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Abstract The study presents a new methodology to
quantify spatiotemporal dynamics of climate change
vulnerability at a regional scale adopting a new concep-
tual model of vulnerability as a function of climate
change impacts, ecological stability, and socioeconomic
stability. Spatiotemporal trends of equally weighted
proxy variables for the three vulnerability components
were generated to develop a composite climate change
vulnerability index (CCVI) for a Mediterranean region
of Turkey combining Landsat time series data, digital
elevation model (DEM)-derived data, ordinary kriging,
and geographical information system. Climate change
impact was based on spatiotemporal trends of August
land surface temperature (LST) between 1987 and 2016.
Ecological stability was based on DEM, slope, aspect,
and spatiotemporal trends of normalized difference veg-
etation index (NDVI), while socioeconomic stability
was quantified as a function of spatiotemporal trends
of land cover, population density, per capita gross do-
mestic product, and illiteracy. The zones ranked on the
five classes of no-to-extreme vulnerability were identi-
fied where highly and moderately vulnerable lands cov-
ered 0.02% (12 km2) and 11.8% (6374 km2) of the study

region, respectively, mostly occurring in the interior
central part. The adoption of this composite CCVI ap-
proach is expected to lead to spatiotemporally dynamic
policy recommendations towards sustainability and tai-
lor preventive and mitigative measures to locally specif-
ic characteristics of coupled ecological–socioeconomic
systems.

Keywords Spatiotemporal trends . Vulnerability
hotspots . Sustainability . Time series data .
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Introduction

Globally, atmospheric carbon dioxide (CO2) concentration
varied between 180 and 300 ppm by volume (ppmv) over
the last 800,000 years and now is at an unprecedented level
of 402 ppmv according to the National Ocean and Atmo-
spheric Administration (NOAA) Mauna Loa Observatory
(http://www.esrl.noaa.gov/gmd/ccgg/trends/) (NRC 2010).
The increase in mean global air temperature associated
with the increasing concentrations of atmospheric CO2

has been by 0.72 to 1.06 °C since its preindustrial level
and is projected to be by 1.67 to 2.78 °C (at ~550 ppmv)
and by 2.78 to 5.56 °C (at ~625 and 850 ppmv) for lower
and higher emission scenarios, respectively (IPCC 2013).
Individual impacts of global climate change include and
are not limited to CO2 fertilization, increased temperature,
extreme events (e.g., drought, flooding, and storm), sea
level rise, altered biogeochemical cycles, and shifting spa-
tiotemporal dynamics of ecosystem structure and function
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(Allan and Soden 2008; Diffenbaugh et al. 2013). Not only
these individual effects but also their interaction effects
differ spatiotemporally depending on climate change vul-
nerability of coupled ecological–socioeconomic systems
(Wali et al. 1999; Rogelj et al. 2012).

The concept of climate change vulnerability and its
three determinants (exposure, sensitivity, and adaptive
capacity) for the selection of assessment indicators were
first proposed by the Intergovernmental Panel on Cli-
mate Change (IPCC) Third Assessment Report (IPCC
2001) and implemented by the IPCC Fourth Assessment
Report (IPCC 2007). Climate change vulnerability can
be defined as the degree to which a coupled ecological–
socioeconomic system can secure its stability against (its
resilience and resistance to) negative interaction effects
of climate change (Williamson et al. 2008; Evrendilek
et al. 2011; Young et al. 2015). Climate change vulner-
ability is a dynamic ecosystem state that spatiotempo-
rally changes in response not only to the regime (nature,
magnitude, frequency, and severity) of climate change
impacts but also to the degree of ecological and socio-
economic stabilities (Evrendilek et al. 2011; Birkmann
et al. 2013). Ecological and socioeconomic stabilities
are used here to refer to the coupled ecological and
socioeconomic capacity to cope with and mitigate cli-
mate change impacts. Climate change vulnerability of a
coupled ecological–socioeconomic system is anticipat-
ed to increase to the extent which the ecosystem is not
ecologically and socioeconomically resilient and resis-
tant (stable) to climate change impacts when exposed to
those impacts. Ecological and socioeconomic stabilities
can be quantified using ecological, demographic, eco-
nomic, social, institutional, technological, and manage-
ment proxy variables. Quantification and identification
of climate change vulnerability are vital to setting prior-
ities, allocating resources, identifying hotspots of cli-
mate change vulnerability, preparedness, coping with
anthropogenic drivers of climate change, and enhancing
mitigative capacities, in particular, at locations where
immediate interventions may be required.

Remote sensing (RS) and geographical information
system (GIS) technologies have emerged as the tools for
monitoring terrestrial and aquatic ecosystems over time
and space with little cost and effort. There exist various
assessment studies that have attempted to characterize
vulnerability combining both social and ecological indica-
tors and RS data at different spatiotemporal scales in
related literature (Füssel and Klein 2006; Ostrom 2009;
Brondizio et al. 2016; Sebesvari et al. 2016). For example,

Bai et al. (2014) combined GIS, climate change projec-
tions, and observed socioeconomic data on a regional scale
in order to characterize vulnerability as a function of its
underlying components of exposure, sensitivity, and adap-
tive capacity in order to assist in decision-making and
stakeholders. Murthy et al. (2015) computed agricultural
drought vulnerability index in India using 11 ecological
indicators of the same vulnerability components and
moderate-resolution imaging spectroradiometer (MODIS)
data between 2001 and 2012. Liu et al. (2013) assessed
drought vulnerability of a coupled social–natural system in
China using Satellite for Observation of Earth (SPOT)-
derived normalized difference vegetation index (NDVI)
(1998–2008), digital elevation model (DEM),
precipitation and temperature data, and socioeconomic
data. Ahsan and Warner (2014) developed socioeconomic
vulnerability index in coastal Bangladesh using a total of
weighted 27 indicators of the same components. Young
et al. (2015) developed a tool called the NatureServe
Climate Change Vulnerability Index (CCVI) that has been
widely used in North America to assess vulnerability of
aquatic and terrestrial plant and animal species to climate
change.

Although the selection of appropriate and readily avail-
able indicators for the social, institutional, economic, or
ecological components of a given ecosystem changes de-
pending on individual studies in related literature, the
major common issues with such vulnerability assessments
include the uses of spatiotemporally static versus dynamic
factors and species versus ecosystem scale. Therefore,
there is still an urgent need to fill in the knowledge gaps
about how to quantify a spatiotemporally dynamic CCVI
for coupled ecological–socioeconomic systems in repro-
ducible and generalizable ways. Following this logic, the
objective of the study was to quantify spatiotemporal
dynamics of climate change vulnerability of a highly com-
plexMediterranean region over the period of 1987 to 2016
by integrating RS data, GIS techniques, and trends of nine
socioeconomic and ecological proxy variables into a new
composite CCVI.

Materials and methods

Study region

The study region is located between 36° to 39°N lati-
tudes and 29° to 33°E longitudes and covers a total area
of 68,452 km2, with its terrestrial and sea components of
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54,188 and 14,264 km2, respectively, at an elevation
range from sea level to 3067 m above sea level (asl),
the highest peak of Mountain Kizlar Sivrisi (Antalya) of
the western Taurus mountain range running parallel to
the Mediterranean coast (Fig. 1). The administrative
units of the study region include 9 provinces and 59
districts. Approximately, 9.69 million people (12.3% of
the national population) dwelled in the study regionwith

population density and population growth rate of 128
people km−2 and 0.67% in 2015, compared to the na-
tionally corresponding values of 102 people km−2 and
0.71% in 2015, respectively (TSI 2015). The study
region experiences a Mediterranean climate with long,
dry summers and short rainy seasons during the autumn
and winter characterized by 300 to 1200 mm of annual
rainfall or precipitation. According to long-term

50 km 

3067 m 

Study region 

Fig. 1 Geographical location, altitudinal range, and provincial administrative divisions of the study region (in red) with the six frames of
Landsat images (in green)

Environ Monit Assess (2017) 189: 29 Page 3 of 15 29



meteorological data (1968–2013) from 44 stations
(TSMS 2013), mean annual values across the study
region ranged from −4 °C for minimum air temperature
to 30.6 °C for maximum air temperature, from 5.4 to
8 .5 h for sunshine dura t ion , f rom 10.5 to
17.5 MJ m−2 day−1 for solar radiation, from 17.9 to.
97.5% for relative humidity, and from 988 to 2190 mm
for potential evapotranspiration.

Climate change vulnerability index

A new composite CCVI was developed in this study
following the sequential three stages: (1) selection of
real-time proxy variables and detection of their spa-
tiotemporal trends, (2) normalization of the proxy
variables to a common scale, and (3) raster overlay
analysis. First, real-time proxy variables and their
trends were identified taking into account (1) and
spatiotemporally dynamic data availability and (2)
the underlying conceptual components of vulnera-
bility: (1) climate change impacts, (2) ecological
stability, and (3) socioeconomic stability (Table 1).
Climate change impact was represented as spatio-
temporal trends of August land surface temperature
(LST) between 1987 and 2016. Ecological stability
of the study region was characterized using the
following four proxy variables that were remotely
sensed: (1) DEM, (2) slope, (3) aspect, and (4)
spatiotemporal trends of NDVI between 1987 and
2016. Socioeconomic stability of the study region
was quantified detecting spatiotemporal trends of the
following four proxy variables: (1) population den-
sity (number of people km−2) between 1990 and
2015, (2) illiteracy level (number of illiterate peo-
ple) between 2009 and 2015, (3) gross domestic
product (GDP) per capita (USD person−1) between
1987 and 2011, and (4) RS land cover (LC) (km2)
between 1987 and 2016. The census time series data
(population density, illiteracy level, and GDP per
capita) were sourced from the Turkish Statistical
Institute (TSI) and were converted to the continuous
surfaces using the interpolation method of ordinary
kriging. Both remotely sensed and interpolated time
series data instead of using single-time continuous
surfaces of the real-time proxy variables were used
to detect and integrate spatiotemporal trends of
proxy variables into the composite CCVI develop-
ment. Negative and positive values obtained from
the subtraction between the recent and past images

indicated decreasing and increasing trends of the
proxy variables, respectively.

Second, weights were assigned neither to the three
vulnerability components of climate change impact,
ecological stability, and socioeconomic stability nor to
their proxy variables in order to minimize subjectivity.
The spatiotemporally dynamic and static trends of the
equally weighted nine proxy variables were reclassified
and normalized assigning the discrete integer values
from 0 to 4 to the pixels as follows: 0 = not vulnerable,
1= less vulnerable, 2=moderatelyvulnerable, 3= highly
vulnerable, and 4 = extremely vulnerable (Table 1). In so
doing, the statistical distributions of pixel values and
their clusters inherent within the individual proxy vari-
ables were explored to identify natural class breaks that
group similar values using the graphical tool of histo-
gram equalization.

Finally, a raster overlay analysis was carried out by
which the normalized values of the individual maps
were aggregated per pixel so as to form the composite
CCVI values that range from 0 to 20 for not vulnerable,
>20–40 for less vulnerable, >40–60 for moderately vul-
nerable, and >60–80 for highly vulnerable to >80–100
for extremely vulnerable (Table 1).

Processing of remotely sensed data and interpolations

Climate change impact was represented as spatio-
temporal trends of August LST between 1987 and
2016 derived from the two Landsat images: Landsat
5 Thematic Mapper (TM) in 1987 and Landsat 8
Operational Land Imager (OLI) and Thermal Infra-
red Sensor (TIRS) in 2016. Landsat 5 and 8 data
have temporal and spatial resolutions of a 16-day
revisit cycle and 30 m, and 6 and 11 multispectral
bands of 0.45 to 12.5 and 0.43 to 12.51 μm, respec-
tively. The Landsat sensors were preferred in this
study over others owing to its long-term time series
data archive provided freely by the United States
Geological Survey (http://earthexplorer.usgs.gov/).
Six frames (paths/rows = 177–178–179/33–34)
were obtained for each of the Landsat 5 TM and
Landsat 8 OLI and TIRS images to cover the entire
study region. The Level 1 Terrain-corrected (L1T)
Landsat 5 TM and Landsat 8 OLI and TIRS images
included atmospheric correction, georectification,
and georeferencing to the Universal Transverse Mer-
cator (UTM) projection system (WGS84 datum,
Zone 36N). The Landsat 5 and 8 data were acquired
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Table 1 Nine proxy variables and three vulnerability components of composite climate change vulnerability index (CCVI) used in this
study

Index Proxy
variable

Unit Year Source Ranges and trends of
spatiotemporal change

Class
value

CCVI
value

Impact LST °C 1987–
2016

Landsat 5 and 8 <−20 2 40–60

−20 to −10 1 20–40

−10 to 10 0 0–20

10 to 20 3 60–80

>20 4 80–100

Ecological
stability

DEM m 2016 ASTER 0–500 4 80–100

500–1000 3 60–80

1000–1500 2 40–60

1500–2000 1 20–40

>2000 0 0–20

Slope Degree 2016 ASTER 0–2 4 80–100

2–6 3 60–80

6–20 0 0–20

20–30 1 20–40

>30 2 40–60

Aspect Degree 2016 ASTER 300–60 0 0–20

60–120 2 40–60

120–180 4 80–100

180–240 3 60–80

240–300 1 20–40

NDVI −1 to 1 1987–
2016

Landsat 5 and 8 <−0.5 4 80–100

−0.5 to −0.3 3 60–80

−0.3 to −0.2 2 40–60

−0.2 to −0.1 1 20–40

>−0.1 0 0–20

Socioeconomic
stability

Illiteracy Number of
people

2009–
2015

Ordinary kriging
based on TSI data

>2500 4 80–100

2500–1500 3 60–80

1500–1000 2 40–60

1000–0 1 20–40

<0 0 0–20

Population
density

Number of
people km−2

1990–
2015

Ordinary kriging
based on TSI data

>550 4 80–100

550–350 3 60–80

350–150 2 40–60

150–50 1 20–40

<50 0 0–20

Per capita
GDP

USD 1987–
2011

Ordinary kriging
based on TSI data

>11,000 0 0–20

11,000–10,000 1 20–40

10,000–9000 2 40–60

9000–8000 3 60–80

<8000 4 80–100

LC km2 1987–
2016

Landsat 5 and 8 Decrease in W 4 80–100

Decrease in CMTV 3 60–80

Decrease in SNTV 2 40–60
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on August 26, 1987, and August 26, 2016, respec-
tively, according to the least possible degree of
cloud cover, cloud shadows, or snow cover over
the study region. Since the Landsat 5 and 8 data
have a different radiometric resolution of 8 and 12
bits (16 bits when processed into Level 1 data prod-
ucts), respectively, all the datasets were normalized
over an 8-bit value range from 0 to 255 for spatio-
temporal comparability performing the following
linear min–max normalization:

v
0 ¼ v−min

max−min
maxnorm−minnormð Þ þminnorm ð1Þ

where max and min refer to the original value range,
while maxnorm and minnorm are the new value range
of the normalized dataset (v′).

The August LST maps were generated using the
thermal infrared (TIR) bands 6 (10.4–12.5 μm)
(120 m) and 10 (10.6–11.19 μm) (100 m) of the
Landsat 5 and 8 images, respectively, based on the
following standard procedures: (1) calculation of
land surface emissivity (ε), (2) conversion of digital
numbers (DNs) to spectral radiance (Lλ), (3) conver-
sion of Lλ to brightness temperature (Tb), and (4)
conversion of Tb to LST. The Landsat TIR data were
geometrically transformed to real-world coordinates
and converted to 30 m using UTM projection and
WGS84 datum.

Land surface emissivity (ε) per pixel must be known
in order for LST per pixel to be estimated and was
extracted using NDVI values of bare soil, dense vege-
tation, and mixture of bare soil and vegetation; thus
(Sobrino et al. 2004),

ε ¼ εv*Pvþ εs* 1−Pvð Þ þ dε ð2Þ
where εv and εs are vegetation (0.99) and soil (0.97)
emissivity, respectively, Pv is the proportion of vegeta-
tion, and dε is the surface roughness (geometric

distribution effect of reflection of natural surfaces). Pv
was derived from the NDVI values using the following
equation:

Pv ¼ NDVI−NDVImin

NDVImax−NDVImin

� �2

ð3Þ

The NDVI values of −1 to 1 were computed using
measured reflectance values in the red and near infrared
(NIR) portions of the electromagnetic wavelength
(Eq. 4) which correspond to bands 3 (0.63–0.69 μm)
and 4 (0.64–0.67 μm) for Landsat 5 and bands 4 (0.76–
0.9 μm) and 5 (0.85–0.88 μm) for Landsat 8. Red and
NIR bands are the ones most affected by chlorophyll
absorption and, thus, by the surface density and health
of green vegetation.

NDVI ¼ NIR−RED
NIRþ RED

ð4Þ

The pixel DN values of Landsat 5 and 8 were con-
verted to Lλ (W m−2 ster−1 μm−1) using the following
equations (Eqs. 5 and 6) (Chander et al. 2009; Barsi
et al. 2014), respectively:

Lλ for Landsat 5

¼ Lmax−Lmin

Qcalmax−Qcalmin

� �
* Qcal−Qcalminð Þ þ Lmin ð5Þ

where Lmax and Lmax are the spectral radiance scaled to
Qcalmax and Qcalmin (W m−2 ster−1 μm−1), respectively.
Qcal is the quantized calibrated DN, with Qcalmin and
Qcalmax referring to the minimum and maximum quan-
tized DN for band 6, respectively.

Lλ for Landsat 8 ¼ ML*Qcalþ AL−Qi ð6Þ
where ML is the band-specific multiplicative rescaling
factor; Qcal is the quantized calibrated DN for band 10,
AL is the band-specific additive rescaling factor, and Qi

is the correction for band 10.

Table 1 (continued)

Index Proxy
variable

Unit Year Source Ranges and trends of
spatiotemporal change

Class
value

CCVI
value

Decrease in BU 1 20–40

(No) change in BL and no changes and
increases in the other LCs

0 0–20

LST land surface temperature,DEM digital elevation model, NDVI normalized difference vegetation index, TSI Turkish Statistical Institute,
GDP gross domestic product, LC land cover, W water body, CMTV cultivated and managed terrestrial vegetation, SNTV (semi-)natural
terrestrial vegetation, BU built-up land, BL bareland
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The TIR band data were converted from Lλ to black-
body Tb in degree Celsius based on the assumption that
spectral emissivity of the black body =1 and the earth’s
surface is a black body as follows (Coll et al. 2010):

Tb ¼ K2

Ln
K1

Lλ

� �
þ 1

� � ð7Þ

where K1 andK2 are the calibration constants of Landsat
5 and 8.

The blackbody Tb values were converted to LST
using the following equation (Weng et al. 2004):

LST ¼ Tb

1þ λ*
Tb

ρ

� �
*Lnε

−273:15 ð8Þ

where λ is the wavelength of emitted radiance
(11.45 μm for Landsat 5 and 10.895 μm for Landsat
8). ρ (0.01438 mK) is generated from ρ = h*c/σ
(h = Planck’s constant = 6.626 * 10−34 Js, c = light
velocity = 2.998 * 108 m s−1) and σ = Boltzmann con-
stant = 1.38 * 10−23 J K−1). LST values in Kelvin were
expressed in degree Celsius adding the absolute zero of
−273.15 °C.

Slope, aspect, and DEM data were derived from the
Advanced Spaceborne Thermal Emission and Reflec-
tion Radiometer (ASTER) Global Digital Elevation
Model (GDEM) (30 m resolution) acquired from
http://gdex.cr.usgs.gov/gdex/. Twenty-nine-year spatio-
temporal trends of LC changes were detected from the
images of the two selected years identifying the follow-
ing five LCs: built-up land (BU), cultivated and man-
aged terrestrial vegetation (CMTV), (semi-)natural ter-
restrial vegetation (SNTV), water body (W), and
bareland (BL). The multispectral image LC classifica-
tion was performed using the maximum likelihood al-
gorithm. Accuracy of the LC classifications on a per
pixel basis was measured using the matrix of producer’s
and user’s accuracies and kappa statistics. Producer’s
accuracy (PA) is the proportion of the pixels that are a
particular category according to the reference data (the
best assessment of ground condition) that are also
mapped as that category (Demirkesen 2008). User’s
accuracy (UA) is the proportion of the pixels mapped
as a particular category that are actually that category
according to the reference data (Liu et al. 2007). Kappa
statistic reflects the difference between actual agreement
and the agreement expected by chance (Demirkesen

2008). A shapefile consisting of administrative bound-
aries (province and district) of the study region was
obtained as ancillary data from the General Command
of Mapping (http://www.hgk.msb.gov.tr/). All
spatiotemporal analyses and statistics including the
final composite CCVI calculation were calculated
using ArcGIS 10.4 and IDRISI Selva 17.0 software.

Results and discussion

A spatiotemporally dynamic proxy of climate change
impacts

Climate change impacts including increased tempera-
ture, increased atmospheric CO2 concentration, and ex-
treme meteorological events such as droughts, flooding,
and storms are already happening in a spatiotemporally
dynamic way across the coastal-to-high mountain cli-
mate gradients of the study region. The regime (nature,
magnitude, rate, and severity) of increased temperature
and its direct and indirect influence pathways are
exerting multiple interacting pressures to ecosystems
such as adverse impacts on precipitation and evapo-
transpiration regimes, water quality and budget, ecosys-
tem productivity, biodiversity, and stability and welfare
of coupled social–ecological systems. Spatiotemporally
dynamic rates of increased temperature are exerting and
will continue to exert adverse impacts differently to the
socioeconomic activities of the study region ranging
from fisheries and tourism to agricultural sectors among
others. Therefore, actual spatiotemporal changes be-
tween 1987 and 2016 in LST of August as the month
with the highest temperatures recorded across the study
region were selected as the most pressing composite
stressor affecting climate change vulnerability that com-
posites the trajectories of the driving forces of green-
house gas (GHG) emissions, land-use and land-cover
(LULC) changes, and feedbacks in the global climate
system. Within the study region, long-term rates of
spatiotemporal changes in actual August LST could as
well be extrapolated as predictions for the rates of in-
creases in near-future temperature.

The spatial variability of the August LST across the
study region was higher in 1987 with the range of −5.8
to 56.3 °C than in 2016with the range of −7.3 to 50.5 °C
(Fig. 2). However, the spatial pattern of the August LST
showed considerable differences, and the areas with
August LST >40 °C were estimated to increase from
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1286 to 5963 km2 at a rate of ca. 167 km2 year−1 be-
tween 1987 and 2016 mostly in the northeastern part
and the south central coast of the study region. About
0.03 and 2.3% of the study region were found to face
extremely and highly vulnerable exposure due to in-
creased LST based on the spatiotemporal trends
(Fig. 3). Mean LST values in the month of August for
the study region were estimated at 30 ± 5 °C in 1987 and
32 ± 5 °C in 2016. The highest August LST values in
2016 were found towards the northwestern lowlands of
the Antalya province and in Konya, where NDVI values
were lower. The lowest August LST values were found
towards the northeastern region of the urban area. Lower
LST values in 2016 were concentrated to the northwest-
ern and western highland borders of the Antalya
province.

Spatiotemporally dynamic proxies of ecological
stability

Although many interacting ecological characteristics of
an ecosystem determine its ecological stability, resil-
ience (recovery speed) and resistance (inertia), ecologi-
cal stability in this study was assumed to be dependent
on a composite of NDVI, DEM, slope, and aspect in an
area (Fig. 2). The decreasing spatiotemporal trend of the
Landsat-derived NDVI values between 1987 and 2016
was assumed to be indicative of the declining quantity
(density and cover) and quality (health) of biological
productivity, thus further reducing the quality and func-
tioning of life-supporting capacities of local ecosystems
(Table 1). The maximum value of August NDVI esti-
mated across the study region reached 0.98 in 1987 and
0.66 in 2016 (Fig. 2). The positive NDVI values ap-
peared particularly low in the northern latitudes of the
study region in 1987 and in 2016 (Fig. 2). The negative
NDVI values indicative of water bodies, snow, and ice
declined by 265 km2 from 1445 km2 in 1987 to
1180 km2 in 2016 at a rate of 9.1 km2 year−1. During
the same period, the dense and densest vegetation areas
with NDVI ≥0.5 decreased by 283 km2 at a rate of
9.8 km2 year−1. The highest rate of decline in NDVI
between 1987 and 2016 was found to belong to the
positive NDVI values <0.2 which corresponded to
barelands at a rate of 474 km2 year−1. The areas with
the NDVI values of ≥0.2 to <0.3 and ≥0.3 to <0.5
corresponding to bare soils and sparse vegetation such
as croplands and open spaces increased at rates of 385
and 108 km2 year−1, respectively. The moderately and

highly vulnerable areas due to the spatiotemporal NDVI
trends were estimated to cover 0.1% (51 km2) and 0.6%
(326 km2) of the study region, respectively (Fig. 4). The
minimum NDVI values in 2016 were concentrated in
the northwestern and northeastern directions of the pro-
vincial border of Antalya, whereas the maximum NDVI
values in 2016 were clustered along the coastal belt
(Fig. 2).

Ecological stability was assumed to decrease with the
increase in elevation due to higher risks of coastal inun-
dation with projected sea level rise and increased
drought sensitivity of lower (typically warmer) eleva-
tions with projected air temperature rise (Table 1). Both
flat surfaces and gentle slopes were ranked the most
vulnerable classes due to their ecosystem service as
prime farmlands for food security, respectively, and
were followed by the steepest slope range due to the
highest erosion risk (Table 1). The ranges of the south-
facing aspects were deemed most vulnerable as they are
positively correlated with warmer temperatures because
of the direct incoming solar radiation (Table 1).

Spatiotemporally dynamic proxies of socioeconomic
stability

Socioeconomic stability can be considered to be the
ability or responses of socioeconomic systems to resist
and recover from adverse outcomes in the context of
global climate change and was generally approximated
using such generic indicators as awareness, welfare, and
health. Multiple factors lessen socioeconomic stability
of rural and urban livelihoods such as inadequate attain-
ments of education; organization; natural, human, and
man-made capitals; participatory democracy; techno-
logical advancement; economic development; distribu-
tive justice of income and power; and mitigative actions.
Interaction effects of all these multiple factors can be
considered to be reflected on spatiotemporal changes in
major LCs. As the accuracy metrics for LC classifica-
tion, PA and UA values are presented in Table 2 based
on a total of 250 validation point locations (50 points per
ach LC times five LC classes). Spatiotemporal changes

�Fig. 2 Landsat 5- and 8-derived spatiotemporal dynamics of
August land surface temperature (LST, °C) in a 1987 and b
2016, normalized difference vegetation index (NDVI, −1 to 1) in
c 1987 and d 2016, and land covers (LCs) in e 1987 and f 2016,
respectively, and the classifications of g ASTER-derived digital
elevation model (DEM, m asl) and h ASTER-derived slope
(degree) across the study region
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in LC were detected differencing the 2016 Landsat 8
and 1987 Landsat 5 data. Net rates of changes over the
study period consisted of decreasing trends of SNTV
and BL at the rates of 155 and 92 km2 year−1 and
increasing trends of CMTV, BU, and W at the rates of
234, 10, and 3 km2 year−1, respectively (Table 2).

The temporal decreases in the spatial extents of water
body (W), cultivated and managed terrestrial vegetation
(CMTV), (semi-)natural terrestrial vegetation (SNTV),
and built-up land (BU) were ranked from highest to
lowest in decreasing order of contribution to enhanced
climate change vulnerability, due to higher risks associ-
ated with basic insecurities of water, food, ecosystem
services, and housing, respectively (Table 1). The phys-
ical decline of built-up land was assumed to enhance the
risk of resettlements and displacements of population
along the rural–urban interface such as refugees, as well
as migrants, a further human-induced pressure on desti-
nation ecosystems which in turn decreases socioeco-
nomic stability and thus increases climate change vul-
nerability (Table 1). Consistent with our logic in this
study, Rogers and Xue (2015) reported field evidence
from a drought-prone county of China’s Shanxi Prov-
ince that resettlements regardless of whether or not they

are climate change-induced may be a driver of malad-
aptation that increases more vulnerability than do non-
resettled households due to constrained natural and
man-made capitals. In terms of LC changes, the areas
associated with the highest and second highest compos-
ite CCVI scores occupied 0.2% (114 km2) (extremely
vulnerable) and 4.1% (2217 km2) (highly vulnerable) of
our study region (Fig. 5). However, the areas ranked less
vulnerable did not exist due to the lack of the physical
decline of built-up land during the study period (Fig. 5).

Socioeconomic stability was assessed to decrease as
a function of high population density, low per capita
GDP, high illiteracy level, and decreased built-up land
(Table 1) which were assumed to be associated with
inadequate coping capacity and sensitive socioeconom-
ic conditions (Fig. 5). The interpolation maps generated
using ordinary kriging showed the ranges of 97 to 1289
people km−2 in 1990 and 149 to 1696 people km−2 in
2015with the maximum value in Antalya for population
density; of 910 to 2298 USD in 1987 with the maximum
values in Mugla and Konya and 8335 to 15,174 USD in
2011 with the maximum value in Mugla for per capita
GDP; and of 1013 to 5514 people in 2009 with the
maximum values in Antalya and Denizli and 295 to

50 km 

Denizli Afyonkarahisar
        Konya 

                             Isparta  
Burdur 

Antalya 

Mugla        

             Karaman 

                 Mersin 

Fig. 3 Climate change vulnerability index of spatiotemporal trends of land surface temperature (LST) between 1987 Landsat 5 and 2016
Landsat 8 selected as a composite proxy for climate change impacts
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5786 in 2015 with the maximum values in Burdur for
illiteracy. The moderately vulnerable-ranked areas

covered 1.1, 31.3, and 14.9%, while the highly
vulnerable-ranked areas amounted to 4.6, 26.4, and

100 km 

(b)(a)

(c) (d) 

 Denizli       Afyonkarahisar                  Konya 
         Isparta  

Burdur 

        Antalya 
Mugla      

              Karaman 

   Mersin 

Fig. 4 Climate change vulnerability index of spatiotemporal
trends of a normalized difference vegetation index (NDVI) be-
tween 1987 Landsat 5 and 2016 Landsat 8, b digital elevation

model (DEM), c slope, and d aspect selected as a composite proxy
for ecological stability

Table 2 Accuracy metrics of Landsat-derived land cover (LC) classification used for this study

LC PA (%) UA (%) Kappa 1987 (km2) 2016 (km2) Net change (km2)

CMTV 85 85 85 19,008 25,780 6772

SNTV 90 90 90 20,630 16,139 −4491
W 98 98 98 1030 1117 87

BU 95 95 95 132 430 298

BL 85 85 85 13,388 10,722 −2666
Total 54,188 54,188 100

Negative values denote a net decrease in a land cover

PU producer’s accuracy, UA user’s accuracy, W water body, CMTV cultivated and managed terrestrial vegetation, SNTV (semi-)natural
terrestrial vegetation, BU built-up land, BL bareland
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3.0% of the study region in terms of population density,
per capita GDP, and illiteracy, respectively. Liu et al.
(2013) based socioeconomic vulnerability assessment in
China on such data as per capita cultivated area, physi-
cians per 1000 people, ratio between agricultural and
industrial output, technologists per 1000 people, per
capita savings deposits, per capita business volume of
Post and Telecom Service, population density, and per
capita GDP. Ahsan andWarner (2014) developed socio-
economic vulnerability index in coastal Bangladesh
using such proxy variables as illiteracy, percentage of
population participating in dike construction for adap-
tive capacity, percentage of households below poverty
line, percentage of households lacking access to elec-
tricity and water for sensitivity, and percentage of house-
holds without shelter for exposure.

A spatiotemporally dynamic composite index of climate
change vulnerability

Combining the ecological and socioeconomic proxy vari-
ables of climate change vulnerability indicated that out of
54,188 km2 of the terrestrial land assessed, no land was
ranked extremely vulnerable, 0.02% (12 km2) were highly
vulnerable (climate change vulnerability hotspots), 11.8%
(6374 km2) were moderately vulnerable, 65.3%
(35,370 km2) were less vulnerable, and 22.9%
(12,432 km2) were not vulnerable (Fig. 6). The highest
composite CCVI score was found in the interior central
area of the study region and was associated with the nine
provinces in the following decreasing order: Isparta,
Burdur, Konya, Afyonkarahisar, Antalya, Denizli,
Karaman, Mersin, and Mugla. Similarly in the

100 km 

(a) (b) 

(c) (d) 

Denizli      Afyonkarahisar                  Konya 
        Isparta  
               Burdur 

        Antalya 
Mugla      

              Karaman 

   Mersin 

Fig. 5 Climate change vulnerability index of spatiotemporal
trends of a land cover (LC) between 1987 Landsat 5 and 2016
Landsat 8, b population density between 1990 and 2015, c per

capita gross domestic product (GDP) between 1987 and 2011, and
d illiteracy between 2009 and 2015 selected as a composite proxy
for socioeconomic stability
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identification and mapping of 19 climate change hotspots
in the 9 countries of the Sahel and western Africa,
Hagenlocher et al. (2013) used a spatiotemporally dynamic
composite indicator of cumulative climate change impact
which integrated the four proxy variables of long-term
seasonal temperature trends (1901–2006), long-term sea-
sonal precipitation trends (1901–2006), long-term drought
occurrences (1982–2014), and long-term major flood
events (1985–2014), and the Advanced Very High Reso-
lution Radiometer (AVHRR) images.

Our new approach was based on the net ecosystem-
scale effects of what has been actually observed (whether
be positive and/or negative) (real-time monitoring) in the
long term depending on space and time instead of using
individual effects of climate change on individual compo-
nents of a given ecosystem and, hence, was called com-
posite CCVI. However, as the validity of any new ap-
proach is a function of the number, extent, and frequency
of its applications across different locations and spatiotem-
poral scales, the approach adopted here remains to be

validated elsewhere. On the other hand, there always exist
uncertainties whenever quantifications, predictions, or val-
uations are involved. The differences in radiometric reso-
lution, band wavelengths, and atmospheric conditions
were the main source of uncertainties associated with the
findings of the present study. In addition to the growing
scientific knowledge about drivers of vulnerability of what
ecosystems to what ecosystem (social–ecological)
stressors and their spatiotemporal dynamics, local commu-
nity involvement in monitoring and managing natural
resources is also needed to construct, inform, and strength-
en socially acceptable and spatiotemporally mitigative
public policies and decision-making capacities in face of
present and future effects of climate change.

Conclusions

The Mediterranean regions are considered to be climate
change vulnerability hotspots. The present study

50 km 

 Denizli        Afyonkarahisar                       Konya 
              Isparta  

       Burdur 

                 Antalya 

Mugla      

                    Karaman 

               Mersin 

Fig. 6 Climate change vulnerability index as a spatiotemporally dynamic composite proxy for climate change impact, ecological stability,
and socioeconomic stability
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contributes three innovative concepts to the related lit-
erature of climate change vulnerability: (1) quantifying
vulnerability as a function of impact, ecological stabil-
ity, and socioeconomic stability, (2) integrating the spa-
tiotemporal trends into the composite CCVI, and (3)
using LC changes as a proxy for socioeconomic stabil-
ity. The adoption of a spatiotemporally dynamic CCVI
such as the one used in this study across the world serves
as an early warning system towards identification, pri-
oritization, and preparedness, thus enhancing sustain-
ability (continued self-sufficiency) of ecological–socio-
economic systems. The accuracy, precision, reliability,
and cost-effectiveness of the composite CCVI to cope
with climate change will increase as the availability,
quality, and spatiotemporal resolution of historical time
series data are improved on. This study can be scaled up
or down spatiotemporally to meet specific characteris-
tics of human-induced or natural disturbance regimes.
The effectiveness of the integration of spatiotemporal
trends into the composite CCVI needs to be further
tested over a wider range of different regions.
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