectance (Rrs) band ratio (Rrs(490)/
Rrs(555)) through

Zsd ¼ Aþ B
Rrs 490ð Þ
Rrs 555ð Þ
� �

ð4Þ

where A = 2.27212 and B = 7.239.
This method was tested on Sea-Viewing Wide Field-

of-View Sensor (SeaWiFS) and IRS P-4 OCM data in
the Arabian Sea off Gujarat and west coast of India with
a limited in situ matchup data set.

In another study, the satellite maps of Zsd between the
periods 2003 and 2012 were used to assess the eutro-
phication status for the region of the Baltic Sea (Stock
2015). The study was focused on the generalized linear
models (GLMs) and generalized additive models
(GAMs) to predict Zsd on a regional scale. The
satellite-based Zsd algorithm consists of a regionally
calibrated linear model and employed Rrs ratio of 488
to 645 nm, which is given by

ln Z−1
sd

� � ¼ 1:3405þ ln
Rrs 488ð Þ
Rrs 645ð Þ

� �
−0:4343 ð5Þ

The in situ Zsd was also empirically correlated to
satellite Kd(490) with an aim to study and monitor
water quality in estuarine waters of Tampa Bay
(Chen et al. 2007b). A two-step algorithm was for-
mulated and employed—i.e., estimating Kd(490)
through a semi-analytical algorithm and deriving
Zsd from an empirical formula as a function of
Kd(490). This study further demonstrated various

spatial-temporal characteristics and time series
trends of Zsd derived from satellite data. The empir-
ical relationship to derive Zsd is given by

SDD ¼ 1:04� Kd 490ð Þ−0:82 ð6Þ

A mechanistic model has been developed recently to
estimate the underwater visibility in marine and inland
waters (Lee et al. 2015). This model takes the form

Zsd ¼ 1

2:5Min Kd 443; 488; 532; 555; 665ð Þð Þ ln
0:14−Rpc

rs

�� ��
Cr

t

� �
ð7Þ

The model depends on the complex technique of
measuring the threshold contrast of the sighting range
of the white disk to estimate Zsd, and the correlation of
coupling coefficient (Γ) to in-water inherent optical
properties (IOPs) which forms the integral component
of the contrast transmittance theory in estimating Zsd
(Tyler 1968; Davies-Collley 1988; Lee et al. 2015).

It can be inferred that the above Eqs. (1)–(7) either
ignored the concept of contrast transmittance theory
entirely or failed to address the important role of the
coupling coefficient, which necessitated the develop-
ment of a new algorithm that can establish the impor-
tance of the contrast transmittance theory and coupling
coefficient to accurately derive Zsd from satellite data for
improved water quality monitoring applications.

The above studies highly rely on the empirical and
semi-empirical relationships obtained from the band
ratio techniques to capture the Zsd variation in the water
column. Moreover, these studies revealed that the
existing satellite-derived Zsd algorithms do not adopt
the well-recognized principle concept of the contrast
transmittance theory and solely depended on either op-
tical properties or the Rrs band ratio. Therefore, these
algorithms did not focus to explain the physical signif-
icance of the coupling coefficient which forms the inte-
gral parameter of the contrast transmittance theory. Such
algorithms lacked the crucial step to retrieve the cou-
pling coefficient based on the satellite remote sensing
technique. Bearing in mind, a satellite-derived Zsd algo-
rithm is developed in the present study within the frame-
work of the contrast transmittance theory that well ac-
counts for the influence of the length attenuation coef-
ficient (1/(c + Kd)) and coupling coefficient. In contrast
to existing algorithms, the proposed method reveals
effective and simple steps to estimate the coupling co-
efficient following the principles of ocean color remote
sensing. It can be further implied that the present study
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intends to lay emphasis that the integral component of
the contrast transmittance theory (especially the cou-
pling coefficient) must not be ignored. Furthermore,
the satellite-based Zsd for coastal, estuarine, and inland
water bodies can be estimated following the principles
of the contrast transmittance theory provided the algo-
rithm aptly accounts for the method to estimate the
coupling coefficient. The present work aims to demon-
strate that the accurate estimation of Zsd can be achieved
using the remote sensing data, following the Zsd algo-
rithm proposed by Kulshreshtha and Shanmugam
(2015), which takes the advantages of using the contrast
transmittance theory, coupling coefficient, and optical
parameters (turbidity, c(531), andKd(531)) to predict Zsd
for water quality assessment and monitoring programs.

Materials and methods

In situ data The absorption coefficient (a(λ)) and atten-
uation coefficient (c(λ)) were measured on-board using
absorption and attenuation sensors (AC-S) (WET Labs
Inc.) in the spectral range of 400–700 nm, whereas the
backscattering coefficient (bb(λ)) was measured using a
backscattering sensor (BB9) (WET Labs Inc.) at nine
wavelengths (namely, 412, 440, 488, 512, 530, 565,
650, 676, and 715 nm). The temperature and salinity
correction was applied to measured AC-S data, and
thereafter, scattering correction was performed on
salinity-temperature-corrected absorption data to deter-
mine the particulate absorption coefficient (a-aw) and
particulate attenuation coefficient (c-cw) (Pegau and
Zaneveled 1993; Zaneveld and Kitchen 1994; Pegau
et al. 1997). Here, the subscript Bw^ represents pure
water components respectively for both the absorption
and attenuation coefficients. Subsequently, the value of
cw was added to the measured particulate attenuation
coefficient (c-cw) to obtain the total beam attenuation
coefficient (c) at desired wavelengths (Pope and Fry
1997).

Moreover, three hyperspectral radiometers (TriOS
RAMSES radiometers) were employed for underwater
radiometric profiling measurements. These radiometric
quantities (upwelling radiance, downwelling irradiance,
and upwelling irradiance) recorded in the system were
then exported to deck PC and processed. The immersion
factors (wavelength-dependent correction factors) were
also applied to radiance data owing to the fact that the
radiance sensor was immersed (Ohde and Siegel 2003).

Apart from these underwater radiometric quantities,
above-water radiometers were also employed to mea-
sure sky radiance, total water-leaving radiance, and
downwelling irradiance. The total water-leaving radi-
ance was then determined based on the protocol by
Mobley (1999). The underwater radiometric quantities
and IOPs were measured at various discrete depths and
wavelengths. These parameters were interpolated to
common depth and wavelength so as to ensure the
consistency of the input data for the model. The Zsd
measurement was carried out using a standard Secchi
disk, with a circular diameter of 20 cm. The disk had
black and white quadrants painted on its surface which
was lowered vertically using a rope tied to the center of
the disk. The vertical rope was graduated at every 0.2 m
to meticulously record the depth at which the disk
disappeared and re-appeared. The Zsd measurements
were carried out away from the ship or boat to avoid
any shadowing effect following the standard protocols
(Smith 2001).

In the present study, two data sets, namely, NASA
bio-Optical Marine Algorithm Data set (NOMAD) and
Indian (measured off Point Calimere) data set, were used
to develop the algorithm. The NOMAD data were
downloaded from the IOCCG website (http://www.
ioccg.org/data_ioccg.html) which consist of in situ
data collected between the periods 1996 and 2006. The
NOMAD data were extracted from the SEABASS
database that included the vertical diffuse attenuation
coefficient Kd(490), Rrs(490), Rrs(670), and chlorophyll
concentration. The selected NOMAD data provided the
desired reliability to develop the intermediate model for
deriving Kd. However, it has been recognized that the
NOMAD data do not contain turbidity and Bc^;
therefore, these variables were obtained solely from
the Indian data set. The Indian data set consists of in
situ data collected from clear and turbid coastal waters
off Point Calimere (sampling stations marked inside
rectangle) and Chennai (sampling stations marked
inside oval) within the region of Bay of Bengal during
the months of May 2012, August 2012, August 2013,
and January 2014 (Fig. 1a). The Point Calimere region
is located in the southeast part of India bounded by the
latitude and longitude of 10.2878° N and 79.8651° E.
The study region, located near Vadaranniyam coastal
wetlands, is largely influenced by sediment runoff
discharged by seasonal river flows (e.g., Cauvery
river), while the human interferences like aquaculture
and salt panning activities in the western part of Point
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Calimere have resulted in sediment accretion. The
geomorphological features of the study region
essentially include numerous mudflats and creeks
(Mullipallam and Serattalaikkadu creeks) whose areal
extent has undergone a marginal decrease. The low-
energy streams like Marakkakoraiyar, Valavnar,
Koraiyar, and Kilaittangi together with tides, currents,
and waves have resulted in dominance of suspended
sediments in the shallow region of Palk Bay and Point
Calimere (Selvaraj et al. 2005). It can be implied that the
study region experiences dynamic changes owing to the
fluctuations in river discharge and sediment loading
caused due to certain coastal processes and the increased
human activities.

A total of 24 sampling stations were established
on five different transects, with stations located ad-
jacently on each transect, covering the relatively
clear to highly turbid coastal waters (Fig. 1b). The
in situ data collected on-board for the month of
August 2013 and January 2014 was used to develop
the model, while the validation was carried out with
the in situ data collected during the month of
May 2012 and August 2012. The cruise program
prevailed for about 6 days (or a week) during each
of these months. Therefore, it must be noted that in
situ data were collected from 24 sampling stations in
duration of a week with approximately four sam-
pling stations visited each day of the cruise program.
For validating the proposed algorithm, the in situ
samples were matched to a satellite within a 2-h
window coincident with satellite overpass in order

to ensure a minimum discrepancy. The underwater
optical instruments were essentially the depth pro-
filers which recorded the in situ data all along the
depth of the water column at each sampling stations.
The intermediate parametrizations and independent
validation were carried out based on the principles
of the remote sensing technique following a careful
selection of in situ data. Kd was calculated from
spectral downwelling irradiance (Ed(λ,z)) measured
just below the water surface and at a depth of 1 m,
which may be regarded as Kd at a depth of 1 m
(further details in Simon and Shanmugam 2013;
Simon and Shanmugam 2016). Moreover, the aver-
age value of turbidity and chlorophyll concentration
(depth averaged within 1 m of the water column)
was used to develop the bio-optical relationships. A
similar approach was adopted for independent data
sets which demonstrated a robust independent vali-
dation performed between the modeled and
satellite-derived Zsd values. The algorithm for tur-
bidity was developed using the Indian data (N = 59)
collected during the month of August 2013 and
January 2014. The data set consisted of in situ Rrs

and turbidity (expressed in terms of NTU). The c at
531 nm is parameterized in terms of turbidity (NTU)
using the Indian data set (N = 416). The data
reflected a large range of variation in optical prop-
erties of waters commonly found within coastal en-
vironments. Using the Indian data set, a total of 59
data were chosen to develop a model for turbidity
and 416 data were used to model c. An independent

Chennai 
Stations

(a) (b)

Fig. 1 The geographical map illustrating the sampling stations for
the study region. a Sampling stations located at Point Calimere
(marked inside rectangle) and Chennai (marked inside oval). b

Clear and turbid coastal water sampling stations established on
each of the five transects off Point Calimere
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data set of 32 samples was used to validate the
modeled turbidity values. Similarly, an independent
data set of 69 samples was used to validate the
modeled c. These independent data sets were chosen
from the Indian in situ database. A model estimating
Kd(531) was developed based on the NOMAD
(N = 827) and Indian (N = 72) data. An independent
validation of the modeled Kd(531) was performed
using the Indian data set (N = 61).

The turbidity data were collected by an environ-
mental characterization optics (ECO) turbidity and
fluorescence chlorophyll sensors (FLNTU) sensor.
An ECO FLNTU sensor is a dedicated instrument
des igned to measure in s i tu turbidi ty and
chlorophyll-a simultaneously which was procured
from WET Labs (USA). It records turbidity in neph-
elometric turbidity units (NTUs) based on scattering
measurements at 700 nm and chlorophyll concentra-
tion in terms of micrograms per liter by measuring
the fluorescence at the excitation/emission wave-
lengths of 470/695 nm (WETLabs 2010).

In both clear and turbid waters, turbidity varied from
0.05 to 20 NTU and chlorophyll concentration varied
from 0.04 to 18.5 μg l−1. The total suspended sediment
(TSS in mg l−1) was calculated from measured turbidity
based on a power relationship developed by Ellison
et al. (2010).

Satellite data Several MODIS-Aqua data (level 1A,
local area coverage, pixel resolution of about
1.1 × 1.1 km at nadir) covering the study area were
obtained from NASA’s Goddard Space Flight Space
Center (htttp://ooceancolor.gsfc.nasa.gov/). These
MODIS images were selected because they were
cloud free and concurrently matched with the in
situ data. The MODIS-Aqua images were processed
using SeaDAS 7.2 software to provide calibrated
and scaled level 1B products yielding the total radi-
ances (Lt) at the top of the atmosphere. The level 1B
data were atmospherically corrected using the stan-
dard Rayleigh correction scheme (embedded in
SeaDAS 7.2) and a new aerosol correction scheme
(Singh and Shanmugam 2014). Subsequently, the
normalized water leaving radiance ^nLw^ and Rrs

were obtained as key inputs for deriving the inter-
mediate (e.g., turbidity from this study and
chlorophyll from Shanmugam 2011) and end prod-
ucts. In the present study, the ABI_Chl-a algorithm
(Shanmugam 2011) was used to retrieve the

chlorophyll-a (Chl-a) concentration from satellite
data. The algorithm uses the ratios of nLw at three
bands (i.e., 443, 490, and 555 nm) of the visible
spectrum, in conjunction with algal bloom index
(ABI) formula to accurately estimate Chl-a in coast-
al and oceanic waters. This method of retrieving the
Chl-a from satellite data is composed of two integral
steps where the preliminary step involves the calcu-
lation of ABI which is given by

X ¼ ABI ¼ 10
nLw 490ð Þ
nLw 555ð Þ

� �
− nLw 490ð Þ

αð Þ
h i.

nLw 490ð Þ
nLw 555ð Þ

� �
þ nLw 443ð Þ

αð Þ
h i

ð8Þ
where the value of Bα^ is assumed to be unity.

Thereafter, a variable factor, X ´, is calculated to reduce
the uncertainties in the retrieved Chl-a given by

X
0 ¼ nLw 443ð Þ � nLw 490ð Þ=nLw 555ð Þð Þ2

λ490−λ443ð Þ

 !
ð9Þ

The second step requires initial estimation of
chlorophyll-a concentration εChl−a which is expressed
as a power law function of the multiplication factor B .^
is obtained simply as the product of ABI and the vari-
able factor X ´ given by

ℵ ¼ X � X
0 ð10Þ

And the correlation between εChl−a and is expressed
as

εChl−a ¼ 0:1403� ℵð Þ −0:572ð Þ ð11Þ
Finally, the capability of εChl−a to estimate Chl-a over

a wide variety of water types is improved by fine tuning
it, which yields the final expression for Chl-a as

ABI Chl−a ¼ 125
ε1:056chl‐a

126:69þ ε1:056chl‐a

� �0:96 ð12Þ

For validation, a number of matchup pairs from in
situ and MODIS-Aqua data were collected for the
months of January 2014 and August 2013.

Performance assessment

The performance of the present algorithm was assessed
based on some standard statistical parameters calculated
between the satellite-derived Zsd values and measured
(in situ) Zsd values. These statistical measures included
root mean square error (RMSE), mean relative error
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(MRE), bias, slope, intercept, and correlation coefficient
(R2). The RMSE andMRE values were calculated by the
respective matrices given by Eqs. (13) and (14), respec-
tively.

RMSE ¼ ∑n
i¼1 logZsatellite

sd −logZ in situ
sd

� �
N−2

2
" #1=2

ð13Þ

MRE ¼ ∑
n

i¼1

logZsatellite
sd −logZ in situ

sd

logZ in situ
sd

� �
� 100 ð14Þ

These statistical measures were useful to assess the
accuracy of the derived products from satellite data.

Results

Secchi depth algorithm The undewater vertical visibil-
ity parameter, defined in terms of Zsd, essentially de-
pends on two major factors, namely, the coupling coef-
ficient and the length attenuation coefficient, and hence
obeys the principle of the contrast transmittance theory
(Tyler 1968; Preisendorfer 1986; Davies-Colley 1988;
Doron et al. 2007; Hou et al. 2007). The well-
recognized relationship to estimate the water transpar-
ency in terms of Zsd is given by

Zsd∝
1

cþ Kd
or Zsd ¼ Γ

cþ Kd
ð15Þ

where (1 / (c + Kd)) = length attenuation coefficient.
Γ = Coupling coefficient
The inverse of the additive sum of c and Kd as

defined by the length attenuation coefficient is
expressed as (1 / (c + Kd)) in a unit of m. The c is a
measure of the amount of light intensity lost as it pene-
trates through the water column, which is expressed as
the sum of the absorption coefficient (a) and scattering
coefficient (b)

c λð Þ ¼ a λð Þ þ b λð Þ ð16Þ
Kd is expressed as the logarithmic rate at which

extinction of light intensity occurs as it penetrates
through the water column and is given by

Kd;λ z2−z1ð Þ ¼ −1
z2−z1

ln
Ed;λ z2ð Þ
Ed;λ z1ð Þ

� �
ð17Þ

where Ed,λ(z1) = spectral downwelling irradiance at
depth z1

Ed,λ(z2) = spectral downwelling irradiance at depth
z2.

Equation (15) summarizes the contrast transmittance
theory which states that Zsd or the depth at which an
object disappears, when lowered into the water column
of a particular depth, is directly proportional to the
length attenuation coefficient and is governed by an
undetermined coupling coefficient. The value of the
coupling coefficient varies from 5.9 to 10.1, while it is
considerably higher in medium characterized by strong
scattering (Hou et al. 2007). This imposes a greater
challenge and constrains in predicting accurately the
value of the coupling coefficient and hence the variation
in Zsd for optically complex turbid waters.

In order to overcome this problem, several studies
reported Zsd algorithms that solely relied on the Rrs band
ratios or the inverse function of Kd or c or the sum of
these two parameters. Such algorithms break down in
turbid coastal waters due to twofold problems: they do
not follow the equation of the contrast transmittance
theory and they do not address how the varying value
of the coupling coefficient can be predicted for various
water types to estimate Zsd values. This suggests that the
Zsd products derived from these algorithms may be
biased with errors and consequently their applicability
is questionable for improved water quality monitoring
programs.

In the present work, these two issues are addressed
based on our previous work (Kulshreshtha and
Shanmugam 2015) and a new approach to predict the
varying value of the coupling coefficient, and hence, the
variation in Zsd is proposed for satellite applications. The
accurate estimates of Zsd can now be achieved through

Zsd ¼ 4:6þ 0:7585� Turbidityð Þ
c 531ð Þ þ Kd 531ð Þ ð18Þ

using the three key parameters such as turbidity, c,
and Kd. c and Kd are estimated at 531 nm owing to the
fact that the penetration of the light occurs maximum in
green wavelengths of the visible spectrum for both
turbid and relatively clear waters. Moreover, most of
the underwater imaging systems either active or passive
operate in this spectral region. The underwater imaging
systems include the unmanned remotely controlled or
robotic underwater systems that use an imaging tech-
nique to map the type of submerged aquatic vegetation
(SAV), to explore the sunken object or bottom debris,
and to characterize the sea bed (Siegel and Dickey 1988;
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Levin et al. 2013). The underwater visibility equation
(Eq. (18)) strictly follows the contrast transmittance
theory and, therefore, is considered an integral step to
develop the satellite-based Zsd algorithm. The feasibility
of Eq. (18) to accurately estimate Zsd is examined based
on the in situ optical properties, and its results are
presented in a later section. Figure 2 shows the schemat-
ic of this approach to estimate Zsd from satellite data.
The implementation of the proposed algorithm requires
a step-wise derivation of input parameters, namely, tur-
bidity, c(531), and Kd(531). Considering this sequence,
step 1 employs the Rrs band ratio at 443, 490, 555, and
670 nm to derive the turbidity relationship. Models for
c(531) and Kd(531) are then derived from the turbidity
and Chl-a parameters. The Kd(531) relationship is based
on the power law function relating Kd(490) to Chl-a.
The final step uses these parameters in the proposed
formula to estimate Zsd in inland and marine waters.

The turbidity, the important parameter governing the
variation in the coupling coefficient, was derived as a
function of Rrs, invoking the conventional band ratio
technique (Chauhan et al. 2005; Chen et al. 2007a;
Ouillon et al. 2008; Akbar et al. 2014; Tiwari and
Shanmugam 2014; Nasiha and Shanmugam 2015). To
achieve the desired model of turbidity, various combi-
nations of the band ratio were systematically tested to
derive accurate estimates of turbidity in both coastal and
offshore waters. This study led to a model that shows a
positive correlation between the light reflected in the
bands (namely, 443, 490, 555, and 670 nm) and the
optical property of the water column. It was found that
the reflectance band ratio involving four bands in the
blue-green-red region (Rrs(443) + Rrs(490))/(Rrs(555) +
Rrs(670)) is tightly correlated to turbidity of various
water types (R2 = 0.89; Fig. 3a).

Turbidity ¼ 7:6028� Rrs 443ð Þ þ Rrs 490ð Þ
Rrs 555ð Þ þ Rrs 670ð Þ
� �−4:978

ð19Þ

The validation showed that the four-band algorithm
yielded a considerably low error (RMSE = 0.17) and
closely predicted the measured turbidity with R2 = 0.91
(N = 32; Fig. 3b).

The length attenuation coefficient, another important
optical property used in Eq. (18), is estimated by a two-
step algorithm. c is derived as a linear function of
turbidity, followed by the derivation of Kd. It was found
that turbidity positively correlates to c following a linear

relationship with a slope of 1.0049 and R2 ~ 0.89
(Eq. (20); Fig. 4a).

c 531ð Þ ¼ 1:0049� Turbidity ð20Þ

The validation result revealed that this empirical
formula gives estimates of c(531) closely agreeing with
the measured data (R2 = 0.97; RMSE = 0.16; N = 69)
(Fig. 4b). Kd(531) is estimated through an intermediate
parameter (i.e., Kd(490)), which can be easily deter-
mined using the band ratio of Rrs (Rrs(670)/Rrs(490))
(Eq. (21) and Fig. 5a) (Tiwari and Shanmugam 2014).
The Rrs(670)/Rrs(490) is linearly correlated to Kd(490)
(R2 = 0.92).

Kd 490ð Þ ¼ 1:2461� Rrs 670ð Þ
Rrs 490ð Þrs
� �

ð21Þ

Equation (21) when compared with that of Tiwari
and Shanmugam (2014) showed that these two equa-
tions differ significantly in terms of slope and intercept
and this difference could arise from different data sets
used to derive the Kd(490) relationships. The present
study used a combined data set of NOMAD and Indian
data, whereas Tiwari and Shanmugam (2014) relied on
the IOCCG data set for their study. Kd(490) provides the
crucial bio-optical link between chlorophyll concentra-
tion and Kd(531). The selection of Kd(490) to derive
Kd(531) is based on the physics that the variation in the
spectral slope of Kd from the blue-to-green region of the
visible spectrum is mainly attributed to the variation in
chlorophyll concentration. At shorter wavelengths in the
blue-green band, the slope of Kd(490) to Kd(531) in-
creases with the increase in chlorophyll concentration.
However, such spectral behavior ofKd is not observed at
longer wavelengths owing to the very high absorption
by water (Berwald et al. 1998; Tiwari and Shanmugam
2014). Thus, the inverse slope-based power function
best demonstrates the bio-optical relationship between
chlorophyll concentration and the ratio of Kd at 531 nm
to Kd at 490 nm (Eqs. (22) and (23)) (Fig. 5b).

Kd 531ð Þ ¼ m� Kd 490ð Þ ð22Þ

where m ¼ 1:0776� Chl−0:176 ð23Þ
where Bm^ is the slope that governs the magnitude of
Kd(490), which depends on the chlorophyll concentra-
tion and varies in different waters. Thus, the
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concentration of chlorophyll is important in predicting
the variation in spectral magnitude of Kd in the blue-
green domain in turbid coastal and inland waters. The
validation exercise (using in situ data N = 61) indicated
that the modeled Kd(531) had significantly low errors
(RMSE = 0.06) and high correlation coefficient
(R2 = 0.94) (Fig. 5c). Moreover, a scatterplot for
Kd(531) was also plotted using the NOMAD data set
which showed the one-to-one correspondence between
modeled and in situ Kd(531) (Fig. 5d). A careful inves-
tigation carried out to obtain the optical relationship
between the measured chlorophyll concentration and
the TSS revealed a highly unsystematic pattern of the
data points for all the sampling stations. Therefore, it can
be implied that no correlation existed between these two
parameters in coastal waters under investigation.

Application to in situ and remote sensing data The
present algorithm was applied to MODIS-Aqua images
to estimate the Zsd parameter in coastal waters off Point
Calimere and Chennai along the Tamil Nadu coast. The
MODIS image covered the scene extending from Chen-
nai to the southernmost tip of India (Kanyakumari). The
Zsd transparency was mapped typically ranging from 0
to a maximum of 25 mwhich revealed that the predicted
Zsd increases from shallow turbid waters to deep clear
waters in the coastal regions of the Bay of Bengal
(Fig. 6a–f).

The performance of the present algorithm was
further examined by comparing the Zsd contour plots
(measured, modeled, and satellite-derived Zsd) for the
month of January 2014 and August 2013. To obtain
the contour maps, Zsd at known latitudes and
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longitudes from the sampling points was used and the
inverse distance weightage (IDW) technique was
adopted to generate the contour plots. This technique
uses the inverse to power the gridding method to
visualize the pattern of Zsd with better interpretation.
The generated grid of contour plots indicated that the
modeled and MODIS-Aqua-derived Zsd closely
matched with the measured (in situ) contour maps
(Fig. 7). The contour plots for measured Zsd were
generated based on the spatial variation of observed
in situ Zsd data points. With a view to capture and
examine the spatial variation more effectively, the

data points which well distribute over the entire grid
area (colored region) were selected to obtain the
contour patterns. Such even distribution of data
points minimized the discrepancy in the contour pat-
tern which might have been caused due to uneven
spread of data points in the grid. The corresponding
contour plots generated for modeled and satellite-
derived Zsd showed a close resemblance with contour
patterns of the measured Zsd which further confirms
the even distribution of the data points over the entire
grid locations. The data points were uniformly spread
across the contour maps generated.
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Comparative study Several algorithms have been ap-
plied to remote sensing data for estimating the water
transparency in coastal and inland waters (Giardino
et al. 2001; Zhang et al. 2003; Suresh et al. 2006;
Stock 2015; Chen et al. 2007b). However, such algo-
rithms do not reveal the method to predict the value of
the coupling coefficient, thereby ignoring the contrast
transmittance theory despite its importance in estimating
the underwater visibility (Tyler 1968; Preisendorfer
1986; Davies-Colley 1988; Doron et al. 2007; Hou
et al. 2007). One such existing standard algorithm
(Suresh et al. 2006) has been included in the present
study with a view to demonstrate its performance in
terms of statistical measures. The algorithm comprises
an empirical relationship which was derived using the
radiometric data for a region of the Arabian Sea and is
simply expressed by

Zsd ¼ 2:27212þ 7:239
Rrs 490ð Þ
Rrs 555ð Þ

� �
ð24Þ

The modeled and satellite-derived Zsd values were
evaluated for the Suresh et al. (2006) algorithm and
the present algorithm. These Zsd values estimated for

the independent in situ data and satellite data and
compared with those of the observations. For the
present algorithm, the Zsd values estimated for the
independent in situ data showed significantly low er-
rors and high slope and R2 values (MRE = −0.020,
RMSE = 0.075, slope = 0.94, intercept = 0.03, bi-
a s = 0 . 0 0 9 , R 2 = 0 . 9 5 , N = 38 ) . T h e
MODIS-Aqua-derived Zsd yielded MRE = −0.016,
RMSE = 0.079, bias = 0.06, slope = 0.93, inter-
cept = 0.05, and R2 = 0.95 for N = 23 (shown in
Table 1 (a)). For the algorithm by Suresh et al. (2006),
Zsd yielded an RMSE = 0.6263, MRE = 1.22, bi-
as = −0.536, slope = 6.37, intercept = −5.77, and
R2 = 0.80 (N = 38). For the satellite matchup data, it
yielded RMSE = 0.517, MRE = 0.7, bias = −0.413,
slope = 5.61, intercept = −5.02, and R2 = 0.744
(N = 23) (Table 1 (b)). Furthermore, the independent
validation was carried out for the modeled and the
satellite-derived Zsd values which included a total of
38 and 23 data points, respectively. The corresponding
one - t o - on e s c a t t e r p l o t s o f mode l e d a nd
satellite-derived Zsd versus measured Zsd demonstrate
the robustness of the present algorithm in predicting
Zsd in both turbid and clear waters (Fig. 8a, b).

25 Jan 2014 

MODIS-Aqua 

26 Jan 2014 

MODIS-Aqua 

27 Jan 2014 

MODIS-Aqua 

26 Aug 2013 

MODIS-Aqua 

27 Aug 2013 

MODIS-Aqua 

29 Aug 2013 

MODIS-Aqua 

INDIA 

SRI 

LANKA 

(a)

(d) (e) (f)

(b) (c)

Fig. 6 Thewater transparency map depicting the remotely derived Zsd using the present algorithm. a–fMODIS-Aqua imagery covering the
coastal region of Point Calimere and deep waters of Bay of Bengal
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It was found that the model proposed by Suresh et al.
(2006) provides higher RMSE and MRE values in com-
plex coastal waters, when compared with the present

algorithm (Fig. 8a, b). The 38 and 23 matchups for the
modeled and the satellite-derived Zsd values were used
for both the present study and that of Suresh et al.
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Table 1 Error statistics to evaluate the performance of modeled and satellite-derived Zsd

(a) Present study

RMSE MRE Bias Slope Intercept R2 N

Zsd (in situ validation) 0.075 −0.020 0.009 0.94 0.03 0.95 38

Zsd (satellite matchup validation) 0.079 −0.016 0.006 0.93 0.05 0.95 23

(b) Suresh et al. (2006)

Zsd (in situ validation) 0.626 1.22 −0.536 6.37 −5.77 0.80 38

Zsd (satellite matchup validation) 0.517 0.70 −0.413 5.61 −5.02 0.74 23
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(2006), and the corresponding statistical values are pro-
vided in Table 1. The improved statistical values for the
present algorithm further demonstrate that the satellite-
derived Zsd can be accurately estimated through the
proper addressal of the coupling coefficient without
deviating from the contrast transmittance theory. It can
be further implied that the principle of ocean color
remote sensing when coupled with the contrast trans-
mittance theory plays a crucial role and can overcome
the major limitation of existing algorithms in complex
coastal waters.

Discussion

The present study reveals that the integral components
of the algorithm developed to derive the satellite-based
Zsd can be obtained through the careful selection of band
ratios of Rrs in the visible spectrum. Besides, the band
ratio of Rrs contains crucial information related to opti-
cal properties of the water column. These optical prop-
erties are of prime importance in predicting the behavior
of the underwater light field and, hence, the variation in
water transparency parameter under various illumina-
tion conditions.

The coupling coefficient has been determined by
means of turbidity using the band ratio technique. The
band ratio is employed to determine Zsd based on the
fact that the reflectance ratio is less susceptible to ambi-
guities in the atmospheric correction scheme than the
absolute values of reflectance. In the present study, a
four-band algorithm has been developed that employs
Rrs at 443, 490, 555, and 670 nm yielding the best fit

through regression analysis on the data set for a wide
range of water types within the study region. c essen-
tially follows a linear relationship with turbidity, and the
slope is optimized to achieve increased accuracy for the
satellite-derived Zsd for both turbid and clear waters. The
proposed four-band algorithm suggests that the light
reflected in the visible wavelengths highly correlates to
proxy of TSS concentration expressed in terms of tur-
bidity. The band ratio also takes into account the influ-
ence of two vital absorption bands of chlorophyll which
are centered at 443 and 670 nm. Thus, the turbidity
algorithm performs well in turbid coastal and turbid
productive inland waters as well as relatively clear off-
shore waters, where standard red and near-infrared
(NIR) band ratio-based algorithms tend to fail owing
to their adaptation only in turbid waters.

The variation of slope in the blue-green region of the
Kd spectra, owing to the contribution of chlorophyll
concentration, is well understood from the mathematical
power function. The magnitude of the chlorophyll con-
centration governs the variation in the spectral slope of
Kd(531) to Kd(490). Thus, the spectral band ratio of Kd

has been chosen allowing that it captures the physical
effect of chlorophyll and positively correlates to
Kd(531). Furthermore, it becomes imperative to incor-
porate an effective algorithm to estimate the surface
chlorophyll concentration if one has to retrieve Zsd from
satellite data in turbid coastal waters. The two-step
algorithm applied to determine Kd(531) has potentially
enhanced our understanding in the aspect that the mag-
nitude of chlorophyll concentration clearly influences
the spectral behavior (relative change in slope) of Kd at
the shorter wavelength region, which cannot be
overlooked. Furthermore, it can also be implied with
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confidence that the correlation between the Kd and Rrs

band ratio can be of paramount importance in predicting
the bio-optical state of various oceanic waters, provided
an effective and appropriate atmospheric correction
scheme has been accounted for such applications. In
the present study, the ABI_Chl-a algorithm was used
based on the fact that retrieved Chl-a gave a similar
trend of correlation with the in situ data. This Chl-a
parameter is closely correlated to Kd(531) based on a
power-law relationship as demonstrated by Eq. (22).
Thus, the derived Chl-a has an important implication
in estimating Zsd in inland and marine waters.

The present study demonstrates the bio-optical cor-
relation, between the chlorophyll concentration and the
slope of Kd(490) to Kd(531), which can be used to
predict Kd,PAR for remote sensing of the primary pro-
ductivity. The value of Kd when calculated in the pho-
tosynthetically active radiation (PAR) over the visible
waveband region at any depth (z) is known as Kd,PAR

(m−1). Kd,PAR (m−1) is calculated by computing the
integral of the Ed(λ,z) spectrum in the entire visible
domain ranging from 400 to 700 nm (Tyler 1966;
Saulquin et al. 2013). However, Kd,PAR can also be
retrieved using Kd(531) as the key input optical param-
eter based on the fact that the Kd,PAR bears a positive
correlation with Kd in the green portion of the visible
spectrum, where the attenuation is minimum, as report-
ed in the study by Gallegos (2001). The derived Kd,PAR

can be further investigated to predict the pattern of
primary productivity (either regionally or globally) or
trophic status over the spatio-temporal scales for lakes
and inland waters (Platt and Satyendranath 1988;
Sakshaug et al. 1997; Mélin and Hoepffner 2011). The
product of Zsd and Kd,PAR can be used as a crucial
parameter to determine the index of water quality which
is mathematically expressed as Kd,PAR × Zsd . This
mathematical identity has significant implications in
classifying the optically different classes of lakes and
identifying the conditions of low level of transparency
in turbid lakes and coastal waters (Reinart et al. 2003;
Ma et al. 2016).

The TSI is a highly desired parameter to identify the
trophic status of lakes and coastal waters and provide a
standard scale for classification of marine ecosystems
characterized with low eutrophic (ultra-oligotrophic) or
extremely high eutrophic (hyper-eutrophic) conditions.
Such predictive scaling tool can be developed based on
the inter-relationships of Zsd with algal biomass and
nutrient (such as total phosphorus) concentration or

loading, which are identified as major factors of eutro-
phication in coastal and inland waters (Carlson 1977;
Baban 1996; Cheng and Lei 2001).

The present study was carried out for two main
seasons, namely, southwest monsoon (June to Septem-
ber) and northeast monsoon (October to January), which
chiefly dominate the oceanography of Bay of Bengal, to
investigate the seasonal variability in Zsd and thereby
understand the role of coastal dynamic processes in
water transparency. The Zsd map for MODIS imagery
in the month of January 2014 reveals lower transparency
when compared to August 2013. The difference in Zsd
observed may be attributed to the tropical storms that
occur frequently during the northeast monsoon period in
the Bay of Bengal. The tropical storms and cyclones
induce a surface drift along the east coast, thereby
resulting in greater longshore sediment transport in the
southerly direction. The extreme wave conditions ac-
crued during the episodic cyclonic events tend to re-
move the sediment from coastline whereby increasing
its concentration in the most vulnerable areas which are
highly sensitive to siltation. In such conditions, reduced
light penetration in the water column can be expected,
which is well demonstrated in the MODIS imagery for
the month of January (shown in Fig. 6a–f). Furthermore,
it can be clearly seen that the area northeast of the Gulf
of Mannar (i.e., Palk Bay seen as red patch) takes most
of the sediment load and is under heavy siltation
throughout the year.

It can be inferred that a large variation in the seasonal
currents and sediment runoff greatly affects the water
transparency along the east coast of India between
pre-monsoon and post-monsoon periods. The high sed-
imentation near the coast, as observed in the MODIS
images, occurs due to the entrapment of fluvial dis-
charge and re-suspended sediments into the coastal wa-
ters, which reduces offshore sediment influx in deeper
regions of the Bay of Bengal. Thus, water transparency
is higher in the open seas than in the coastal zone for
both the seasons (Sanil Kumar et al. 2006; Deo and
Ganer 2014).

The pattern of Zsd obtained from MODIS-Aqua data
further confirms the wider applicability of the present
algorithm in estimating the Zsd on different
spatio-temporal scales. The spatial contours have been
included to provide the best data visualization of the
measured, modeled, and satellite-based Zsd. The
one-to-one correspondence achieved between
measured, modeled, and satellite-derived Zsd well
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establishes the significant role of the contrast transmit-
tance theory and coupling coefficient in closely
predicting the Zsd for complex water types.

Conclusion

A new methodology has been presented to estimate Zsd
from satellite data in turbid and clear waters. This ap-
proach adopts the key concept of coupling the remote
sensing technique within the framework of the contrast
transmittance theory. The present Zsd algorithm closely
determined the coupling coefficient and addressed its
variable nature in various water types (clear and turbid
coastal waters), as it follows the contrast transmittance
theory unlike the existing algorithms. The proposed
algorithm is a simple and effective tool to predict Zsd
based on the coupling coefficient and integral compo-
nents of the contrast transmittance theory. The coupling
coefficient is expressed as the function of turbidity
which can be easily derived from the Rrs data. Since
turbidity, c, and Kd are the input parameters to estimate
Zsd, the accuracy of the functional relationships for
predicting these intermediate parameters was ensured
by the validation analyses. The error associated with
Zsd estimates in estuarine and coastal regions showed
an MRE and RMSE within ±25 and 10%, respectively,
for the modeled and the satellite-derived Zsd.

The present algorithm also incorporates an accurate
case 2 water bio-optical algorithm (ABI Chl-a algo-
rithm) to obtain the chlorophyll concentration in turbid
coastal waters to avoid such deviations. Furthermore, in
spite of the large variation in optical properties of coastal
waters of Point Calimere and Chennai in the Bay of
Bengal, an accurate estimation of turbidity and Zsd was
achieved.

The present algorithm also outperformed the Suresh
et al. (2006) algorithm (which is simply a function of the
Rrs ratio without involving the contrast transmittance
theory) in terms of estimating the Zsd with much higher
accuracy. The proposed algorithm was further applied to
several MODIS-Aqua, and subsequently, matchup com-
parisons were performed for validating the derived
products. The results showed that Zsd can be accurately
derived based on the coupled concepts of remote sens-
ing and the contrast transmittance theory, unlike other
standard existing algorithms that rely mainly on the
conventional band ratio techniques involving direct re-
lationships between Rrs and Zsd.

The present model can be useful in understanding the
coastal processes and sediment transport—which are
crucial for coastal management and protection works.
With the primary information about sedimentation pro-
cess, remedial measures can be adopted in adverse cases
such as siltation of harbors, accumulation of sand bars
which might accrue navigational hazards, or degrada-
tion of coastal environment. The exposure of sediment
(concentration and duration) either suspended or bed
loaded largely determines the distribution of SAV and
controls the biological response of fish, marine species,
shellfish, and aquatic plants. The information about the
degree of light penetration would also aid in assessing
the concentration and distribution of CDOM, which
essentially affect the distribution of SAV (Chen et al.
2015). Zsd has been recognized as a proxy of visual
water clarity and forms a major link-pin to assess the
trophic index of inland water bodies (Cialdi and Secchi
1865; Collier et al. 1968; Tyler 1968; Carlson 1977;
Trees et al. 2005; Fleming-Lehtinen and Laamanen
2012). A large data base of water clarity information
based on Secchi disk transparency is vital to water
quality managers as it assists them to design better
strategies for developing recreational resources in the
coastal zone and making tourismmanagement decisions
economically effective (Wetzel and Likens 1979; Effler
1988). The change in the water clarity can be well
correlated (either empirically or semi-empirically) to
variation in phytoplankton abundance. Such predictions
have significant implications in management activities
where control on algal growth is seen as an effective
strategy to monitor water quality (DFAS 2001; Hoyer
et al. 2014). Thus, the estimation of Secchi disk trans-
parency helps limnologists and water quality managers
to design a better strategy for monitoring water quality
and water management activities in coastal and estua-
rine waters (Effler 1988; Chen et al. 2007b). The assess-
ment of water clarity can provide an insight into the
distribution and type of benthic organisms (such as
fishes or corals) and the productivity rate of phytoplank-
ton (micro-organisms) as their ecological behavior and
response very much depend on the degree of light
available in the aquatic environment. Therefore, it can
be implied that the estimation of water transparency on
various spatio-temporal scales aids to understand the
ecological behavior of aquatic organisms (benthic or-
ganisms) and their response to dynamic environment
(Weeks et al. 2012). The Zsd parameter provides the
indirect way to measure the biological productivity of
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an aquatic system. Therefore, Secchi transparency infor-
mation is useful in monitoring water quality from the
perspective of the biological productivity of a water
body. Furthermore, the assessment of water clarity can
be crucial in enhancing our knowledge on phytoplank-
ton abundance, dissolved substance, or associated tro-
phic state caused due to nutrient loading in inland and
coastal water environments. Such information can be
well leveraged to adopt appropriate measures to manage
water clarity activities (DFAS 2001).

The water transparency can be used as a crucial
linking parameter to assess the level of eutrophication
in near-shore and inland waters which largely influences
the ecological functioning of these waters (Tapia
González et al. 2008). The method proposed in the
present study to derive satellite-based Zsd can be adopted
as a crucial preliminary step to retrieve the satellite-
based trophic index of eutrophic water bodies. The
estimation of water transparency over spatial and tem-
poral scales would also be useful in understanding and
evaluating the near- or far-term impacts of coastal land
usage on marine environment (Ucuncuoglu et al. 2006).
Thus, the proposed method will serve as an important
tool in monitoring of the aquatic ecosystem and water
quality conditions within coastal and near-shore
environments.
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