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Abstract In the recent years, dust storms originating
from local abandoned agricultural lands have increas-
ingly impacted Tehran and Karaj air quality. Designing
and implementing mitigation plans are necessary to
study land use/land cover change (LUCC). Land use/
cover classification is particularly relevant in arid areas.
This study aimed to map land use/cover by pixel- and
object-based image classification methods, analyse
landscape fragmentation and determine the effects of
two different classification methods on landscape met-
rics. The same sets of ground data were used for both
classification methods. Because accuracy of classifica-
tion plays a key role in better understanding LUCC,
both methods were employed. Land use/cover maps of
the southwest area of Tehran city for the years 1985,
2000 and 2014 were obtained from Landsat digital
images and classified into three categories: built-up,
agricultural and barren lands. The results of our LUCC
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analysis showed that the most important changes in
built-up agricultural land categories were observed in
zone B (Shahriar, Robat Karim and Eslamshahr) be-
tween 1985 and 2014. The landscape metrics obtained
for all categories pictured high landscape fragmentation
in the study area. Despite no significant difference was
evidenced between the two classification methods, the
object-based classification led to an overall higher ac-
curacy than using the pixel-based classification. In par-
ticular, the accuracy of the built-up category showed a
marked increase. In addition, both methods showed
similar trends in fragmentation metrics. One of the rea-
sons is that the object-based classification is able to
identify buildings, impervious surface and roads in
dense urban areas, which produced more accurate maps.

Keywords LUCC - Landscape fragmentation - Remote
sensing - GIS - Tehran - Environmental impacts

Introduction

Land use and land cover change (LUCC) is a major
driver of global change which exerts a profound influ-
ence on humans and the environment. Although both
natural and anthropogenic factors are responsible for
LUCC, the role of humans in LUCC has become more
prominent during the last few decades (Wijitkosum
2016; Rawat et al. 2013). Changes caused by human
activities on the environment, especially in the arid
zones, may have adverse impacts on biodiversity, water
quality, soil degradation, wind erosion and carbon
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cycling, as well as on the ability of biological systems to
support human needs (Li et al. 2013; Vadrevu et al.
2015; Yu et al. 2011). Monitoring LUCC offers oppor-
tunity to enhance our understanding of the interactions
between human activities and the environment (Lambin
and Veldkamp 2001; Liang et al. 2014). Satellite remote
sensing is the most common data source for detection,
quantification and mapping of LUCC because of its
repetitive data acquisition, digital format suitable for
computer processing and accurate georeferencing pro-
cedures (Gomez et al. 2016; Lu et al. 2013).

Remote sensing systems differ in the level of detail or
resolution they can capture. Spatial resolution is one of
the most important factors which could affect LUCC
information generated from remote sensing data
(Soulard and Wilson 2015). Based on spatial resolution,
satellite imageries can be categorized into low-,
medium- and high-spatial resolution. Three types of
these sensors have been used to analyse LUCC. Usman
et al. (2015) used multi-temporal MODIS (low-spatial
resolution) Normalized Difference Vegetation Index
(NDVI) data for classification and Land use/land cover
change detection in Pakistan from 2005 to 2012. Lu
et al. (2010) used Quick Bird (high-spatial resolution)
imagery to classify land cover in a complex urban-rural
landscape in Lucas do Rio Verde, Brazil. Many re-
searchers in the fields of remote sensing and geospatial
sciences select images in a medium category because
they have acceptable resolution for common require-
ments and relatively acceptable cost (some satellites
owners provide free accessible images). Landsat satel-
lite data is the most widely used data type for land cover
mapping and has provided earth observation data to
meet a wide range of information needs since 1972
(Goémez et al. 2016; Igbal and Khan 2014). Rigorous
calibration and consistency in the radiometry of the
Landsat sensors, in particular the Thematic Mapper
(TM), Enhanced Thematic Mapper Plus (ETM+) and
Operational Land Imager (OLI), makes the Landsat
image archive a strong example for the benefits of
calibration and data interoperability. Given operational
imperatives, other data sources (e.g. SPOT, IRS and
ASTER) can be availed upon to offer complementary
image coverage (Wulder et al. 2008).

In order to monitor LUCC from remotely sensed
data, many changes in detection techniques have been
developed and used, such as post-classification, image
differencing, principle components analysis and vegeta-
tion index differencing (Mohamed and Mobarak 2016).
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Post-classification change detection is the most well-
used technique (Foody 2002). Post-classification com-
parison methods detect land cover change by comparing
independently produced classifications of images from
different dates (Yuan et al. 1998a, 1998b). Pixel-based
and object-based classifications are two approaches for
post-classification (Sertel and Alganci 2016). The most
traditional pixel-based post-classification approaches
are based exclusively on the digital number of the pixels
itself. Thereby, only the spectral information is used for
the classification. The situation is even more complicat-
ed when extracting certain features of interest only. As a
result, it produces the salt-and-pepper-effect pseudo-
colour layer (Sertel and Alganci 2016). To overcome
the limitations of the pixel-based classification, the
object-based classification has been suggested (Karami
etal. 2015).

Object-based image analysis is quickly gaining ac-
ceptance among remote sensor scientists and users and
has demonstrated great potential for classification and
detection change of high-spatial resolution imagery in
heterogeneous urban environments (Im et al. 2008).
Object-based image analysis has been applied in various
fields, especially for forest mapping and land use land
cover classification (Kim et al. 2011). Object-based
image analysis has generally had better success with
narrow-band and high-spatial resolution data (Yang
2011). It has been proposed as an alternative analysis
framework that can mitigate the deficiency associated
with the pixel-based approach. Object-based image
analysis approaches for analysing remotely sensed data
have been established and investigated since the 1970s
(Blaschke 2010). The classification process, in this case,
begins with a segmentation of neighbouring pixels into
homogenous units or objects. One of the advantages of
segmentation is that it creates objects representing land
use and cover types that may be spectrally variable at the
pixel level. Another advantage is that objects can ap-
proximate real-world features better than pixels. A more
detailed description of image segmentation and
classification is given in Dingle Robertson and King
(2011) and Jawak et al. (2015).

One of the direct consequences of LUCC is land-
scape fragmentation. Fragmentation occurs when large
patches are divided into smaller patches by human ac-
tivities such as construction of road networks, railroads,
agriculture, urbanization and so forth (Anderson et al.
1976; Kizos et al. 2010). Landscape metrics are com-
puted to quantify landscape fragmentation after image
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classification that can be done by different methods and
LUCC analysis. The application of landscape metrics in
landscape fragmentation analysis has received an in-
creasing attention in the recent years (Chouvardas and
Vrahnakis 2009; Mitchell et al. 2015; Schindler et al.
2008). Landscape metrics are useful in applying the
concepts of landscape fragmentation in landscape mon-
itoring and planning (Barau and Qureshi 2015). Such an
approach provides an objective description of different
aspects of landscape structures and patterns (McGarigal
et al. 2002).

The accuracy of the image classification and the
capability of the classifier to produce highly representa-
tive thematic maps influence the reliability of the met-
rics produced to analyse the process of fragmentation.
Although several studies have compared pixel- and
object-based classification methods, few studies have
compared the effect those methods may have on land-
scape metrics derived from thematic maps (Newman
et al. 2011). Accordingly, this study compares a com-
monly used pixel-based method of image classification
with an object-based method and examines the effects of
these two methods on landscape fragmentation. The
information on those changes is great importance to land
use planners in order to act toward a better balance the
effects of human activities and the environment.

To compare post-classification and capability in land-
scape studies, the objective of this study is providing a
spatiotemporal analysis of LUCC by pixel- and object-
based image classification methods and their effect on
landscape fragmentation in Tehran and Alborz prov-
inces, which demography and economy have been
deeply modified by a massive rural exodus. Historically,
LUCC in this area has been influenced by high human
population density and caused severe environmental
issues, among which dust storms resulting from wind
erosion of abandoned agricultural lands. The causality
relationship between LUCC and the increase of soil
erosion by strong winds has however never been evi-
denced in this region of the globe.

Materials and methods
Study area
The study area covers approximately 4600 km?

stretching from 35°N and 35°56'N in latitude, and
51°13'E and 51°30°E in longitude, which corresponds

to the south of Tehran and of Alborz provinces (Fig. 1).
The elevation ranges from 800 to 1700 m above sea
level. The study area is surrounded by mountains from
southeast to northwest, while it is bounded by the Kavir
Salt Desert in the south-southeast. However, more than
1800 villages remain in the study area, populated by
farmers living from fertile soils (Talebi and Ardakani
2011).

The two provinces, Tehran and Alborz, are the most
heavily populated in Iran. According to the latest census
in 2012, Tehran and Alborz have a population of over
around ten million inhabitants together. Rapid rural-
urban migration and population growth in the city have
significantly influenced urban fabric so that in the recent
years, the area of green space is increasingly being less
and land use change is happening on a large scale in
these areas (Saeifar and Mohammadnia 2015). This
would be the root cause for many socioeconomic prob-
lems among citizens as well as lots of environmental
adverse consequences.

While in the past, the local rivers were primarily used
to irrigate the agricultural lands, the share of surface
water for agriculture has drastically decreased in the
recent decades, mainly as a result of the construction
of several major dams for drinking water and power
generation, like the Latyan, Lar, Taleghan and Karaj
dams (Motiee et al. 2001). As a dramatic result of
chronic shortages in water supply, a large fraction of
fertile lands have been abandoned by owners, or
remained uncultivated, hence, potentially exposed to
wind erosion. In addition, most of the agricultural lands
in the vicinity of the cities were converted into residen-
tial or industrial areas. To make it easier to analysis and
to have practical results in political boundaries, the study
area was divided in three zones following the existing
administrative boundaries: zone A consists in Karaj and
Nazarabad; zone B includes the southwest part of Teh-
ran region, namely Shahriar, Robat Karim and
Eslamshahr and zone C consists in the south (Shahr-
Rey) and southeast parts of Tehran (Pakdasht and
Varamin) (Fig. 1).

Data

A set of Landsat-5 Thematic Mapper (TM) images
acquired on May 1985 and May 2000, and Landsat-8
Operational Land Imager (OLI) images acquired on
May 2014, were used to map LUCC changes in the
study area (Fig. 1). All images were downloaded from
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Fig. 1 Location of study area

the Earth Resources Observation and Science Center
Earth Resources Observation and Science (EROS)
(2014). Since the study area stretches over more than
one scene, three scenes were acquired for each period of
time. TM images were acquired in six spectral bands
with a spatial resolution of 30 m. Landsat image 8 (OLI
sensor) provided eight spectral bands with a spatial
resolution of 30 m, one panchromatic band with a spatial
resolution of 15 m and two thermal bands with a spatial
resolution of 100 m which did not used in this study.
More characteristics are presented in the Supplementary
Table 1.

Additionally, a set of 150 ground control points were
collected using a GPS for training sites (from Garmin,
Model: Etrex Vista HCX). More recently, the Google
Earth tool has quickly developed and has been widely
used in many sectors. The high-spatial resolution im-
ages released from Google Earth, as a free and open data
source, have been treated as ancillary data to collect the
training or testing samples for land use/cover classifica-
tion and validation or used as a visualization tool for
land use/cover maps (Yu and Gong 2012). Therefore, in
this study, in order to evaluate the ground control points,
Google Earth has been used (Elkhrachy 2015).

Pre-processing

To start, a geo-correction was performed in three steps:
the TM image was first registered to the Universal
Transverse Mercator (UTM) zone 39°N with WGS84
(World Geodetic System) datum projection by using 40
ground control points, for which the total root mean-
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square error (RMSE) of 0.51 pixel was achieved. Then,
the TM image was used as a reference and the rest of the
images were co-registered using an image-to-image
procedure with less than half pixel error. Finally, all
images were resampled to 30 m using the nearest
neighbourhood method (Johnson 2015).

At the next step, atmospheric correction was carried
out using the dark object subtraction (DOS) method
(Gilmore et al. 2015). Then, the study area was extracted
from the mosaic image through an on-screen
interoperation and digitizing. The optimum index factor
(OIF) approach was applied in order to select the best
band combinations among the spectral bands (Zhong
et al. 2014). Based on the OIF results, the combination
(2, 3, 4) was selected for 1985 and 2000 and (3, 4, 5) for
2014.

Image classification and spatiotemporal analysis

Land use/cover classification system presented in this
article includes the most generalized first and second
levels (Supplementary Table 2) (Anderson et al. 1976).
Each image was classified into built-up, barren and
agricultural land classes, using both pixel-based (ENVI
4.8) and object-based classifications (eCognition Devel-
oper 64). After the image classification, a post-
classification comparison change detection algorithm
was used to determine LUCC between 1985 and 2014,
with six combinations of ‘from-to’ change information.
The pixel-by-pixel nature of this change allowed to
quantify both the areal extent and the spatial distribution
of LUCC (Yang and Lo 2002).
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Image classification methods
Pixel-based classification

The overall objective of pixel-based image classification
approach is to automatically categorize all pixels in an
image into land cover. Therefore, each image was sub-
jected to a supervised classification. This method in-
volves the selection of training samples for each class,
which are homogenous groups of pixels representative
of the land use category to be identified in the image
(Matinfar et al. 2007). Training sites were used to gen-
erate spectral signatures for built-up, barren and agricul-
tural lands classes. By using the maximum likelihood
(Karakus and Karabork 2016), the most commonly used
classification algorithm and all unclassified pixels were
assigned to classes based on the probability that a pixel
belongs to that particular class.

Object-based classification

Object-based image analysis comprises two parts: (1)
image segmentation and (2) classification based on ob-
jects’ features in spectral and spatial domains. Image
segmentation is a kind of regionalization, which delin-
eates objects according to a certain homogeneity criteria
and at the same time, requiring spatial contingency (Zou
et al. 2016). By segmentation, the image is divided into
homogeneous, continuous and contiguous objects. Sev-
eral parameters are used here to guide the segmentation
result. The scale parameter determines the maximum
allowed heterogeneity for the resulting image objects.
The colour criterion defines the weight with which the
spectral values of the image layers contributes to image
segmentation, as opposed to the weight of the shape
criterion. Smoothness is used to optimize image objects
with regard to smooth borders, and compactness allows
optimizing image objects with regard to compactness
(Baatz et al. 2004). The parameters to guide the seg-
mentation process were: scale factor 10, colour factor
0.8 and smoothness 0.5. Those parameter settings were
decided after a visual check that the produced segments
optimally represented the primitive earth objects. The
segmented images were classified by standard nearest
neighbour (NN) classifier using the same set of training
samples as those used for pixel-based classification
(Matinfar et al. 2007).

To describe the degree to which the derived image
classification agrees with reality, classification accuracy

were used (Janssen and Vanderwel 1994). The error
matrix is the most common method to assess the classi-
fication accuracy. Therefore, accuracy assessment using
an error matrix was assessed for 1985 and 2000 and
2014 pixels, and object-based classification using four
measures of accuracy: overall accuracy, user’s accuracy,
producer’s accuracy and kappa coefficient. Overall ac-
curacy is the simplest and one of the most popular
accuracy measures. It is computed by dividing the total
correct (i.e. the sum of the major diagonal) by the total
number of pixels in the error matrix. Producer’s accura-
cy indicates the probability of reference pixel being
correctly classified; it is a measure of omission error.
User’s accuracy is the probability of classified pixel
actually represents that category on the ground
(Congalton 1991). The kappa coefficient measure at-
tempts to control for a chance agreement by incorporat-
ing the off-diagonal elements as a product of the row
and column of the error matrix (Cohen 1960).

In calculating accuracy assessment, there were only
ground control points for image classification in 2014,
but none for 2000 and 1985. Any aerial photograph or
other high-resolution image could be of use for deriving
the previous land use reference data. In an attempt to
overcome those problems, the identification and use of
temporally invariant ground features as calibration and
validation data for the classification of past dates of
imagery were used. This approach addresses many of
the challenges associated with retrospective mapping,
while overcoming the limitations of signature extension
by (a) only requiring one calibration and validation
dataset for all images and (b) allowing each image to
generate its own signature specific to its inherent spec-
tral and spatial properties (Fortier et al. 2011).

To use this methodology, images from three separate
dates spanning a 15-year period between 1985 and 2000
and 2000 and 2014 were selected for land cover classifi-
cation. Using the imagery, temporally invariant samples
were identified to create an invariant data set. This invari-
ant data set was then applied to classify land cover in each
image to test the plausibility of using invariant calibration
data in a long-term retrospective (Fortier et al. 2011).

Landscape fragmentation analysis
In order to analyse fragment process, landscape metrics
were calculated with FRAGSTATS 4.2 (McGarigal and

Marks 2014). Many metrics can be used to quantify
spatial heterogeneity. However, some metrics are
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correlated with others, or respond to multiple compo-
nents of spatial patterns, which make them difficult to
interpret (McGarigal and Marks 2014). Five metrics
were selected and calculated based on published studies
(Botequilha Leitdo and Ahern 2002; Corry and
Nassauer 2005; Hargis et al. 1998; McGarigal et al.
2002; Tinker et al. 2003). They include the patch density
(PD), edge density (ED), mean patch area (MPA), mean
shape index (MSI) and interspersion and juxtaposition
index (IJI) (Table 1). These indices were used to quan-
tify fundamental and structural landscape characteris-
tics. In brief, ED standardizes edge to a per-unit area
basis that facilitates comparisons among landscapes of
varying sizes. MPA and PD of a particular patch type
reflect both the amount of a patch type (composition)
and its spatial distribution (configuration). Because
MPA and PD vary as a function of the spatial pattern
complexity of the landscape, it is often more appropriate
to consider those indices of landscape configuration.
MSI measures the average patch shape, or the average
perimeter-to-area ratio, for a particular patch type (class)
or for all patches in the landscape. 1JI measures the
extent to which patch types are interspersed (not neces-
sarily dispersed); higher values result from landscapes in
which the patch types are well interspersed (i.e. equally
adjacent to each other), whereas lower values character-
ize landscapes in which the patch types are poorly
interspersed, i.e. disproportionate distribution of patch
type adjacencies (McGarigal 2001).

Table 1 Fragmentation indices

Metrics Description

Patch density (PD) The number of patches per 100 ha
(number/100 ha)

Edge density (ED) The total length of patch edge per ha
(m/ha)

Mean patch area
(MPA)
Mean shape index Mean patch shape complexity equals to
(MSI) 1 when all patches are squared and
increases without limit as patch
shape becomes more irregular. It is
the simplest and most
straightforward measure of overall
shape

The average area of the patches (ha)

The adjacency of each patch with all
other class types (%). Extent to
which patches of different land
uses/covers are interspersed

Interspersion and
Jjuxtaposition
index (LJT)
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Results
Accuracy assessment

According to Table 2, the overall accuracy of the object-
based classification was better than for the pixel-based
classification. This was also the case for the overall
kappa statistics. Overall accuracy ranged between 80.8
and 87% for pixel-based approach and 83.1 and 90.2%
for the object-based one. The most accurate classifica-
tion for both approaches was allocated to the year 2014,
possibly due to the higher image quality and on-time
training sample sites.

Additionally, relatively high accuracy for built-up
area, both producer’s one and user’s one, is achieved
by the object-oriented approach. The producer’s accu-
racy and user’s accuracy for built-up area by the object-
oriented method are 89.5 and 81.1% for 1985, 91 and
90% for 2000 and 91.2 and 93.1% for 2014, respective-
ly. While the corresponding producer’s accuracy and
user’s accuracy by the pixel-based method are 77.5
and 80.8% (1985), 83 and 89.7% (2000) and 84 and
88.6% (2014), obviously, the object-oriented is more
reliable to delineate built-up areas. Because of more
accurate results from the object-based approach, the
results of this approach only are presented in the LUCC
section hereafter.

LUCC

Figure 2 shows the image classification following the
pixel- and object-based approaches. The object-based
classified images present a more homogenous appear-
ance, while the pixel-based approach led to a less clear
picture, in consistency with the studies of Karami et al.
(2015). Statistics of LUCC from pixel- and object-based
approach are summarized in Supplementary Table 3
based on the three above-defined zones A, B and C.

In zone A (Karaj, Nazarabad), the results of object-
based image classification approach showed that the
built-up category area increased by 7.6% (67 km?)
together with the urban demography from 1985 to
2000, and an additional 10.4% (91 km®) moved to
the built-up category from 2000 to 2014 (Fig. 3 a, b
and Supplementary Table 3). Changes from agricultur-
al and barren land categories (1985 to 2014) to built-up
areas were 13 and 22.2%, respectively (Table 3). How-
ever, the classification results did not display a clear
trend in this period for the agricultural and barren land



Environ Monit Assess (2016) 188: 691

Page 7 of 14 691

Table 2 Overall accuracy (%), kappa coefficient (%) and user’s
(UA) and producer’s (Pro A) accuracies (%) for post-
classifications using the pixel- and object-based classification

methodologies for 1985, 2000 and 2014 in Tehran and Alborz
provinces. Rows: classification results; columns: ground truth

Pixel based Object based
1 2 3 UA 1 2 3 UA
1985
Built-up 38 6 3 80.8 43 9 1 81.1
Agricultural land 7 50 8 76.9 2 55 7 85.9
Barren land 4 5 51 85 3 6 46 83.2
Pro A 77.5 81.9 822 89.5 78.5 85.1
Overall kappa 82.3 87.2
Overall accuracy 80.8 83.1
2000
Built-up 44 2 3 89.7 45 3 2 90
Agricultural land 5 52 6 82.5 2 53 5 88.3
Barren land 4 5 49 84.4 3 4 49 87.9
Pro A 83 88 84.4 91 87.2 87.8
Overall kappa 85.2 86.2
Overall accuracy 87 87
2014
Built-up 39 1 4 88.6 41 0 3 93.1
Agricultural land 2 50 90.9 3 51 3 89.4
Barren land 5 7 58 82.8 1 6 60 89.5
Pro A 84.7 86 89.2 91.2 89.3 90.8
Overall kappa 88 92.1
Overall accuracy 87 90.2

Classification results (in rows) and ground truth (in columns)

ProA producer’s accuracy in %, UA user’s accuracy in %, / built-up, 2 agricultural land, 3 barren land

categories. From 1985 to 2000, the agricultural land
category area increased by 2%, but then decreased by
15.2% from 2000 to 2014 (Supplementary Table 3).
On the opposite, barren land category area first de-
creased by —9.4% (—80 km?) between 1985 and 2000
but increased by 4.8% (42 km?) after the year 2000
(Fig. 3 and Supplementary Table 3).

Zone B is characterized by large residential, industri-
al and commercial sites in the south of the Tehran and
Alborz provinces. In this zone, change in agricultural
and built-up categories had a similar pattern as in zone
A. The agricultural and barren lands areas decreased by
69 and 141 km?, respectively, and the area in the built-
up category increased by more than 250 km?
(Supplementary Table 3). Our results show that 20 to
25% of the agricultural and barren lands were changed
into the built-up lands during 1985-2014 (Fig.3¢ and
Supplementary Table 3).

Zone C (Shahr-Rey, Pakdasht and Varamin) did not
experience a similar drastic increase of built-up areas
than in zones A and B. According to Table 3, two third
of zone C (66.7%) were classified as barren lands in
1985, while the built-up category area was negligible
(2.3%). The built-up category also underwent the most
minimal changes over the 30-year period, on the con-
trary of the agricultural and barren land categories
(Table 3). In addition, barren land areas decreased by
—426 km?, while the agricultural land areas increased by
177 km® from 1985 to 2014.

Fragmentation analyses
Landscape metrics are helpful tools in understanding
the implications of human activities on the landscape

and its fragmentation. Fragmentation not only creates
great concerns in man-made areas, but it may also
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Fig. 2 Land cover maps derived

Pixel-based

Object-based

from a 1985 Landsat TM, b 2000
ETM+ and ¢ 2014 OLI for pixel- 3
(left) and object-based (right)
approaches for the provinces of
Tehran and Alborz

(a) 1985

B Builtw

- Agricultural land

create a natural imbalance in terms of size, shape and
distribution of a mosaic of patches. That observation
could be the cause of significant impacts on the dy-
namics of species and materials in the landscape, under
various ecosystems with unique structures and func-
tions. This study attempted to quantify the effects of
LUCC on determining landscape metrics (Fig. 4). The
utility of the selected metrics is often assumed to be
dependent on the quality of the classified images.
Therefore, the pixel-based and object-based classifica-
tion methods were used to determine their effects on
landscape metrics.

In zone A, the PD resulting from the pixel-based
approach remarkably increased from 1985 to 2014 for
the three categories (Fig. 4a). But the PD results from
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D Barren land

— Border

the object-based approach displayed a drastic increase
for agricultural lands, from 0.2 number/100 ha in 1985
to 0.7 in 2014 (Fig. 4a), while built-up and barren land
categories decreased from 2000 to 2014 after increment
between 1985 and 2000. The most significant expansion
of built-up land areas observed between 1985 and 2000
appears in correlation with the growth of man-made
landscapes, together with a higher magnitude of anthro-
pogenic activities, that caused reduction of natural and
conventional landscapes (Shahraki et al. 2012). The
results for the ED were similar than for PD, increasing
from 1985 to 2014 in all categories for both approaches
(Fig. 4b). In addition, the results for the MPA in the
agricultural land category decreased from about 53 to
18 ha, from 1985 to 2014.
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Fig. 3 Transition between land cover classes from a 1985 to
2000, b 2000 to 2014 and ¢ 1985 to 2014 for object-based
approach for Tehran and Alborz provinces

In zone B, from 1985 to 2014, the PD trends for the
two classification approaches were similar. Built-up and
agricultural land categories showed variations in time
different than in zone A (Fig. 4a). For those two cate-
gories, after PD had increased from 1985 to 2000, it
decreased from 2000 to 2014. PD also has the same
trend in isolated patches of the barren land category
(Fig. 4a). Interestingly, the built-up category designed
from those two classification methods leads to clear
differences. As it can be seen in Fig. 4a, PD of the

Table 3 Relative (%) areas for each land cover class for object-
based post-classification approach in Tehran and Alborz provinces
in 1985, 2000 and 2014. Net change is also shown

Object-based %

1985-2000 2000-2014 1985-2014

Zone A
From barren land to 532 78 64.9
barren land
From barren land to 37.6 12.3 22.1
agricultural land
From barren land to 9.2 9.7 13
built-up
From agricultural land  61.4 57 58.1
to agricultural land
From agricultural land  18.5 11.3 222
to built-up
From agricultural land ~ 20.1 31.7 19.7
to barren land
Zone B
From barren land to 61.2 61 53.1
barren land
From barren land to 30.7 193 19.6
agricultural land
From barren land to 7.1 19.7 27.3
built-up
From agricultural land ~ 80.1 67.2 60.1
to agricultural land
From agricultural land 5.1 15.5 24.7
to built-up
From agricultural land  14.8 17.3 152
to barren land
Zone C
From barren land to 60.9 80.7 69
barren land
From barren land to 32.7 16.7 30.5
agricultural land
From barren land to 6.4 2.6 1.5
built-up
From agricultural land  81.3 773 72.9
to agricultural land
From agricultural land 5.4 4 10
to built-up
From agricultural land  13.3 18.7 16.1

to barren land

built-up category displays a decreasing trend between
2000 and 2014, after an increase between 1985 and
2000 in zones A and B.

In zone C, the PD and MPA of agricultural and barren
land categories for both classification methods showed
an inverse trend between the periods 1985 and 2000 and
2000 and 2014 (Fig. 4a). It could be due to the use of
treated wastewater for irrigation and less urban
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Fig. 4 Landscape metrics. a PD,
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expansion after the year 2000 (Saemian 2013). But the
PD of pixel- and object-based approaches was totally
different in the built-up category. While PD indicates an
increase from 1985 to 2014 in the pixel-based approach,
the object-based one shows an inverse trend. ED of the
agricultural land category increased from 1985 to 2000
and decreased from 2000 to 2014. The ED of the barren
lands also decreased from 1985 to 2014.

The MSI values, for all categories and both classifi-
cation approaches, were greater than 1, which indicates

@ Springer

that the average patch shape in all categories was rather
irregular (Fig. 4d).

Finally, the 1JI points out identical patterns for land
uses/covers (Fig. 4e). 1JI indicates that the patch types
became more interspersed from 1985 to 2014. 1JI ap-
proaches 0 when adjacencies are unevenly distributed;
1 is equal to 100 if all patch types are equally adjacent
to all other patch types (McGarigal and Marks 1995).
The range of 1JI values in all zones varied from almost
zero to 65.03%. In all zones, IJI values for the
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agricultural land category obtained were more than
30%, underlining that the agricultural land category, in
particular, was highly interspersed.

Discussion

According to the results of this study, it was assessed
that despite similar map accuracies, the object-based
temporal analysis detected “from—to” change correctly,
more often than the pixel-based analysis did. Addition-
ally, the object-based classifier produced more uniform
objects for easier interpretation in the structured urban
environment, while the pixel-based maps had a salt-and-
pepper appearance and were harder to interpret for
LUCC change (Karami et al. 2015).

By comparing the overall kappa coefficients, the
producer’s and user’s accuracies, it appears that the
pixel- and object-based approaches did not display sig-
nificant differences. But the built-up category was char-
acterized from the object-based method by the highest
rates of both kappa coefficient and overall accuracy,
possibly due to the inclusion of roads (Goosem 2007).
As previously mentioned, studies showed that the re-
sults from the object-based classification approach are
more accurate than those obtained by the pixel-based
one. Roads can be classified using a pixel-based meth-
od, but this is much more time-consuming and becomes
increasingly difficult, and eventually impossible as the
roads become hidden from aerial view (Riitters et al.
2004). Moreover, in most cases it is often difficult to
classify roads in low-resolution images.

The results of LUCC showed that built-up category
areas have increased in all three zones from 1985 to
2014, because of the rapidly increasing population,
especially in the suburban areas. Thus, most of the rural
structures were changed into peri-urban areas, charac-
terized by the growth of infrastructures such as roads
(Fig. 2). Elsewhere, neighbouring villages have
combined to each other to result in small towns, char-
acterized by a high growth rate over 1985-2014. After
the Taleghan and Mamlou dams were constructed in
2000 and 2005, respectively, to respond to the growing
urban needs, the share of water for irrigated agricultural
lands in zone A (Karaj, Nazarabad), zone B (Shahriar,
Eslamshahr and Robat Karim) and zone C (Pakdasht
and Varamin) became significantly limited. As a
consequence, from 2000 to 2014 in all three zones,
water shortage together with economic issues were

aggravated, leading to the conversion of agricultural
lands into barren and built-up lands (Jahani and
Reyhani 2006; Saemian 2013). However, the observed
increment in the amount of agricultural land between
2000 and 2014 may be due to the use of Tehran’s treated
wastewater to irrigate and convert barren lands into
agricultural lands in this zone (Saemian 2013).

According to the pixel-based approach of fragmenta-
tion analyses, in zone A, the PD and ED increment
together with the reduction of MPA indicated that frag-
mentation was considerably strengthened in zone A
during the whole period of study. Increasing MPA of
the built-up category is an illustration of this category
growth from 1985 to 2014 (Fig. 4c). Also, the increment
of MPA of the barren land category from 2000 to 2014
occurred because of the agricultural land category con-
version into the barren land category (Table 3).

ED and MPA in zone B display a similar trend as
zone A: Agricultural lands had higher ED than barren
lands (Fig. 4b). The reduction of agricultural land areas
from 2000 to 2014 was probably caused by the aban-
donment of lands, or their conversion into built-up areas
(Table 3). Additionally, the decrease of PD from the
built-up category from 2000 to 2014 led to isolated
patches of that category, although joined together. In
general, joining patches occurs when corridors are elim-
inated between neighbouring patches and, accordingly,
when connections between those patches increase, that
is, when their edges join together (Kabba and Li 2011).
Because of rapid population growth in the study area,
villages were joined together and shaped into towns,
then cities.

In zone C, PD, ED and MPA of the built-up category
have an increasing trend from 1985 to 2014 and showed
that the built-up category did not significantly change
more than in zones A and B (Fig. 4).

Bigger values of MSI were obtained for agricultural
land category in all zones, which suggests that the
agricultural land category particularly underwent high
fragmentation in all zones, and over the whole period.
The 1JI values of 33% in 1985 and 65% in 2014 illus-
trate that the agricultural land category became more
even, and equally adjacent, to each other due to the
usage of barren land for cultivation from 1985 to
2000, prior to the abandonment of those lands after
2000. The lowest IJT value was associated to the built-
up category that ranged from almost zero to 0.4%,
confirming that built-up category patches were not well
interspersed or equally adjacent to all. MPA and MSI
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and IJI metrics in both classification approaches are
comparable. But one of the important points here is that
the MPA and MSI in the object-based approach have
lower values than that in the pixel-based one. Roads not
only decreased the size of the largest patch but also
greatly increased both the number and the total area of
the patches in the medium-size classes.

Fragmentation studies have added the roads to land
cover maps after image classification (e.g. Riitters et al.
2004). The object-based classification allows roads to
be added as a separate layer to influence both image
segmentation and classification. Also, the inclusion of
roads in the object-based method significantly reduced
the size of the largest patch and altered the forest-patch
size distribution. Totally, the values of these five metrics
varied significantly between the pixel- and the object-
based methods, but as they are shown in Fig. 4, both
classification methods overall produced similar patterns
of fragmentation for the 30-year period. The results
emphasize that using the pixel-based approach leads to
a less-important fragmentation of the built-up category
than with the object-based approach. Besides this simple
test, roads have important implications on landscape
assessment. They are important contributors to built-up
fragmentation, and their impacts have been largely
understudied (Goosem 2007).

Therefore, our results characterize the effects induced
over a 30-year period by the expansion of built-up areas
on the other categories. The growth of urban landscape,
and consequently, the reduction of natural and conven-
tional (e.g., agriculture) landscapes, is correlated to the
anthropogenic activity rate. Interestingly, according to
the results, the built-up category growth has occurred in
separate patches in all zones and has presented threats to
alter its neighbouring land uses/covers or caused to
abandon them for financial reasons. Therefore, it is
expected that more degraded and barren lands are sus-
ceptible to have negative impacts. For instance, wind
erosion is a dramatic consequence which severely af-
fects air quality in residential areas, especially in Tehran
and Karaj cities.

Conclusion
This study has presented new results for the provinces of
Tehran and Alborz in Iran. The pixel-based and object-

based methods were used to classify Landsat imagery
data to obtain a relatively more detailed land cover
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mapping. The overall accuracy and the kappa coeffi-
cient were used to compare the two methods. The
object-based classification method yielded to a higher
accuracy in classification of images than the pixel-based
classification method. Analysis of Landsat data of 1985,
2000 and 2014 evidenced that LUCC mainly affected
the agricultural and barren land categories. It pointed out
that the conversion from barren to agricultural lands was
dominant between 1985 and 2000 and vice versa be-
tween 2000 and 2014. It finally illustrated the general
increase of the built-up category over the whole period.
Results of fragmentation analysis showed that in 2014,
the landscape was more fragmented than in 1985. Frag-
mentation results for the agricultural and barren land
categories showed a typical fragmentation process, char-
acterized by an increase in PD and in ED and a decrease
in the MPA. Thus, the result exhibited that barren and
agricultural lands became highly fragmented as a result
of the increase of anthropogenic activities. MSI values
for all categories in all zones were greater than 1, indi-
cating that the patch shapes in all categories were irreg-
ular. Also, 1JI showed that the patch types in the agri-
cultural and barren land categories became more inter-
spersed and tended to be more fragmented and degraded
with the increase of constant human disturbances. The
inclusion of roads in the object-based method signifi-
cantly reduced the size of the largest patch and altered
the patch size distribution from the above classification
and analysis, it has been established that eCognition
(object-based classification) performed better in classi-
fying and identifying different land cover classes.
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