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Abstract The central objective of this project was to
utilize geographical information systems and remote
sensing to compare soil erosion models, includingMod-
ified Pacific South-west Inter Agency Committee
(MPSIAC), Erosion Potential Method (EPM), and Re-
vised Universal Soil Loss Equation (RUSLE), and to
determine their applicability for arid regions such as
Kuwait. The northern portion of Umm Nigga, contain-
ing both coastal and desert ecosystems, falls within the
boundaries of the de-militarized zone (DMZ) adjacent to
Iraq and has been fenced off to restrict public access
since 1994. Results showed that the MPSIAC and EPM
models were similar in spatial distribution of erosion,
though the MPSIAC had a more realistic spatial distri-
bution of erosion and presented finer level details. The
RUSLE presented unrealistic results. We then predicted
the amount of soil loss between coastal and desert areas
and fenced and unfenced sites for each model. In the
MPSIAC and EPM models, soil loss was different be-
tween fenced and unfenced sites at the desert areas,
which was higher at the unfenced due to the low vege-
tation cover. The overall results implied that vegetation
cover played an important role in reducing soil erosion
and that fencing is much more important in the desert

ecosystems to protect against human activities such as
overgrazing. We conclude that the MPSIAC model is
best for predicting soil erosion for arid regions such as
Kuwait. We also recommend the integration of field-
based experiments with lab-based spatial analysis and
modeling in future research.
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Introduction

Soil erosion is a major issue in most arid and semi-arid
regions, greatly affecting soil quality and productivity,
as most of arid and semi-arid soils are generally shallow
in depth. Soil erosion is also considered one of the
principle mechanisms of desertification processes at
national and regional levels (Kairis, Karavitis,
Kounalaki, Salvati, & Kosmas, 2013; Martín-Fernández
& Martínez-Núñez, 2011; Sun, Dawson, Li, & Li,
2005). The common consequences of desertification
involve vegetation and soil loss, reduction in soil fertil-
ity and biodiversity, and reduction in rainfall infiltration
rates (Vásquez-Méndez, Ventura-Ramos, Oleschko,
Hernández-Sandoval, & Domínguez-Cortázar, 2011;
Sun et al., 2005). According to the United Nations
Convention to Combat Desertification (UNEP, 1994),
desertification was defined as Bland degradation in arid,
semi-arid and dry sub-humid areas, resulting from var-
ious factors, including climatic variations and human
activities.^ However, erosion is difficult to estimate and
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expensive to measure, especially when dealing with
large landscapes. Therefore, it is important to use ero-
sion indicators and modeling to estimate potential soil
loss (Rostagno & Degorgue, 2011).

Modeling soil erosion by water involves the process
of detachment, transport, and deposition of soil parti-
cles. Erosion rates are measured based on the combina-
tion of several physical and management variables.
Many empirical models are proposed to predict soil
erosion by water and associated sediment yield. Most
of these models are not well tested and require several
parameters, but they are used due to their simplicity
(Mahmoodabadi, 2011). These models are also limited
to the specific site of origin since they were designed
according to the correlation of multiple parameters per-
formed using site-specific empirical data. Therefore,
many researchers have tried to overcome these limita-
tions by producing numerical models of erosion. Often,
these models are classified as semi-quantitative models
due to the combination of descriptive and quantitative
procedures, which result in a quantitative or qualitative
estimate for soil erosion (is the displacement of solids
such as soils, rocks, and other particles) and sedimenta-
tion (which is also called deposition is the geological
process in where materials are added to the landform)
(Mohamadiha, Peyrovan, Harami, & Feiznia, 2011).
Geographical information systems (GIS) and remote
sensing (RS) technologies can be innovative tools in
the estimation of soil erosion (Pradhan, Chaudhari,
Adinarayana, & Buchroithner, 2012). GIS and RS
modeling are widely used for the derivation of variables
required to estimate soil erosion, and they have the
capability to analyze a large amount of data for arid
and semi-arid landscapes (Ahmad & Verma, 2013;
Amini, Rafiri, Khodabakhsh, & Heydari, 2010; Taheri,
Landi, & Archangi, 2013; Yue-Qing, Xiao-Mei, Xiang-
Bin, Jian, & Yun-Long, 2008).

The Universal Soil Loss Equation Method (USLE) is
the most widely used empirical model in soil erosion
investigations due to its simplicity, though it was de-
signed for agriculture practices (Harmon & Doe, 2001).
It is used for planning soil conservation measures, espe-
cially in developing countries (Breiby, 2006; Csáfordi,
Pődör, Bug, & Gribovsyki, 2012; Kamaludin et al.,
2013; Meusburger, Mabit, Park, Sandor, & Alewell,
2013). The major variables that are covered by this
model include rainfall, crop and cover management, soil
erodibility, slope length and steepness, and conservation
practice factor. The major disadvantage of empirical

models is that they are applicable only for the database
from which they have been derived. Therefore, in 1987,
the USLE was modified to into the Revised Universal
Soil Loss Equation (RUSLE) to compute the average
annual erosion (Duarte, Teodoro, Gonçalves, Soares, &
Cunha, 2016; Renard, Foster, Weesies, McCool, &
Yoder, 1997). Several changes occurred with RUSLE
including new rainfall-runoff erosivity values, a sub-
factor approach for calculating land cover, and new
slope and soil erodibility algorithm. The Erosion Poten-
tial Method (EPM) model is also an empirical model,
which was developed for Yugoslavia for estimating the
quantity and quality of soil erosion and sedimentation
(Amiri, 2010). This model covers several variables such
as soils and geology, land use, present erosion type, and
land slope. This model was tested in several agriculture
locations in Iran, as the output results of this model were
compatible with field observations (Amini et al., 2010;
Daneshvar & Bagherzadeh, 2012). However, the Mod-
ified Pacific South-west Inter Agency Committee
(MPSIAC) model was designed for arid and semi-arid
lands in the USA (Adib, Jahani, & Zareh, 2012; Belete,
2013; Ilanloo, 2012). The original MPSIAC model was
developed by Johnson and Gebhardt (1982). The newer
enhanced MPSIAC model is more quantitative than
earlier versions which makes it more accurate when
used in regions for where the model was not designed
(Najm, Keyhani, Rezaei, Nezamabad, & Vaziri, 2013).
This model covers the highest number of variables that
includes most erosional processes, which include geol-
ogy, soils, climate, runoff, topography, vegetation, land
use, surface erosion, and channel erosion. This model
has been used in several arid and semi-arid agriculture
areas in Iran, and these studies also illustrate that the
output was compatible with field observation
(Rostamizad & Khanbabaei, 2012; Shahzeidi,
Entezari, Gholami, & Dadashzadah, 2012; Taheri
et al., 2013).

A few studies have compared the EPM andMPSIAC
models in agricultural areas in Iran. According to
Baqerzadeh-Karimi (1993), Bayat (1999), and Taheri
et al. (2013), field data were compared with the model
results, and it was illustrated that the MPSIAC model
showed more appropriate results when compared with
EPM. Mahmoodabadi (2011) concluded that the
MPSIAC model showed a maximum value for erosion
when compared with field data, and he stated that it was
not accurate and needed modification. Eisazadeh et al.
(2012) compared the MPSIAC and USLE, with results
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showing that both models had reasonable results,
though the MPSIAC was the superior model according
to the accuracy of the results. One issue with all these
studies is that they were conducted for agricultural areas
in Iran; none were tested or compared for native desert
ecosystems which play a major role in controlling and
minimizing soil erosion (Ahmed, Al-Dousari, & Al-
Dousari, 2016). Therefore, our central objective was to
test and compare theMPSIAC, EPM, and USLEmodels
for arid natural ecosystems by utilizing remote sensing
and GIS. We used Umm Nigga, Kuwait, as an example
of an arid landscape and discuss soil loss as a function of
land degradation, management, and restoration for this
region.

Materials and methods

Study area

Kuwait is located in Asia, has a total area of 17,820 km2,
and a latitude and longitude of 29.3286° N, 48.0034° E.
Umm Nigga is situated on the northern edge of Kuwait
with a total area of 246 km2 (Fig. 1a). The study area is
distant from residential areas at approximately 50 km
from Kuwait City. It is considered an open rangeland,

which is used for camping and grazing, with several
private farms in the northeastern section. Currently,
restoration is planned for the site and it has been selected
as a future protected area. The de-militarized zone
(DMZ) lies immediately north and was created as a
buffer between Kuwait and Iraq by the United Nations
Security Council Resolution 689. The restoration area
includes this area but was further extended by the
Kuwait Supreme Council for Environment through
annexation. The DMZ extends along the Kuwait-
Iraq border and the Khawr ’Abd Allah waterway;
it is approximately 200 km long, extending 10 km
into Iraq and 5 km into Kuwait. Umm Nigga
contains a coastal ecosystem type and two desert
ecosystem types (Fig. 1b). The coastal area is cov-
ered with sabkha, salt marshes and saline depres-
sions, sand dunes, and ridges and terraces. It is also
covered with the Halophyletum vegetation commu-
nity unit. The other two desert ecosystems
are composed of four soil groups including
Calcigypsids and Haplocalcids (sandy to loamy
soils) and Torripsamments and Calcigypsids (most-
ly sand and gravel). Haloxyletum and Rhanterietum
are the major vegetation units in the desert ecosys-
tems (Abdullah, Feagin, Musawi, Whisenant, &
Popescu, 2016).

Fig. 1 a Suggested protected areas in the State of Kuwait according to the master plan. b Study area (Umm Nigga), which is divided into three
ecosystems including DMZ (fenced) at the north portion of the study area and unfenced areas (Abdullah et al., 2016)
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Potential soil loss estimation using the MPSIAC model

The MPSIAC model requires nine variables: sur-
face geology, topography, land cover, soil charac-
teristics, climate (rainfall), runoff, land use, present
erosion, and channel erosion. The channel erosion
factor was excluded from our work, as the study
area does not include any channels. GIS and re-
mote sensing products were used to generate each
variable. GIS data layers were collected from Ku-
wait University (KU) and Kuwait Institute of Sci-
entific Research (KISR): these layers include a
geological map, soil survey, vegetation communi-
ties, elevation points, and contour lines with a
scale of 1:250,000. Geo-referenced Landsat imag-
ery was also obtained from the United States Geo-
logical Survey (USGS) to generate a land use
layer. Then, each variable was generated and cal-
culated individually based on the MPSIAC equa-
tions (Table 1). Finally, the soil erosion and sedi-
mentation layer was estimated using the following
equations:

Qs ¼ 38:77e0:0353R ð1Þ

where Qs = total sediment yield in m3/km2/year,
e = 2.718, and R is the sum of the nine factors. In
order to predict the total eroded soil loss, we
followed Bagherzadeh and Daneshvar (2013); the
sediment delivery ratio (SDR) is obtained from the
following equation:

SDR ¼ 46:7� A
2:58

� �−0:2071

ð2Þ

where SDR is the sediment delivery ratio and A is
the sub-basin surface area. SDR is defined as the
ratio of sediment yield to total soil losses. The
equation can be expressed in non-dimensional
terms as

SDR ¼ SY

T
ð3Þ

where SY is the sediment yield (m3/km2/year) and
T is the total eroded soil loss (m3/km2/year).

Data collection and preparation

Surface geology (y1)

The surface geology was obtained from the geological
map of Kuwait and other previous studies. The study
area was covered with aeolian sand, desert floor de-
posits, Dibdiba formation, intertidal and shoaling sand,
silt and mud sabkha deposits, and strand-line deposits
(Al-Sulaimi & Al-Ruwaih, 2004). Aeolian sands are
mostly sandy with high infiltration rates and low runoff.
The desert floor deposits were generated from slopes,
and Dibdiba formation is a white fine-grained cherty
limestone and sand and gravel, with high infiltration
rates. In contrast, the intertidal and shoaling sand, silt
and mud sabkha deposits, and strand-line deposits are
muddy and contain clay soils with low infiltration rates
and high runoff rates (Abdal, Suleiman, & Al-Ghawas,
2002; Al-Sulaimi & Al-Ruwaih, 2004). Based on these
characteristics, each unit within the geological layer was
ranked from 0 (less sensitivity to erosion) to 10 (high
sensitivity to erosion) following the MPSIAC model
(Fig. 2a).

Soil factor (y2)

The soil factor was calculated using data from the soil
survey of Kuwait (KISR, 1999). The soil erodibility

Table 1 Effective factors on soil erosion for the MPSIAC model

Effective
factors

Equations Parameters

Surface
geology

Y1 = X1 X1 = geological erosion
index

Soil Y2 = 16.67X2 X2 = soil erodibility factor

Climate Y3 = 0.2X3 X3 = 6-h rainfall with a 2-
year return period

Runoff Y4 = 0.006R + 10Qp Qp = annual specific DEBI
(m3/skm2) R = annual
runoff height (mm3)

Topography Y5 = 0.33X5 X5 = percentage of the
average basin slope

Vegetation Y6 = 0.2X6 X6 = percentage of land
without vegetation

Land use Y7 = 20 − 0.2X7 X7 = percentage of
vegetation cover

Surface
erosion

Y8 = 0.25X8 X8 = total surface soil
factor scoring in BLM

Channel
erosion

Y9 = 1.67X9 X9 = gully scoring in BLM

BLM Bureau of Land Management
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map was generated according to the RUSLE equation
for soil erodibility (K factor) (Benzer, 2010; Dumas &
Printemps, 2010; Gitas, Douros, Minakou, Silleos, &
Karydas, 2009):

K ¼ 2:8� 10−7 �M 1:4 1:2−að Þ þ 4:3� 10−3 b−2ð Þ þ 3:3 c−3ð Þ
ð4Þ

where M is the size of soil particles (%silt +
% very fine sand) × (100 − % clay), a is the

percentage of organic matter, b is the code number
defining the soil structure (very fine granular = 1,
fine granular = 2, coarse granular = 3, lattice or
massive = 4), and c is the soil drainage class (fast
= 1, fast to moderately fast = 2, moderately fast =
3, moderately fast to slow = 4, slow = 5, very
slow = 6). Subsequently, the K factor was used to
calculate the soil factor using the MPSIAC model
equation. The final score for the soil factor layer
ranged from 1.5 to 7.05 (Fig. 2b).

Fig. 2 MPSIACmodel variables.
a Surface geology (y1). b Soils
(y2). cRunoff (y4). d Topography
(y5). e Vegetation and land use
(y6 and y7). f Surface erosion (y8)
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Climate (y3)

The commonly used index of rainfall aggressiveness,
which is significantly correlated with soil erosion, is the
ratio of the highest mean monthly precipitation and the
mean annual precipitation (Morgan, 1976). Recent work
suggests that elevation may also influence erosivity
(Daly, Neilson, & Phillips, 1994). Precipitation data
were collected from meteorological records from the
Kuwait Meteorological Center, Kuwait Airport Station,
and Al-Abdaly Station. The climatic factor rating was
estimated based on 20 years (1990–2010). The same
rating value was given to the entire location since there
is no variation with rainfall around the study area.

Runoff (y4)

Surface runoff is a major factor influencing soil erosion.
This factor was generated using the Soil Conservation
Service Curve Number Equation (SCS-CNE) model,
which was developed in the mid-1950s (Beven, 2011;
Mockus, 1964). This model is widely used as a simple
method for predicting direct runoff volume for a given
rainfall event. This model requires rainfall data and soil
data including potential maximum retention, soil moisture
retention, and infiltration rates. An empirical relationship
estimates initial abstraction and runoff as a function of soil
type and land use. The rainfall-runoff relationship was
calculated using the following equations:

Q ¼ P−I að Þ2= P−I að Þ þ S ð5Þ
where Q = runoff (in),

P = rainfall (in),
S = potential maximum retention after runoff begins

(in), and
Ia = initial abstraction (in).
Initial abstraction (Ia) includes water retained in sur-

face depressions and water intercepted by vegetation,
evaporation, and infiltration. It is also correlated with
soil and cover parameters and was found to be 20% of
the potential maximum retention (S) (Ghadiri & Rose,
1992). By assuming that the initial abstraction is equal
to 20% of potential maximum retention (Ia 0.2S), the
previous equation can be simplified to

Q ¼ P−0:2Sð Þ2= P−0:2Sð Þ ð6Þ
where S is related to the soil and cover conditions
through the curve number (CN), which is an empirical

parameter used in hydrology for predicting direct runoff
or infiltration from rainfall excess (Ghadiri & Rose,
1992). CN has a range of 0 to 100, and S is derived
from CN by

S ¼ 1000=CN−10 ð7Þ
The runoff CN parameter values correspond to vari-

ous soil, land covers, and land management conditions
and can be selected from model tables. However, it is
preferable to estimate the CN value from measured
rainfall and runoff data if available (Soulis &
Valiantzas, 2012). Here, the CN value was estimated
using soil survey of Kuwait (KISR, 1999) and the
Natural Resource Conservation Service (NRCS) curve
number, which divides soils into four hydrologic soil
groups (HSGs) based on infiltration rates (Ghadiri &
Rose, 1992). Soil infiltration data were used to estimate
HSGs, which were combined with the land cover factor
(y7) to estimate CN. Then, potential maximum retention
(S) was calculated from the CN value using Eq. (6), and
the potential maximum retention was used in Eq. (7) to
estimate runoff (Q). The scoring values ranged from
0.66 to 3.43 (Fig. 2c).

Topography (y5)

The topography factor was generated using elevation
contour lines and spot elevation points to create a raster
digital elevation model (DEM). Percentage slopes were
derived from the DEM using GIS and were used in the
MPSIAC equation to compute the scoring value, which
ranged from 0 to 0.56 (Fig. 2d).

Vegetation cover and land use (y 6 and y7)

Geo-referenced Landsat 8 was obtained from the USGS
for the year 2013 to create a land use and vegetation
cover layer. The spatial resolution of the imagery was
30 × 30 m, and the projection was WGS 84 UTM Zone
38N. No atmospheric and geometric corrections were
necessary for this region due to the low cloud cover and
since the image was classified individually. Supervised
classification was used in this study using ENVI 5.2 to
identify the land cover; methods are described in detail
by Abdullah et al. (2016). The imagery was divided into
five land cover types: soil, bare ground, vegetation,
wetlands, and water. Then, vegetation cover and land
use layers were combined in one layer and were scored
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as ranks using the MPSIAC equation. The final ranking
ranged from 0.046 (for locations covered with vegeta-
tion) to 20 (for bare ground locations) (Fig. 2e).

Surface and channel erosion (y8 and y9)

The surface erosion was estimated based on the
surface soil erosion types using Bureau of Land
Management (BLM) method. This method is used
for monitoring and assessing upland soil surface
erosion, other than gully erosion (Ypsilantis, 2011).
The layers that were taken into consideration to
create surface erosion are geomorphology, land
cover, and slopes. Finally, all three factors were
combined to establish the surface erosion layer
using the MPSIAC equation. The study area in-
cludes sheet erosion (as occurs when rain falls on
bare or sparsely covered soil) and some rill ero-
sion (as occurs on slopes and streams). Each ero-
sion type was rated from 0 (low sensitivity) to 15
(high sensitivity) based on their level of degree of
sensitivity. The final ranking layer ranged from
1.25 (low sensitivity to erosion) to 6.25 (high
sensitivity to erosion) (Fig. 2f). However, the
channel erosion factor (y9) was not included in
this model since channels do not exist in the study
area.

MPSIAC model versus RUSLE and EPM models

The MPSIAC model was compared with the EPM and
RUSLE models. The majority of the data layers for the
MPSIAC model were also used in this step, but the
coefficient for the variables was rated and scored ac-
cording to their respective EPM or RUSLE equations.

EPM model

Soil erosion in the Erosion Potential Method (EPM)
model is based on the following four factors:

Y: the coefficient of rock and soil erosion, ranging
from 0.25 to 2

Xa: the land use coefficient, ranging from 0.05 to 1
Ψ: the coefficient for present erosion type, ranging

from 0.1 to 1
I: average land slope in percentage
The necessary layers and data for these factors

were geology and soil types, land use, slope, and
erosion type. The required data and GIS layers

were the same as in the MPSIAC model, but they
were rated based on the EPM coefficient rating
(Fig. 3). The EPM calculates the coefficient of
erosion and sediment yield (Z) of an area using
the following equation:

Z ¼ Y � Xa Ψþ I0:5
� � ð8Þ

In which Y is the coefficient of rock and soil erosion,
Xa is the land use coefficient,Ψ is the coefficient for the
present erosion type, and I is the average land slope in
terms of percentage.

Then, the volume of soil erosion was calculated using
the following equation:

WSP ¼ T � H � π � Z1:5 ð9Þ
In which, WSP is the volume of soil erosion

(m3/km2/year), H is the annual rainfall (mm), Z
is erosion intensity, and T is the coefficient of
temperature which is calculated as shown in the
following equation:

T ¼ t=10þ 0:1ð Þ0:5 ð10Þ
where t is the mean annual temperature (°C).

RUSLE model

The RUSLE is the most common used model, as it is
considered the most simplistic model for estimating soil
erosion. This model covers five variables as shown in
the following equation:

A ¼ R� K � LS � C � P ð11Þ
where,

A = predicted soil loss (tons/acre/year)
R = rainfall and runoff factor
K = soil erodibility factor
LS = slope factor (length and steepness)
C = crop and cover management factor
P = conservation practice factor
The same vegetation cover and soil erodibility

layers (Fig. 4a, b) that were generated for the
MPSIAC model were used. An annual rainfall of
129 mm was defined for the entire location. How-
ever, the P factor was discounted to one because
there were no conservation practices in the study
area. The slope length and steepness (LS) factor

Environ Monit Assess (2017) 189: 78 Page 7 of 17 78



was generated (Fig. 4c), using the DEM and the
following equation:

LS ¼ flow accumulation� cell value=22:1ð Þm

0:065þ 0:045 sþ 0:0065 s2
� �

ð12Þ

where LS is the slope length and steepness, s is
the slope percentage, and m is a variable plot
exponent adjustable to match terrain and soil
variants.

Model comparison and testing

To compare the models, results of potential soil loss
maps were classified into five ranked classes (which
ranged from very low to very high) using GIS. Maps
were converted to grid files and analyzed using
FRAGSTATS 4.2 to compute a set of class matrices.
Total area CA (how much of the class is comprised of a
particular patch type), percentage of landscape
(PLAND) (quantifies the proportional abundance of
each patch type in the class), patch number (NP), patch
density (PD), and patch area distribution (PAD) were

selected to provide information on class area and num-
ber. The shape index (measures the complexity of patch
shape compared to a standard shape) was also used to
measure the shape complexity for each class. Then, the
aggregation index (AI) (the percentage of like adjacen-
cies between cells of the same patch type) was used to
analyze patch connectivity within the classes.

Sensitivity analysis was also conducted to evaluate
the soil erosion models’ response to changes in input,
and this was done by collecting 300 random points
using GIS. Sensitivity analysis is a technique for evalu-
ation and calibration models, which helps to understand
the influence of input data on output. For this study, we
used the sensitivity analysis method that was designed
by Lane and Ferreira (1980). Input data variables were
increased by 20% with the aim of calculating Qs and
variation of erosion. Sensitivity for the main factors for
each model was calculated using the following equa-
tion:

SI ¼ Qs−Qsað Þ=Qsað Þ= P−Pað Þ=Pað Þ ð13Þ

Where SI is the parameter sensitivity indices, Pa is
the initial first parameter, Qsa is the calculated sediment

Fig. 3 EPM model variables. a
Coefficient of rock and soil
erosion (Y). b Land use
coefficient (Xa). c Coefficient for
present erosion type (Ψ). d
Average land slope in percentage
(I)
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using Pa, P is the increased or decreased input data, and
Qs is the calculated sediment using P. Sensitivity index
was calculated using Excel.

In addition, a simulation was conducted to as-
sess the effects of increasing vegetation cover on
soil loss, as might result from a change in man-
agement practices as part of a major restoration
effort (for example, fencing to prevent overgrazing
or camping). As discussed by Abdullah et al.
(2016), the vegetation cover was relatively high
at the unfenced area in 1998 (37% in unfenced
areas) but then decreased to 3% by 2013, due to
overgrazing and spring camping by people; these
management practices accelerated vegetation loss
after land mines were removed from the area. To
simulate the potential vegetation cover after resto-
ration, we assumed that the vegetation cover might
reach the percentage of 1998 after it is restored.
Therefore, satellite imagery for the year 1998 was
classified and the model was re-run using this as
input for y6 and y7 in Eqs. (1) and (2).

Results

Potential soil loss

MPSIAC model

A soil erosion risk map was generated based on the
attributes of the nine variables and the given scores by
the MPSIAC model (Fig. 5a). Modeled soil loss varied
from 129 to 1184 m3/km2/year, which was categorized
into five classes ranging from very low to very high.
Approximately 24% of the total area ranged between
low and very low potential soil loss; of that, 18% of the
surface was moderately and 58% was high–very high.
The estimated soil loss varied between coastal and de-
sert areas (Table 2): it was higher at the desert area. At
the coastal area, the potential soil loss was high, and the
amount of erosion was similar between the DMZ
(fenced) and the unfenced sites. The average soil loss
was 570 m3/km2/year for the fenced and 523 m3/km2/
year for unfenced (Fig. 6a). The high soil erosion levels

Fig. 4 RUSLE model variables.
a Land cover (C). b Soil
erodibility factor (K). c Slope
length and steepness (LS)
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at the coastal area were likely due to natural geomorphic
changes, as opposed to grazing and camping, as these
activities are not typically conducted along the tidal flat
due to the muddiness, high salinity, and difficulty of
access. The erosion rate was still higher at the desert
areas, and it varied substantially between unfenced (high
to very high, avg. = 703 m3/km2/year) and fenced DMZ
sites (very low to low, avg. = 313 m3/km2/year)
(Fig. 7a). Vegetation cover greatly influenced the
modeled erosion for the desert area unfenced (3% veg-
etated surface in unfenced versus 88% in fenced).

Sensitivity analysis indices showed that the vegeta-
tion cover (y6 and y7) was the most influential factor to
the final output with the highest sensitivity index
(0.569). Surface geology (y1) comes next with an index
of 0.281; soil factor (y2) had a sensitivity index of 0.143
and runoff (y4) had 0.093. However, sheet erosion was
the most common erosion type (y8) in the study area,
and it was less influential on the output (0.021) as
compared with other possible erosion types such as
gully erosion. Topography (y5) only slightly affected
the output (0.0003), as the study area is mostly flat with
low slopes (Fig. 8). The simulation showed that by
increasing vegetation cover from 3 to 37% at the

unfenced area, soil loss could decrease from 703 to
478 m3/km2/year (Fig. 7).

EPM model

The calculated soil loss for the EPM model varied from
9 to 1252m3/km2/year and was also classified from very
low to very high (Fig. 5b). Approximately 65% of the
total area ranged between low and very low potential
soil losses, 12% of the surface was moderately, and 19%
was high–very high. Also similar toMPSIAC, the EPM-
based erosion was high at the desert area, with large
differences between fenced (223 m3/km2/year) and un-
fenced sites (1051 m3/km2/year) (Table 3). The potential
soil loss at the coastal area was almost similar between
the fenced and unfenced sites (Fig. 7b). At the coastal
area, the degree of soil loss ranged from moderate to
high. The average soil loss was 682 m3/km2/year at the
unfenced and 587 m3/km2/year at the fenced site. Veg-
etation cover highly influenced the modeled erosion at
the fenced and at some parts of the unfenced area as well
as soil types also influenced the model as areas with clay
soils were less affected compared with sandy soils. It

Fig. 5 Potential soil loss map. a MPSIAC model. b EPM model. c USLE model

Table 2 Average annual coefficient for effective factors and soil loss for MPSIAC model

Effective factors Geology Soil Climate Runoff Topography Land use Erosion type Total score Soil loss m3/km2/year

Coastal 3.77 2.76 4.72 3.06 0.03 19.99 2.9 27.2 470

Coastal (fenced) 2.9 2.82 4.72 2.62 0.3 17.25 3.1 36.1 423

Terrestrial 1.4 2.06 4.72 2.61 0.14 18.21 4.2 31.6 703

Terrestrial (fenced) 1.8 3.3 4.72 2.44 0.12 0.046 1.25 13.8 310
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was also seen that erosion rates were not high at the
coastal area, which was mostly considered moderate.

Sensitivity analysis (Fig. 8b) showed that land use
and vegetation cover (Xa) highly influenced the EPM
model output. Also similar, the simulated increase in
vegetation decreased the rates of soil erosion at the
fenced site. Geology and soils (Y) came next; slopes
(I) did not influence the model output as the study area is
considered a flat area with slope ranges from 0 to 5%.

RUSLE model

The RUSLE showed different results compared with
MPSIAC and EPM (Fig. 5c). Around 94% of the total

area ranged from very low to low erosion rate and 6%
ranged from moderate to very high. This model did not
show any variation between the classes, and 94% of the
total areas were concentrated in the low erosion zone.
The degree of soil loss was also similar between the
fenced (344 m3/km2/year) and unfenced area (327 m3/
km2/year) at the coastal site (Fig. 7c), but some differ-
ences were seen at the desert fenced versus unfenced
sites, which had an average of 345 m3/km2/year for the
fenced and 1560 m3/km2/year for the unfenced area
(Table 4). The results also showed that each of the four
variables had similar influence on the output (Fig. 8c).

FRAGSTATS class matrix analysis for empirical
models

Results of FRAGSTATS class metrics showed variation
between the three models. The total area for each class
was somewhat consistent for the MPSIAC model as
39% of the total area was considered as high potential
soil loss, 3% were considered low, but the remaining
classes were almost similar at around 20%. The total
area for the EPM and RUSLE classes differed more
greatly in general, with around 65% of total area of the
EPM model was considered very low to low and more
than 90% of the total area at the RUSLE was considered
very low to low (Fig. 9a).

The MPSIAC model also had the highest patch num-
ber and density, and was relatively consistent among the
five erosion levels. However, patch number and density
varied more greatly between classes in the EPM and
RUSLE. The EPM model had a higher patch density
among all classes as compared with the RUSLE, except
at the moderate erosion level, which was higher for the
USLE (Fig. 9b, c).

The results also showed that the erosion classes in the
MPSIAC model were more evenly distributed within
the five classes, since the patch area distribution was
fairly consistent among the five classes. However, the
classes within the EPM and RUSLE were mostly con-
centrated at the low erosion level (Fig. 9d). The
MPSIAC and EPM model had similar shape index
values among the five classes though with a slightly
higher value at the very high level of erosion, which
illustrates that all classes had the same shape complex-
ity. However, the shape index varied much more strong-
ly with RUSLE across the classes, though showing the
same generally increasing pattern among the classes
(Fig. 9e). Overall, the FRAGSTATS results illustrate

Fig. 6 Comparison between soil loss for coastal and desert areas.
a MPSIAC. b EPM. c RUSLE
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that the MPSIAC model produced output with more
evenly distributed classes of erosion, yet within these
classes, there were more individual patches and a greater
density of them, suggesting that the MPSIAC results
were more finely detailed as compared with the other
models.

Discussion

Response of soil erosion models

The MPSIAC and EPM models produced somewhat
similar results, but the MPSIAC model presented more
logical and well-resolved spatial results. The soil factor
was more effective in the MPSIAC model; it showed
that erosion rates were higher at the coastal area, which
is indeed the case as it is covered with clay soils with
low infiltration rate and high runoff rates. Also in the
MPSIAC, the desert areas with low vegetation fell with-
in the high erosion risk class. In contrast, the EPM
model produced a low erosion rate in some parts of the

desert area, especially those that were covered with
sandy to loam soils with a high runoff rate, which could
be unrealistic, especially with the absence of vegetation
cover. The MPSIAC model also presented better spatial
detail, with a higher patch number and density and
higher evenness across all classes for the various
FRAGSTATS metrics, when compared with EPM and
RUSLE. The reasons for this result are likely that the
higher number of input variables covers a higher num-
ber of independent erosional processes as well as the
fact that the model was designed for arid and semi-arid
lands in the USA. The MPSIAC model is also more
quantitative compared with the EPM since the EPM
depends on tables to estimate the coefficient of the
factors, and then these coefficients were used in
equations to estimate the potential soil loss. However,
the MPSIAC factors were estimated using equations,
which provide more accurate results. For these
reasons, the MPSIAC model should be considered the
superior model to assess and map soil erosion in arid
regions such as Umm Nigga. Moreover, the results
calculated by the MPSIAC model are in better

Fig. 7 Vegetation cover
simulation. a Soil erosion map
with 3% vegetation cover at the
unfenced area. b Soil erosion map
after increasing vegetation cover
at the unfenced area to 37%. c
Potential soil loss decreased from
703 to 478 m3/km2/year with
increase in vegetation cover
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accordance with those of the studies of Renard et al.
( 1 9 97 ) a nd Rahman i , Had i a n Amr i , a n d
Mollaaghajanzadeh (2004) as it showed realistic results
in other regions such as arid and semi-arid lands in Iran.

The RUSLE presented unrealistic results, as all four
factors had the same sensitivity, but moreover, the loca-
tions with high erosion risks were most strongly

correlated with slope length and steepness—an unreal-
istic result since the study area is a flat open landscape.
This model was designed for agricultural areas in the
USA, and so this conclusion should not be surprising.
For these reasons, the RUSLE was deemed an unsuit-
able model for the UmmNigga study area and likely for
other arid lands such as those found in Kuwait.

Why do the model responses differ?

Our study showed that the MPSIAC model is likely the
superior model, when compared with EPM and USLE
models. However, this may not always be the case, as it
depends on the region and condition in which the model
was developed. Empirical models are based on the
determination of the significant relationship between
model input and model output. The realistic response
of the MPSIAC model in our study is likely due to the
fact that model was designed for arid and semi-arid
lands in the USA (Bagherzadeh & Daneshvar, 2013).
However, this does not mean that RUSLE is always
unrealistic, as it showed reasonable results when applied
for forest regions with high slope percentage (Csáfordi
et al., 2012; Terranova, Antronico, Coscarelli, &
Iaquinta, 2009) and agriculture areas (Angima, Stott,
O’neill, Ong, & Weesies, 2003; Fu, Chen, & McCool,
2006; Meusburger et al., 2013; Ozsoy & Aksoy, 2015).

Differences among model outputs may also be due to
the erosional processes dominant at different spatial and
temporal scales, with each representing a somewhat
different mix of erosional processes. Models that were
designed for different regions such as the RUSLE,
which was designed for agriculture areas in the USA,
differ in the mix of erosional process compared with arid
ecosystems. In addition, most empirical models lump a
number of processes together and describe them as a
signal mathematical or logical relationship, for example,

Fig. 8 Results of sensitivity analysis for input variables. a
MPSIAC. b EPM. c RUSLE. Higher values indicate a higher
sensitivity to an input parameter

Table 3 Average coefficient for effective factors and soil loss for EPM model

Effective
factor

The coefficient of rock
and soil (Y)

The land use
coefficient (Xa)

The coefficient for present
erosion type (Ψ)

Average- land slope in
percentage (I)

Z Soil loss
m3/km2/year

Coastal 1.4 1 0.5 0.1 1.07 682

Coastal
fenced

1.4 0.8 0.5 0.9 0.9 587

Terrestrial 1.2 0.9 0.56 0.42 1.31 1051

Terrestrial
fenced

1.3 0.2 0.56 3.37 0.4 223
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the older USLE. The advantages of such models are
their simplicity in term of data requirements and com-
putation (Harmon & Doe, 2001). However, the individ-
ual modeled processes cannot be disaggregated or
changed, which is a problem if the model was designed
for a different location or spatial scale. Moreover, em-
pirical relationships are often calibrated for a particular
dataset that is only valid for the dataset in which they
were derived from (Ghadiri & Rose, 1992; Hudson,
1993). The ideal approach is for each country or region
to have their own model, for example, the Soil Loss
Estimation Model for Southern Africa (SLEMSA) and
the European Soil Erosion Model (EUROSEM)
(Hudson, 1993).

Factor models are considered empirical models in
that the variables are represented by a quantified factor
and are combined together by adding them up or multi-
plying them together (Hudson, 1993). The MPSIAC
and RUSLE could be considered as factor models since
the scoring of each factor is created based on equations;
then, the scores are used in the final equation to predict
the amount of soil loss. However, the EPM model
depends on tables when selecting a coefficient score,
and then these scores are added in an equation to calcu-
late the amount of soil loss. Moreover, The MPSIAC
model contains the highest number of factors influenc-
ing the erosion processes.

Can native vegetation control soil erosion?

Our results indicated that vegetation cover plays an
important role in controlling soil erosion. In the
MPSIAC model, the erosion was most sensitive to this
factor, as was demonstrated by the difference between
the fenced DMZ and the unfenced portion of the desert
areas. The fenced area ranged from low to very low soil
loss, as compared with high to very high at the unfenced
area. Previous studies have similarly concluded that

vegetation is a major driver for the MPSIAC model
(BehnamA, ParehkarB, & PaziraC, 2011; Ilanloo,
2012). For this reason, it is likely important to restore
the vegetation in the desert unfenced areas. Somewhat
conversely, the high amount of erosion that occurred in
the coastal areas could be considered natural (Abdullah
et al., 2016) and thus re-vegetation is not a relevant or
likely outcome.

Limitations

Judgments on how well the models perform are usually
made by comparing the output with observed data from
the field (Harmon & Doe, 2001). Since we did not
measure soil erosion in the field or lab, we are unable
to judge the accuracy of the potential soil loss values for
each model. Direct field measurements of surface soil
erosion will be required to confirm the results of our
model evaluation work. With this verification in mind, it
might become necessary to modify or calibrate the
MPSIAC model in order to get more accurate results.
Lal (1994) discussed the critical nature of continuous
simulation modeling in predicting erosion reliably, stat-
ing that long-term continuous simulationmay be needed
in order to quantify erosional responses within 10% of
the field values. Therefore, it is highly recommended to
integrate field-based experiments with lab-based spatial
analysis and modeling in future research.

For Kuwait, it will be important to provide further
calibration between winter storms and summer storm
conditions. Also, calibration for bare soils may also not
be applicable for mature crop stands (Harmon & Doe,
2001). Models cannot fully represent all details in the
natural world, but simultaneously, it is not possible to
use field samples only to quantify and map soil erosion
across a large area, by making assumptions that the
landscape is homogenous between each sample. There-
fore, models are a critical tool in estimating soil erosion.

Table 4 Average coefficient for effective factors and soil loss for RUSLE model

Effective factors K factor LS factor C factor R factor Soil loss m3/km2/year

Coastal 0.17 0.49 1 0.92 327

Coastal fenced 0.16 0.40 0.89 0.92 344

Terrestrial 0.18 7.2 0.9 0.92 1560

Terrestrial fenced 0.18 9.25 0.3 0.92 345
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Conclusion

The MPSIAC model was the superior model for our
study site and when combined with the findings of other
authors suggests that arid regions should avoid use of
the EPM and RUSLE when possible. The MPSIAC
produced the most even and detailed results, likely
because of the greater number of modeled factors that

represents the various mechanisms that affect soil ero-
sion as well as the fact that the model was designed for
arid and semi-arid lands in the USA. The MPSIAC
model is also more quantitative compared with other
models. For all of the models, vegetation (ideally native
plants) played an important role in decreasing the
amount of soil erosion and controlling desertification.
Thus, we suggest restoring the unfenced areas at Umm

Fig. 9 Class matrix analysis. a Total area. b Patch number. c Patch density. d Mean patch area distribution. e Shape index. f Aggregation
percentage
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Nigga, Kuwait, by restricted grazing and access and by
protecting native plant species. Practices that limit veg-
etation loss could potentially lower soil erosion by 32%,
as shown by our results. Moreover, the output maps
generated by this study could be used to select suitable
locations for re-vegetation efforts as based on the rated
erosion rates or compounding factors mapped by each
independent input factor. In summary, the MPSIAC
spatial model is a useful predictive tool for estimating
soil erosion across large-extent, arid landscapes.
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