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Abstract This study aims to assess and compare heavy
metal distribution models developed using stepwise mul-
tiple linear regression (MSLR) and neural network-
genetic algorithm model (ANN-GA) based on satellite
imagery. The source identification of heavy metals was
also explored using local Moran index. Soil samples
(n = 300) were collected based on a grid and pH, organic
matter, clay, iron oxide contents cadmium (Cd), lead (Pb)
and zinc (Zn) concentrations were determined for each
sample. Visible/near-infrared reflectance (VNIR) within
the electromagnetic ranges of satellite imagery was ap-
plied to estimate heavy metal concentrations in the soil
using MSLR and ANN-GA models. The models were
evaluated and ANN-GA model demonstrated higher ac-
curacy, and the autocorrelation results showed higher
significant clusters of heavy metals around the industrial
zone. The higher concentration of Cd, Pb and Zn was
noted under industrial lands and irrigation farming in
comparison to barren and dryland farming. Accumulation
of industrial wastes in roads and streams was identified as

main sources of pollution, and the concentration of soil
heavy metals was reduced by increasing the distance from
these sources. In comparison to MLSR, ANN-GA pro-
vided a more accurate indirect assessment of heavy metal
concentrations in highly polluted soils. The clustering
analysis provided reliable information about the spatial
distribution of soil heavy metals and their sources.

Keywords Genetic algorithm . Hybridmodel . Local
Moran . Neural network

Introduction

Environmental contaminations of heavy metals due to
point and non-point sources have been an important issue
regarding human and animal’s health (Kabata-Pendias
2010). Several factors such as agricultural activities (Liu
et al. 2013), land use type (Liu et al. 2006a) and traffic
(Yan et al. 2013a,b Werkenthin et al. 2014) can affect the
spatial and temporal patterns of soil heavy metals. Heavy
metals are metals with an atomic mass of over
55.8 g mol−1 or a density of over 5 g cm−3 (Mance and
Worsfold 1988). The high resistance of heavy metals
against biodegradation alongside their lowmobility in soil
and their tendency to be absorbed by plants are among the
properties which have caused these metals to be consid-
ered as the most hazardous soil contaminant (Fu and
Wang 2011). Arsenic, mercury, zinc, lead, cadmium,
chromium, copper, manganese, nickel and vanadium are
among the most important harmful rare elements found in
the biosphere (Kabata-Pendias 2010). Sphalerite is the
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main ore of zinc which is found in three forms including
sphalerite, wurtzite and matraite (Cook et al. 2009). The
level of zinc present in the lithosphere was estimated to be
80 mg kg−1 and the natural value of zinc in soils was
stated as 10–300 mg kg−1 (Kabata-Pendias 2010). The
concentration of lead in soils is between 1 and
200 mg kg−1, on average is 15 mg kg−1 and its critical
limit is 50 mg kg−1 (Zimdahl and Skogerboe 1977).
Cadmium and lead are two metals resulting from com-
bustion activities and transportation and are linked to zinc
resulting from abrasion of tires. Cadmium and lead are
considered to be the most mobile and least mobile ele-
ments in soil with typical values of 0.06–1.1 and 2–
300 mg kg−1, respectively (Kabata-Pendias 2010). The
maximum allowable limit for cadmium in agricultural
products has been reported to be 0.1 mg kg−1 and in
non-agricultural crop, this value should not exceed the
allowable limit (Asami 1984).

At high concentrations, heavy metals are highly dy-
namic (Guala et al. 2010) and can easily emerge on plant
components (Meindl et al. 2014) and animal products
(Wang et al. 2013; Shahbazi et al. 2016) via soil contam-
ination. Consequently, there is need to monitor and eval-
uate the amount and distribution of soil heavy metals
(Choe et al. 2008). Developing a time and cost-effective
method that can efficiently assess the concentration and
distribution of heavy metals is of particular interest to land
managers and scientists (Askari et al. 2015).

Remote sensing, VNIR spectroscopy have been used
as rapid and practical approaches for determining the
distribution of heavymetals (Hong-Yan et al. 2009).Many
researches have confirmed that high concentrations of
heavy metals represent electromagnetic spectrum features
within theVNIR region (Shi et al. 2014) and these spectral
characteristics can be employed to estimate heavy metal
concentrations (Choe et al. 2008). Fe oxide, clay and
organic matter contents of the soil affect spectral intensity
(Dube et al. 2001; Shi et al. 2014; Wang et al. 2014),
which can have an impact on the predictability of soil
properties. Asmaryan et al. (2014) suggested the utiliza-
tion of VNIR ranges (400–2500 nm) of electromagnetic
spectrum for the detection of Pb, Cr, V, Ti, Cu, Zn andMn
in the soil. They demonstrated the positive relationships
between the digital values of a satellite image within 400–
510 nm and Pb, Zn and Cr between the ranges of 580–
625, 630–690, 770–895 nm and other heavy metals. The
linear relationships provided for Zn, Cr and Pb
demonstrated an R2 of 0.95, 0.85 and 0.83, respectively.
Xia et al. (2006) found similar results and reported that Cd

concentration prediction was related to the electromagnet-
ic features of Fe oxides and clay minerals within the range
of 450–720 nm. Gannouni et al. (2012) reported that the
spectral features of Fe-related and clay minerals were
indirectly associated with the geochemical analysis of
heavy metals. They suggested that the predictions of
Mn, Pb and Zn concentrations using PLSR provide the
best results within the range of 400–2500 nm.

Linking heavy metal contents to spectral absorptions
usingMSLR and other linear regressions has been utilized
by several researchers, leading to the prediction of models
with high accuracy (Choe et al. 2008; Moros et al. 2009;
Gill and Tuteja 2011; Chen et al. 2012; Wang et al. 2014;
Song et al. 2015). Kemper and Sommer (2002) applied
stepwise multiple linear regression (MSLR) for predicting
As, Cd, Cu, Fe, Hg, Pb, Sb and Zn distribution and
obtained the accurate models for most of the elements.

Artificial neural network (ANN) models are used for
the monitoring of heavy metals (Boszke and Astel 2009),
and also, some researchers have tried to establish math-
ematical relationship between land characteristics and
satellite data employing smart methods such as ANN
(Şenkal 2010; Thenkabail et al. 2011) and genetic algo-
rithm (GA) (Wu et al. 2015;Miao et al. 2015; Lasaponara
et al. 2016). Among them, the ANN-GA hybrid model
has been widely used to study the non-linear relationship
between earthly measurements and satellite data. It has
been reported that the model developed based on ANN-
GA is more accurate than the linear models (Xiao et al.
2014; Miao et al. 2015). Generally, in monitoring pro-
cess, genetic algorithm is employed for optimizations of
model parameters (Icaga 2005; Chang et al. 2006). Zhou
et al. (2015) applied the principal component analysis,
ANN, and ANN-GA hybrid approaches to model the
distribution of soil heavy metals. They concluded that
the most accurate models were obtained by ANN-GA.

Identifying the source of heavy metal contamination
is as important as monitoring their spatial distribution.
Different tools such as clustering analysis (Templ et al.
2008) and fuzzy clustering (Pourjabbar et al. 2014) can
be employed to identify the source of heavy metals. The
spatial autocorrelation technique has also been reported
as an appropriate approach for the source identification
(Liu et al. 2006b; Zhang et al. 2008). Getis G index
(Getis and Ord 1992) and spatial statistics (Ishioka et al.
2007) can also be used to identify and measure hotspots
for spatial statistics of heavy metals. Moreover, local
Moran’s index was reported as a practical method for
identifying hotspots based on neighborly relations as
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well as to estimate the levels of spatial correlation
among studied variables (Overmars et al. 2003; Fu
et al. 2011).

Owing to the existence of several rich mines of lead
and zinc in Zanjan province, many factories and indus-
trial areas are located in this part of Iran. These industrial
zones have led to heavy metal pollution inmany areas of
this province, due to the accumulation of industrial
wastes and sewages around factories. The pollution of
heavy metals can easily be dispersed into the environ-
ment by factors such as wind, surface water and trans-
portation. The polluted lands in Zanjan put human and
animal health at risk and cause environmental issues.
Therefore, in this study, the distributions of heavy
metals along with the main natural and artificial factors
affecting their distribution were explored using remote
sensing imagery. The objectives were to compare the
modeling of cadmium, lead and zinc distribution using
AAN-GA and multiple stepwise linear regression and to
cluster polluted area by local Moran index and Getis-
Ord G* statistics for source identification. Furthermore,
the effects of different land uses on the concentration of
elements and distribution of heavy metals around high-
ways, main roads, railroads and streams were studied.

Materials and methods

Study area

The study was carried out in east Zanjan, Iran (36.58–
36.67° N and 48.57–48.67° E, Fig. 1). According to the
meteorological data of Zanjan synoptic stations, which
is over a period of 39 years (1975 to 2014), the study
area has four distinctive seasons with a mean annual
temperature of 15.7 °C and a mean annual precipitation
of 309 mm. Prevailing wind speed (east to west) is
6.4 m s−1. The Tabriz-Tehran freeway (line 1 in Fig. 1)
and expressway of Basij (line 2 in Fig. 1) passed through
the study area.

Soil sampling and analyses

A total of 300 sites were sampled from May 19 to 29,
2014, in different land uses including industrial lands,
irrigated farming, dryland farming and barren lands.
Soil samples were collected in two grids at intervals of
250 m for area close to industrial and agricultural land
and 500 m for bare lands, at 0–5-cm soil depths. Soil

samples were air-dried and passed through a 2-mm
sieve. pH (pH meter model 215 Meter, Denver Instru-
ment), total Fe (Mehra and Jackson 1958), organic
carbon (Walky and Black 1934), sand, silt and clay
contents (Gee et al. 1986) were measured for each
sample. The concentrations of Cd, Pb and Zn were
measured using graphite furnace atomic absorption
spectrometry (Varian spectra AA-200, Analytic Jena).
The instrument was calibrated by using 1000 mg titrisol
standard solutions (CdCl2 in H2O, Pb(NO3)2 in H2O and
ZnCl2 in 0.06% HCl (Merck Company)). Each sample
was measured in triplicate, and the relative standard
deviations (%RSD) of the heavy metal concentrations
were applied to determine the measurement method
precision using Eq. (1):

%RSD ¼ standarddeviation=meanvalue� 100 ð1Þ
To assess the accuracy of heavy metal measurement,

the recovery test was conducted. The percentage recov-
ery (%REC) was calculated using Eq. (2):

%REC ¼ Cs−C=Cadd � 100 ð2Þ

where Cs is the concentration of spiked sample (added
sample + measured sample), C is the concentration of
unspiked sample (measured sample) and Cadd is the
concentration of added sample.

Data analysis

Image processing was performed using Landsat ETM +
imagery (ID LE07_L1TP_166035_20140527_
20161115_01_T1, acquisition date May 27, 2014, path
166, row 35). The most important corrections made in this
research include atmospheric correction, geometric correc-
tion, and the correlation related to noise in the image. In
this research, fast line of sight atmospheric analysis of
spectral hypercubes (FLAASH) algorithm was employed
to correct the atmospheric effects. Using this algorithm, the
values of the spectral radiation were converted to spectral
reflection, and the effects associated with the changes in
the lighting conditions, season, latitude, and meteorologi-
cal conditions on the images were removed. In order to
remove noise in the images used, minimum noise fraction
transform (MNFT) algorithm was employed by ENVI
software. This conversion is a linear conversion which is
employed for determining themain dimension and volume
of the image, separating noise from other information, and
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reducing the extent of process in the next stage. In the last
stage, following application of all required corrections, the
geometrical correction of the image was used by ground
control points which were extracted from topography
maps at a scale of 1:25,000 and existed throughout the

entire region sporadically. For this purpose, the geograph-
ical position of 40 points was withdrawn using global
positioning system device (GPS model Garmin 41838),
and the geometrical correction was performed on the im-
age. After atmospheric and geometric corrections, the

Fig. 1 a Location map of study area, industrial installations and roads including Tehran-Tabriz freeway (1) and Basij Expressway (2)

Fig. 2 A schematic representation of ANN-GA model
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mean values of digital numbers within a radius of 30 m
around the sampling points were determined for each band
in MATLAB (R2014a). Shapiro-Wilk test was used to
assess the normality of residual.

To remove the weakest correlated variable,
MSLR was applied. This technique minimizes the
sum of squared deviations of the observed and pre-
dicted dependent variables via the linear transforma-
tions of the independent variables. The relationship
between heavy metal concentration (as a dependent
variable) and averages of pixel values and soil prop-
erties (as independent variables) were determined
for each band and band ratio by applying MSLR
analysis. The band ratios are considered to be abso-
lutely useful methods for highlighting phenomena
like heavy metal in multiband images (Kaiser et al.
2010; Slonecker et al. 2010).

Hybrid ANN-GA method was used for modeling by
using feedforward multilayer perceptron neural net-
works alongside sigmoid transfer functions with the
application of organic carbon, total Fe and clay contents.
Moreover, Landsat bands (band 1 0.52–0.45μm, band 2
0.60–0.52 μm, band 3 0.63–0.60 μm, band 4 0.90–
0.75 μm, band 5 1.75–1.55 μm, band 6 12.50–
10.40 μm, and band 7 2.35–2.09 μm) were used as an
independent variable for ANN-GA and MSLR
modeling.

To adjust the weights of the neurons connected
in the hybrid ANN-GA model, GA was adopted in
the ANN training process to identify the best
solution by mutation and crossover operators and
evaluation by R2 and RMSE in the output layer
(Fig. 2).

A total of 240 (80%) and 60 (20%) samples
were randomly allocated to the training and testing
sets, respectively. The accuracy of models was
assessed using predictions coefficient of determi-
nation (R2) and root mean square error (RMSE).
Data analysis and processing of satellite images
were performed in ENVI software, and maps were
prepared using ArcGIS software version 10.2. To
investigate the spatial autocorrelation analysis, the
local Moran I (Anselin 1995) (Eq. (3)) and G*
statistical method (Getis and Ord 1992) (Eq. (4))
were used to identify the presence of clusters:

I i ¼ xi ∑
N

j¼1 j≠i
wi jxi ð3Þ

where Ii is the Moran index, N is the number of
spatial observation pixel, xi is the standardized
observed value of pixel i, xj is the standardized
observed value of pixel j, and wij is the the stan-
dardized spatial weighting value.

Table 1 Statistical description soil properties

Properties Sample number Min Max Mean St. dv.

pH 300 6.69 8.33 7.71 2.12

OC (%) 300 0.45 1.25 0.78 0.18

Clay (%) 300 17.11 34.18 26.51 7.91

Sand (%) 300 51.22 81.61 62.64 5.55

Silt (%) 300 6.82 35.50 18.87 5.61

Fe (%) 300 0.89 1.30 0.95 0.10

Table 2 Statistical description of the heavy metal concentration (mg kg−1) and related risk classification

Element Sample number Statistical analysis Risk classification levels (DEIRI 2013)

Min Max Mean RSD REC No risk Risk High risk
(mg kg−1) % (mg kg−1)

Cd 300 0.88 17.61 1.92 0.82 86–105 0–5 5–13 >13

Pb 300 13.38 3475 354.98 2.01 91–107 0–75 75–520 >520

Zn 300 12.50 7253.6 501.10 1.01 90–112 0–360 360–6800 >6800

Table 3 Cross-validation results of ANN-GA and MSLR models
for Cd, Pb and Zn (mg kg−1)

Model Cd Pb Zn

R2_tr (ANN-GA) 0.85 0.91 0.90

R2_tr (MSLR) 0.41 0.58 0.57

R2_ts (ANN-GA) 0.91 0.86 0.76

R2_ts (MSLR) 0.51 0.56 0.63

tr train data, ts test data
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Table 4 MSLR for heavy metal concentrations and independent variables (soil properties and satellite imaginary bands)

Element Band formulation used in the models

Cd −221.676 + 60.2 OC + 0.1 clay + 11.4 Fe + 164.6 (band 2 / band 3) + 95.3 (band 3 / band 2) + 0.1 (band 4) − 3.7 (band 5 / band 1)

Pb −180,599.0 + 45.1 OC + 32.2 clay + 18.7 Fe + 156,204 (band 2 / band 3) − 53.1 (band 4) + 2615.5 (band 7 / band 1) − 20,830.4
(band 4 / band 3) − 6785.3 (band 5 / band 4) + 16,967.5 (band 4 / band 2) + 55,042.3 (band 3 / band 2) − 3467.3 (band 4 / band
7) + 3401.3 (band 3 / band 1)

Zn −43,904.42 + 21.2 OC + 5.5 clay + 141.9 Fe + 45,456.4 (band 2 / band 3) + 25,272.8 (band 3 / band 2) + −31,119.0 (band 4 / band
7) + 176.609 (band 4)

Fig. 3 Observed and training data of Cd, Pb and Zn with ANN-GA model
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G*
i ¼ ∑

N

j¼1
wi j dð Þx j= ∑

n

j¼1
x j ð4Þ

Gi is the G* index; N is the number of spatial obser-
vation; wij(d) is the spatial weighting value within a
specified distance d of a particular observation pixel i;
xj standardized observed value of pixel j.

Soil sampling for the streams and roads

To evaluate the role of surface water and streams in
soil heavy metal contamination and distribution,
ArcHydro tool in ArcGIS was used to delineate
stream network, based on the digital elevation map
(DEM) of the study area. The stream maps were
checked by filed observation and a global position
system (GPS) instrument. Forty-eight soil samples
(0–5-cm depths) with intervals of 750 m were col-
lected and analyzed for the heavy metal contents. A
100-m buffer zone was considered as a study section
along the streams. Kriging interpolation method was
employed to produce the gradient maps of heavy
metal distribution along the streams. This method
has been widely employed in many studies on heavy
metal contaminations, especially on heavy metal
distribution maps (Alam et al. 2015; Alyazichi
et al. 2015; Moore et al. 2016; Qi et al. 2016). The
exponential semivariance model (ordinary kriging)
was applied for the spatial interpolation given the
lower minimum RMSE and average standard error
of cross-validation compared to the Gaussian and
spherical models.

To study the impact of traffic on the soil heavy
metal concentration, nine roadside areas were

investigated with an interval of 2 km along the
roads: five areas from the Tabriz-Tehran freeway
(line 1 in Fig. 1) and four areas from Basij Ex-
pressway (line 2 in Fig. 1). In each area, four
samples were collected from roadsides at intervals
of 10, 30, 60 and 100 m. The heavy metal con-
centrations were determined for each sample.

Results and discussion

Geochemical analysis

The statistical results of the measured soil properties and
heavy metals are shown in Table 1. The means of
organic carbon and Fe contents of the soil surface were
0.78 and 0.95%, respectively. The dominant soil tex-
tures were of the classes of sandy loam (SL) and sandy
clay loam (SCL) with low clay contents (26.51%).

The average concentrations of Cd, Pb and Zn were
1.92, 354.98 and 501.10 mg kg−1, respectively. The
heavy metal concentrations of the samples varied for
Cd (0.88–17.61 mg kg−1), Pb (13.38–3475 mg kg−1)
and Zn (12.50–7253.6 mg kg−1). In line with the sug-
gested critical limits for heavymetals by the standards of
the Department of Environment in Islamic Republic of
Iran (Department of Environment, Islamic Republic of
Iran 2013), the mean values of Pb (354.98 mg kg−1) and
Zn (501.10 mg kg−1) were at a risk level as shown in
Table 2. A Cd concentration was classified in the Bno
risk^ level. Values of %RSD and %REC represented
good accuracy and thus confirmed the reliability of the
results.

Fig. 4 RMSE results of ANN-
GA andMSLRmodels for Cd, Pb
and Zn (RMSE root mean square
error, tr train data, ts test data, t
total data, Q1 quartile 1, Q4
quartile 4)
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Modeling

The results of training (n = 240) and test (n = 60) models
for MSLR and ANN-GA are shown in Table 3. The root
mean square error of training data using ANN-GA for
Cd, Pb and Zn were 0.85, 0.91 and 0.90, respectively,
and were 0.41, 0.58 and 0.57, respectively, using
MSLR. The root mean square error of test data using
ANN-GA for Cd, Pb and Zn were 0.91, 0.86 and 0.76,
respectively, and were 0.51, 0.56 and 0.63, respectively,

using MSLR. The training and test RMSE of ANN-GA
model were less than the corresponding RMSE of
MSLR model, and R2 of ANN-GA model were higher
than the corresponding R2 of MSLR model (Table 3).
The model errors of ANN-GAwere lower than MSLR.

The salient features of these models include usage of
various band ratios which can present the larger coeffi-
cient of determination (R2) in linear models. Visible
bands (1, 2, and 3) alongside infrared band (4) in the
obtained relations are among effective variables which

Fig. 5 Maps predicting heavy
metal (mg kg−1) distribution in
studied area (no risk area (white),
risk area (blue), high risk area
(red), for heavy metal
concentration)
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have been used in all of the equations. These bands
alongside their ratios have been considered suitable for
predicting the concentration of heavy metals by various
researchers (Bien et al. 2005;Wu et al. 2007;Wang et al.

2014). Band 7 and the ratios associated with it including
4 to 7 band ratio and 5 to 7 band ratio were in the band
formulation obtained with heavy metals (Table 4). Choe
et al. (2008) examined the characteristics of spectral

Fig. 6 Spatial autocorrelation of heavy metal distribution using local Moran index and Getis-Ord Gi* (significant levels vs. number of
related pixels in bracket)
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absorption of heavy metals including arsenic, lead, and
zinc in laboratory. They introduced region 2200 nm (a
close infrared spectral range, the range of band 7) as a
desirable absorption region for these metals.

The training process of ANN-GA is presented in
Fig. 3, showing a good match between predicted and
observed data, especially in high concentrations.

In more detailed exploration, RMSE of quartile 1
(Q1) and 4 (Q4) showed that in most cases, error of
Q1 (low concentrations) was higher than error of Q4
(high concentrations) (Fig. 4). It showed the good ability
of ANN-GA linear models for estimating higher con-
centration of heavy metals in comparison to linear
models. Choe et al. (2008) also reported weak ability
of linear model in estimation of high concentration of
heavy metals by remote sensing technique.

In line with our results, Tsoukalas and Fragiadakis
(2016) reported that the prediction of risk assessment
using GA is more useful and efficient compared to
when a multivariate regression analysis is utilized.
Zhou et al. (2015) applied statistical analysis, ANN,
and ANN-GA to predict As, Cd, Cr, Cu, Hg, Ni, Pb
and Zn and found similar results. They reported that
ANN-GA performance in source mapping and point
finding is more accurate when using high concentrations
of heavy metals.

Heavy metal distribution map

The best accuracy for heavy metal distributions was
obtained using ANN-GA; thus, distribution maps
were prepared based on this method. The heavy
metal distribution maps for Cd, Pb and Zn provided

using ANN-GA model are shown in Fig. 5. The
maps displayed heavy metal concentration in three
classes as shown in Table 2: no risk, risk and high
risk classes. Based on the maps, high Cd values
were mainly found around industrial zones and
southern parts of the study area. Approximately,
the similar spatial patterns in the risk and high risk
classes can be observed for Pb and Zn around in-
dustrial installations.

Critical concentration areas of heavy metals were
detected using maps for each pollution classes. Areas
of 2155 ha of the studied area were categorized into the
risk class for lead, 50 ha for cadmium and 9 ha for zinc.
Local Moran’s index and Getis-Ord Gi* were conducted
to evaluate and compare the spatial autocorrelation of
heavy metals and draw the spatial patterns of their
differences (Fig. 6).

Significant clusters of Cd (Fig. 6, 28.3% of total area)
were located in the southern part of the study area (5),
while the highest autocorrelation (p < 0.01) of Cd
(14.5%) was found around the industrial zone with a
clumped pattern. Of the study area, 4.1% was classified
into high risk of Zn pollution, while 13.3% had high risk
of Pb contamination. The significance of Pb clusters
(p < 0.05) increased from east to west in direction of
the prevailing wind. Wind force could move fine parti-
cles from their sources and spread them to the surround-
ing areas and could affect the distribution of heavy
metals (Chen et al. 2012; Connan et al. 2013). In line
with the results of Dore et al. (2014), Pb had the highest
wet and dry deposition.

The clusters of heavy metal concentration as calcu-
lated by Getis-Ord G* statistics are shown in Fig. 6.

Fig. 7 Moran scatter plot for Cd, Pb and Zn
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High values of Cd (8.2% of total data) were noted
around the industrial installations, while low values
(20.0%) were in farther distances. The source of high
concentration for Cd would probably differ from low
concentration, given that there was a gap (not signifi-
cant) between these two classes and the gradual change
from low to high concentration was not noted. The
concentration of Zn and Pb showed similar pattern
(Fig. 6). The scatter plot of Moran index for Cd showed
that Cd values were more of a cross 1:1 line (0.77)
showing more positive correlation (Fig. 7). Higher
Moran index of Cd than Pb (0.25) and Zn (0.21) con-
firmed the high positive spatial aggregation of Cd.

The impact of main factors on heavy metal distribution

Heavy metal distribution could be affected by different
sources in the study area such as industrial installations,
roads, highway, and agricultural activities. Therefore, in
the following sections, the main factors that could affect
the contamination of heavy metals were described.

Streams

The study of five tributaries of streams (Fig. 8)
showed that the concentration of Cd (Fig. 8b), Pb
(Fig. 8c) and Zn (Fig. 8d) increased toward

Fig. 8 a Location map and land use, stream and sampling points along the studied main stream, and roads. Spatial distribution maps of
heavy metal concentration in streams and showing the five sections for b Cd, c Pb and d Zn
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downstream. The concentrations of Cd, Pb and Zn in
downstream of stretch 3 are in 12–8, 1200–200, and
1000 mg kg−1 ranges and seem to have the highest
accumulation. This stretch passed through the indus-
trial land use, where the soil surface colloids along-
side heavy metals were washed and transferred to
the streams from the adjacent land use, thus leading
to a rise in the heavy metal loading rates in the
stretch. The colloids, including clay and organic
matter, were strongly pH-dependent with a negative
charge in alkaline pH of the study area (Table 1).
The heavy metals were bounded to the negatively
charged carboxyl and hydroxyl agent groups. There-
fore, they could be transported by soil erosion (Dube
et al. 2001).

Similar to the study of Schaider et al. (2014), the
results of the present research demonstrated that
additional accumulation of the heavy metals in
downstreams was caused by runoff. They studied
the temporal changes of Cd, Pb, and Zn in the
mining-impacted streams and reported that Zn, Pb,
and Cd annual accumulations were 8800, 160, and

15 kg year−1, respectively. As a replicate to an
earlier study conducted by Cope et al. (2008), the
substantial loadings of these elements in the streams
were found to occur in the same area as the drainage
points of the industrial areas.

Land use

The cumulative percentages of heavy metal concentra-
tion under different land uses are summarized in Fig. 9.
Four land uses, including industrial zones, barren land,
irrigation farming, and dryland farming, are recognized
in the studied area (Fig. 8a). The concentration of Cd,
Pb, and Zn under different land uses was in the follow-
ing order: industrial lands > irrigation farming > barren
land > dryland farming (Fig. 9).

High heavy metal levels in industrial lands were
noted as a result of residual deposits, produced from
heavy metal purification process. High content of heavy
metals under irrigation could be attributed to the exces-
sive use of chemical fertilizer (Hani and Pazira 2011).
Phosphate rocks naturally contain high Cd levels (Jiao
et al. 2012), and the application of phosphate fertilizers
could increase Cd content in agricultural soil (Cai et al.
2012). The use of chemical fertilizer has significant
effect on Pb (Atafar et al. 2010) and Zn (Sun et al.
2013) concentration. In spite of chemical fertilization
of dryland farming, the closer distance to industrial
zones led to higher contamination of barren lands when
compared to the dryland farming.

Roads

The impact of distance from main roads on soil contam-
ination of heavy metals is shown in Fig. 10a, b. To study

Fig. 9 Cumulative percentages of heavy metal concentration
under different land uses

Fig. 10 Heavy metal distribution patterns in roadsides. a Tehran-Tabriz freeway. b Basij Expressway
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the effect of traffic on heavy metal distribution, several
researchers have measured heavy metal concentration at
different distances from roadsides (Chen et al. 2010;
Yan et al. 2013a,b; Wiseman et al. 2013; Werkenthin
et al. 2014). Cd, Pb, and Zn decreased from 5.1, 1130,
and 1251 mg kg−1 to 3.8, 832, and 712 mg kg−1, re-
spectively, by increasing distance from the Tabriz-
Tehran freeway (Fig. 10a).

The results further illustrated that Cd, Pb and Zn de-
creased from 3.8, 610, and 960 mg kg−1 to 1.7, 330, and
400 mg kg−1, respectively, in the roadside of Basij Ex-
pressway (Fig. 10b). Despite the fact that the concentration
of soil heavymetals is reduced by restricting distance from
roads to 100 m, the amount of elements was still high and
in a dangerous level for agricultural productions. Fuel
combustion and gases emitted from vehicles are the main
source of air pollution (more than 50 μg m−3) along with
soil heavy metal contamination around the roads
(Farahmandkia et al. 2011). This study indicated that crop
production and agriculture activities must be restricted to a
distance of 60 m from main roads.

Conclusion

High concentrations of Cd, Pb and Zn were observed
in the study area indicating that industrial activities
had effect on heavy metal distributions. Sampling
around the roads and streams showed that traffic
was one of the major sources of heavy metal pollu-
tion, which were washed off into the streams, rivers,
and downstream lands. The efficiency of ANN-GA
and MSLR was assessed in the prediction of soil
heavy metal distribution in different land uses based
on remote sensing data (ETM+). The results con-
firmed the higher ability of ANN-GA for predicting
heavy metal distribution, particularly in high concen-
tration of elements when compared to MSLR. The
local Moran’s index was found as a useful comple-
mentary analysis in the remote sensing technique,
which provided the regional hotspots of heavy metal
distributions, and was thus useful in the source iden-
tification of heavy metals. The pixel sizes of satellite
images had a significant role in the accuracy of the
remote sensing models. Using images with smaller
pixel sizes and higher special resolutions could result
in more accurate outcomes to be recommended for
future research. This study indicated that the combi-
nation of AAN-GA, remote sensing technique, and

clustering analysis can be considered as a quick and
low-cost method. This approach can be used for
providing reliable information regarding the spatial
distribution of soil heavy metals and their pollutant
sources.
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