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Abstract Flooding is a very common worldwide natu-
ral hazard causing large-scale casualties every year; Iran
is not immune to this thread as well. Comprehensive
flood susceptibility mapping is very important to reduce
losses of lives and properties. Thus, the aim of this study
is to map susceptibility to flooding by different bivariate
statistical methods including Shannon’s entropy (SE),
statistical index (SI), and weighting factor (Wf). In this
regard, model performance evaluation is also carried out
in Haraz Watershed, Mazandaran Province, Iran. In the
first step, 211 flood locations were identified by the
documentary sources and field inventories, of which
70% (151 positions) were used for flood susceptibility

modeling and 30% (60 positions) for evaluation and
verification of the model. In the second step, ten influ-
ential factors in flooding were chosen, namely slope
angle, plan curvature, altitude, topographic wetness in-
dex (TWI), stream power index (SPI), distance from
river, rainfall, geology, land use, and normalized differ-
ence vegetation index (NDVI). In the next step, flood
susceptibility maps were prepared by these four
methods in ArcGIS. As the last step, receiver operating
characteristic (ROC) curve was drawn and the area
under the curve (AUC) was calculated for quantitative
assessment of each model. The results showed that the
best model to estimate the susceptibility to flooding in
Haraz Watershed was SI model with the prediction and
success rates of 99.71 and 98.72%, respectively, follow-
ed by Wf and SE models with the AUC values of 98.1
and 96.57% for the success rate, and 97.6 and 92.42%
for the prediction rate, respectively. In the SI and Wf
models, the highest and lowest important parameters
were the distance from river and geology. Flood suscep-
tibility maps are informative for managers and decision
makers in Haraz Watershed in order to contemplate
measures to reduce human and financial losses.
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Introduction

Generally, flash flood is defined as a rapid beginning of
flood in a short time that mostly has a high peak
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discharge; thus, this flood is usually caused by the
rainfall that has a 1-h duration (Elkhrachy 2015).
Annually, a variety of natural disasters such as floods,
earthquakes, and landslides cause great damages to lives
and properties throughout the world (Tierney et al.
2001; Tehrany et al. 2015a). The number of significant
flood events in the world has meaningfully increased
during the last three decades (Kourgialas and Karatzas
2011). Flood, which is the outcome of complex geolog-
ical, geomorphological, and hydrological conditions, is
probably the most devastating, widespread, and abun-
dant natural disaster in the world (Gashaw and Legesse
2011) that leaves harsh socio-economic and environ-
mental consequences behind (Wu and Sidle 1995;
Glade 1998). The confluence of rivers is the prime place
of concern for flood hazards (De Moel and Aerts 2011).
As with the road flooding, the main concerns revolve
around the damages mainly caused by high water levels
after heavy rain showers in areas where rivers and roads
intersect or where culverts and waterways are blocked
by brushwood (Plate 2009). Intervention in natural con-
ditions by human activities, such as road construction
and timber harvesting, could increase the risk of occur-
rence of floods (Montgomery 1994; Chung et al. 1995).
As a result of burgeoning population growth and the
subsequent pressure, nature and behavior of floods have
altered. Susceptibility to flood refers to the natural ten-
dency to produce flood.

It should be noted that although flooding is inevitable
and avoidance of it is impossible, the assessment and
management of future floods can be achieved through
proper analysis and forecasting methods (Cloke and
Pappenberger 2009; Tehrany et al . 2015b) .
Identification of prone areas to floods or preparation of
susceptibility maps of flooding is an important tool to
mitigate future flood damages. Hence, by identifying
locations with low susceptibility to flooding, suitable
areas for developmental activities could be recognized
(Sarhadi et al. 2012). Kourgialas and Karatzas (2011)
state that flood management strategy consists of three
phases: (1) pre-flood measures, (2) flood forecasting,
and (3) post-flood activities; while Konadu and Fosu
(2009) believe that the management of flood can be
accomplished through four stages: anticipation, prepa-
ration, prevention, and damage assessment. Schanze
(2006) divide flood risk management into flood risk
assessment and mitigation. Obviously, strategies about
impact of floods require identification of prone areas
(Tehrany et al. 2013) to facilitate quick response,

decrease the impact of possible flood events, and pro-
vide a means for early warning (Kia et al. 2012).

Previous works

In recent years, several approaches have been developed
by hydrologists to model flood risk and hazard
(Jayakrishnan et al. 2005; Bahremand et al. 2007). In
general, it should be noted that traditional hydrological
methods have not been able to meet the needs of com-
prehensive flooding susceptibility assessment in region-
al studies (Li et al. 2012; Tehrany et al. 2015b); these
methods are mainly based on linear assumptions that, in
this case, are inappropriate for watershed studies with
non-linear structures (Liu and De Smedt 2004; Tehrany
et al. 2013). Application of RS and GIS has been a great
evolution in environmental sciences such as landslides,
groundwater resources, and flood susceptibility map-
ping and has also provided new insights into flood
assessment studies. In general, several researchers have
developed various techniques in the field of environ-
mental studies by the application of GIS and RS.

Among different methods, the most popular and
widely used models based on GIS in zoning different
natural disasters include frequency ratio (Lee et al. 2012;
Tehrany et al. 2013; Youssef et al. 2014), weights-of-
evidence (Mohammady et al. 2012; Pourghasemi et al.
2012a), logistic regression (Pradhan 2010a; Akgun
2012; Felicisimo et al. 2012; Nampak et al. 2014),
analytical hierarchy process (Chen et al. 2011;
Althuwaynee et al. 2014; Kazakis et al. 2015), artificial
neural network (Oh and Pradhan 2011; Kia et al. 2012),
support vector machine (Tehrany et al. 2014b), decision
trees (Tehrany et al. 2013), Shannon’s entropy
(Bednarik et al. 2010; Pourghasemi et al. 2012c;
Sharma et al. 2013; Jaafari et al. 2014), weighted factor
(Yalcin et al. 2011), statistical index (Pourghasemi et al.
2013), and fuzzy logic (Pourghasemi et al. 2012b).

Kazakis et al. (2015) in a study entitled the assess-
ment of flood hazard areas at a regional scale in Greece
used index-based approach and AHP models. Finally, a
comparison between the flood maps was produced and
the historical events showed that the model was capable
of flood hazard mapping.

Tehrany et al. (2015a) combined the two support
vector machine (SVM) and frequency ratio (FR) models
in the Kelantan Watershed. The results showed that the
hybrid model had slightly better performance than the
DT model.
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Tehrany et al. (2015b), using SVM models with four
different functions, prepared the susceptibility maps of
flooding in the Kuala Terengganu Watershed in
Malaysia. They finally stated that SVM-RBF model
with the AUC of 84.97% had the highest level of accu-
racy among four different functions. By measuring
Cohen’s kappa, the researchers claimed that, except for
surface runoff factor, other factors had a positive impact
on flooding.

Youssef et al. (2016) performed an analysis on the
susceptibility to flooding in Jaddah, Saudi Arabia, by
applying FR and LR methods and their combination.
They stated that the hybrid approach, with the AUC of
91.3%, had been more reliable and accurate than the FR
model with the AUC of 89.6%.

According to the literature mentioned above, the
Shannon’s entropy data-mining technique is one of the
new methods applied in environmental sciences such as
groundwater and landslide studies. Yet, this approach is
new to the flooding assessment studies. Application of
the statistical index (SI) and weighting factor (Wf) is
completely novel in the field of flood susceptibility
zoning, while it has been commonly used in the land-
slide hazard assessment. Hereby, the aim of this study is
flood susceptibility mapping in the Haraz Watershed,
Mazandaran Province, by deploying Shannon’s entropy,
statistical index, and weighted factor methods. The effi-
ciency of these models will also be taken into account.
One of the other objectives of this study is to determine
which factors have the highest impact on the incidence
of flooding in the study area. This watershed witnesses
many floods annually that cause widespread losses and
property damages. Despite the fact, no appropriate mea-
sures have been contemplated in these areas to prevent
or mitigate the damages.

Study area

The Haraz Watershed is located in Amol County, be-
tween 51° 43′ to 52° 36′ E and 35° 45′ to 36° 22′N. The
total area enclosed in this watershed measures roughly
4015 km2. The elevation ranges from 328 m at the
bottom to about 5595 m at the rim. Nour, Akhensar,
Shirkolaroud, and Namarestagh are some of the main
rivers flowing in the area. Major elevations of the area
include the mounts of Damavand, Shimkouh,
Emamzadeh Ghasem, Yakhli, Zanjirband, and Lou.
The main settlement areas are Polor, Nashal, Tiran,
Rineh, Kandovan, Ab-e-Ask, Gazanak, Baijan,

Belghalm, Belde, and Nour. Figure 1 provides an over-
view of the study area. Due to extreme flood incidences
and the resulting life and property damages, the Haraz
Watershed has been chosen as the case study area.

Methodology

According to Tehrany et al. (2014b), the analysis of
susceptibility to flooding is one of the most imperative
issues in river hydrology, which has been carried out in
the current study by considering three methods of SE,
SI, and Wf in the Haraz Watershed. The flowchart of
this research is presented in Fig. 2.

Data collection

Flash flood historical mapping

Flood inventory maps are necessary for the study of the
relationship between floods and their causative factors. To
prepare flood susceptibility map, the first step is to obtain
the appropriate data and create a spatial database. It is vital
to provide the necessary data with high accuracy (Jebur
et al. 2013). In this study, flood inventory map was pre-
pared by the historical floods of 2002, 2006, and 2013
according to the documentary sources and extensive field
inventories. In the meantime, a total of 211 flood points on
the scale of 1:25,000 were identified, as shown in Fig. 1.

Causative factors

To develop amethodology for evaluating the susceptibility
to flooding, it is necessary to determine the causative
factors and their relationship with flood occurrences (Liu
and De Smedt 2005; Pradhan 2009). In fact, regional
assessment of floods should be practical and applicable
for the study area; thus, the input parameters should repre-
sent reliable and simply achievable factors (Oh and
Pradhan 2011). For this study, ten flood causative factors
were selected based on literature review, as follows: slope
angle, plan curvature, altitude, topographic wetness index
(TWI), stream power index (SPI), distance from river,
rainfall, geology, land use, and normalized difference veg-
etation index (NDVI) (Figs. 3a–j). All factors were subse-
quently converted into raster maps with the pixel sizes
(resolution) of 20 × 20 m.

Digital elevation model (DEM), as a principal source
for extracting topographic factors, is one of the most
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important flood causative factors which has been used in
various research works (Tehrany et al. 2013; Youssef
et al. 2014). Topography plays an absolutely crucial role
in spatial variability of hydrological conditions such as

soil moisture and groundwater flow. Extracted topo-
graphical factors include slope, plan curvature, altitude,
TWI, and SPI. One of the most important factors affect-
ing flood in the area is slope (Tehrany et al. 2013). As

Fig. 1 Location of flooding point. Case study position and its hillside
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slope steepness increases, the rate of water infiltration is
reduced and the velocity of water increases; hence, huge
volume of runoff reaches the river and flat area and leads
to flooding. Thus, any increase in slope gradient could
result in more runoff and increase in its velocity, but
floods commonly take place in areas with less slopes.
Slope map of the region was divided into five classes
ranging from 0° to 66.8°, which are shown in Fig. 3a.
Plan curvature is another important factor for flooding.
In this regard, flat areas have become exposed to the
highest potential of flood occurrence. The plan curva-
ture represents themorphology of the topography; there-
fore, to map the plan curvature in GIS, negative values
were treated as Concave, zero as flat and positive num-
bers as convex surfaces (Oh and lee 2010). As noted, the
plan curvature map was divided into three classes,
which are shown in Fig. 3b. Another important factor
for flood occurrence is altitude. The research conducted
by Botzen et al. (2013) states that the occurrence of
flood is almost impossible in high altitudes. Altitude of

the area was accordingly classified into nine classes
ranging from 328 to 5595 m, as illustrated in Fig. 3c.
TWI represents the accumulation of flow at any point in
the catchment area as the result of the runoff tendency to
travel down the slope by the force of gravity (Gokceoglu
et al. 2005), and this is closely related to the soil mois-
ture content.

SPI represents the erosive power of water flow (Jebur
et al. 2014). TWI and SPI maps were prepared in SAGA-
GIS Software and finally divided into ten classes, which
are shown in Fig. 3d, e. Another very important factor that
is considered in this research is distance from the river
(Fig. 3f), as it affects the velocity and extent of floods in the
region (Glenn et al. 2012). Precipitation map was prepared
from 20-year rainfall data records of 17 rain gauges
(Khosravi et al. 2016) and then was classified into nine
classes (Fig. 2g). Geological layers were acquired in the
shape file format from the Regional Water Department of
Sari City. This factor was reproduced from the geological
map at a scale of 1:100,000. Geological mapwas classified
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Fig. 2. Flow chart of
methodology in this research
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into three classes including Mesozoic, Paleozoic, and
Cenozoic (Fig. 2h). Geological characteristics of the study
area are summarized in Table 1.Most of themountains and
reliefs in the region, such as Damavand, are within the
Cenozoic class. Using the Operational Land Imager (OLI)
sensor images of the Landsat 8 satellite, land use and
NDVI maps were prepared for year 2013 in ENVI 5.1
software. For land usemapping, neural network algorithms

and supervised classification were applied. Land use map
was divided into seven classes of water bodies, residential,
rangeland, orchards, irrigated land, forest, and bare land
(Fig. 2i). The majority of the watershed was devoted to the
rangeland class. The range of NDVI index values varied
between +1 and −1 that show a measure of vegetation
characteristic of an area. The negative values indicating the
water, values close to zero (−0.1–0.1) show the barren

Fig. 3 Flood causative factors in Haraz Watershed: a slope angle, b plan curvature, c altitude, d topographic wetness index TWI, e stream
power index SPI, f distance from river, g rainfall, h geology, i land use, and j NDVI
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areas, low positive values (0.2–0.4) represent the grass-
lands and shrub, and high values show the rainforests and
dense forest. NDVI indexmapwas divided into ten classes
(Fig. 2j).

Application of BSA

Shannon’s entropy model

Entropy is a measure of disorder, instability, imbalanced
behavior, energy distribution, and uncertainty in a sys-
tem (Yufeng and Fengxiang 2009; Pourghasemi et al.
2012a). In sum, entropy means the quantity of irregu-
larities between causes and results or decisions on var-
ious debated topics (Wan 2009). Entropy is the repre-
sentation of evenness, in which the groups are equally
and uniformly distributed among organizational units
(Massey and Nancy 1988). Entropy index is regarded
as a measure of the average difference of the proportion
of unit groups from the total system (Theil 1972;

Naghibi et al. 2014). Shannon entropy is function of
probability distribution and the criterion for measure-
ment of the amount of its uncertainty (Hosseinpoor
Milaghardan and Abbaspoor 2015) as follows:

Ei ¼ S P1;P2; ; :::::Pnð Þ ¼ −M
X

Pi Ln Pi i

¼ 1; 2;…; n ð1Þ

where Pi is probability distribution function andM is the
constant value for adjustment of entropy (between 0 and
1) (Eq. 1). If all the values of Pi equal each other
(P1 = P2 = … = Pn), then for all of the i and j values
(Asgharizadeh and Nasrolahi 2006), calculation is as
follows:

Pi ¼ 1=n ð2Þ

If there are n alternatives and k criteria in the decision
matrix, the result of the matrix for the jth criterion is
calculated as follows:

Fig. 3 (continued)
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Pij ¼
f j aið ÞX n

i¼1
f j aið Þ

; j ¼ 1; 2;…; n ∀ j ð3Þ

There is a one-to-one relationship between the quan-
tity and value of the system entropy and the level of
irregularity that is called Boltzmann principle and is
commonly used to display the thermodynamic condition
of a system (Yufeng and Fengxiang 2009). Shannon has
been modified based on the Boltzmann model, and it
uses the entropy model for the theory of information
(Pourghasemi et al. 2012a). Several important factors
introduce excess entropy to the system. Entropy values
can be used to calculate the target weight of the index
system (Yang et al. 2010). Shannon entropy (SE or Ej)
can be calculated as:

Ei ¼ −M
Xn

i¼1

Pij LnPij; ∀ j ð4Þ

M ¼ 1

Ln n
ð5Þ

where n is the number of that; in this study, it is the
number of classes for each causative factor. Degree of
diversification (dj) shows how much proper information
the jth criterion gives to the decision maker.

d j ¼ 1−E j; ∀ j ð6Þ

Finally, the weight could be calculated based on Eq. 7
as follows:

V j ¼ d j

Xn

j¼1

d j

; ∀ j
ð7Þ

Statistical index model

The SI bivariate statistical method has been introduced
by van Western (1997) for landslide susceptibility map-
ping. It requires selection and mapping of the important
parameters and their classification into relevant classes,
flood inventory mapping, overlaying the flood invento-
ry map with each causative factor, determination of the
density of floods in each class of parameters, and calcu-
lation of weight values. Subsequent steps are assigning
the values to various parameters, overlaying layers, and

Table 1 Lithology of the Haraz Watershed

Lithology Code Era

Undifferentiated Quaternary deposits Q Cenozoic
Loose alluvium in the river channels Qal

Rock fall Qf

Landslide Qlan

Moraines (glacial deposits) Qm

Scree, talus fans Qs

Scree Qsc

Marine conglomeratic terraces Qt

Old terraces Qt1

Younger gravel fans and terraces Qt2

Loess Qt2c

Sinter deposits Qtr

Basalt and olivine Qv1

Agglomerate and andesite tuff Qv2

Damavand magma, andesite trachyte Qv3

Quartz-diorite Qd

Rhyolite Rh

Trachyte TR

Dacite da

Marl, Mila formation E-m

Pyroclastic and andesite, Karaj formation EA

Conglomerate, Fajan formation Ef

Gypsum Eg

Tuff, volcanic rock Ek

Nummulitic limestone Ez

Dacite, pyroclastic with Ezt2

Calcareous and siliceous shales Eksl

Middle tuff member: pyroclastics Ekt2

Trachyandesite, trachybasalt, basanite Evkt2

Santonian limestone K2 l Mesozoic
Limestone, marl, limestone, silty marl K2plm

Cast locally with the layers of dolomitic
limestone and shale

Kgl

Limestone and marl Kl-m

Orbitolina limestone Klt

Basalt Kv

Basalt, diabase, pyroclastic rocks Kv1

And pyroclastic volcanic rocks are not separated Kv1 ,2

Tuff, basaltic andesite pyroclastic Kv2

Cut from multiple sources, Paland formation TRb

A thin layer of cream limestone, shale, limestone,
Elika

TRe1

Thick dolomite to form massive, limestone TRe2

Mafic volcanic rocks TRv3

Gabbro Tgb

Rocks, marl, conglomerate, Paleocene Pecf Paleozoic
Sandstone, shale, limestone, quartzite, make
peace

Pefvmc

Rocks, marl, conglomerate, Paleocene Pd

Limestone, marly and sandy shales Pn

Fusulina limestone, dolomitic limestone Pr

Basic flow, pyroclastics Pv
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preparation of the final susceptibility map for each land
unit (Aleotti and Chowwdhury 1999; Yalcin 2008).
Weight values for each class of parameters are calculat-
ed as the natural logarithm of flood density of the class
divided by the total flood density of the map (Van
Western 1997; Rautela and Lakhera 2000; Cevik and
Topal 2003; Pourghasem et al. 2013). Implementation
of SI method is based on the following equation (Van
Westen 1997):

WSI ¼ Ln
Eij

E

� �
¼ Ln

Lij
.
LT

Pij

.
PL

0
@

1
A ð8Þ

where WSI is the assigned weight to the given class i of
the parameter j; Eij is the flood density in the class i of
the parameter j; E denotes the total flood density within
the entire map; Lij is the number of flooding locations in
the class i of the parameter j; LT is total number of floods
in the entire map;Pij is the number of pixels in the class i
of the parameter j; and PL is the total number of pixels in
the entire map.

This method is based on statistical correlation be-
tween the flood inventory map and characteristics of
various parameters (Yalcin 2008). In this study, all of
the parameters were crossed with the flood inventory
map, and the resulting flood density in each class of
parameters of interest was calculated. The correlation
outcomes were sorted in the resultant raster, and flood
density was calculated for the classes of parameters. The
SI values were calculated for each of the features.
Finally, flood susceptibility mapping was performed
by overlaying the different layers.

Positive values ofWSI indicate the proper and robust
relationship between the classes and flooding distribu-
tion such that the stronger the relationship is, the higher
the score will become. Negative values for WSI mean
that there is no correlation between the class and the
flood occurrence.

Weighting factor model

As the FR model for determination of its weights used
the SE model, Wf model utilities the SI value to deter-
mination of its weights. In other words, Wf method can
be regarded as the modified version of the statistical
index (Cevik and Topal 2003; Oztekin and Topal
2005; Yalcin 2008). In these methods, the Wf weights
are calculated by the procedures that SI considers for

determination of each attribute and each SI weight.
Firstly, flood inventory map is rasterized, and then, it
is crossed with other rasterized parameters. SI values are
calculated for each flood pixel in each layer. Then, the
values of all the pixels belonging to each layer are
summed. Eventually, the weighting factor values for
each layer are calculated in a range of 1 to 100 by the
following equations (Yalcin 2008; Yalcin et al. 2011).

TSI ¼
Xn

i¼1

SI� S:pix ð9Þ

WWf ¼ TSIvalueð Þ− MinTSIvalueð Þ
MaxTSIvalueð Þ− MinTSIvalueð Þ � 100 ð10Þ

where TSI is the total value of the flooding pixels of a
given class of parameters of interest, n the number of
classes of the parameter, Wwf the weight factor for each
layer of maps (final weight), MinTSI the minimum
value of the total weights among the layers, andMaxTSI
maximum value of the total weights among the layers.
Wf values of each layer are multiplied by SI values of
the classes of the maps. At last, all the factors are added
together and flood susceptibility map is prepared ac-
cording to the Wf method (Yalcin 2008; Yalcin et al.
2011).

Result and discussion

FSM using SE model

Shannon’s entropy results with the relationship between
the occurrence of floods and the flood factors are shown
in Table 2. Slope angle, plan curvature, and altitude
were given weights equal to 0.719, 0.134, and 1.711,
respectively, which reflect the fact that among topo-
graphical factors, the most important factor is altitude
followed by slope angle and plan curvature.

TWI and SPI were assigned weights of 0.388 and
1.054, indicating that the SPI was the most important
factor among the hydrological factors. The calculated
weights for other causative factors were as follows:
distance from river (1.236), rainfall (0.365), geological
condition (0.008), land use (1.09), and NDVI (1.89).
Overall, the most and the least important factors for
flooding were distance from river and geology, respec-
tively. Finally, the flood susceptibility mapping (FSM)
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prepared by SE (Fig. 4a; Eq. 11) showed that very low,
low, medium, high, and very high covered 13.57, 26.66,
30.04, 21.53, and 8.17% of the area, respectively.

FSMSE ¼ 0:719 � slopeangleþ 0:134

� plancurvatureþ 1:711� altitudeþ 0:388

� TWIþ 1:084� SPIþ 2:11

� distancefromriver þ 0:554� rainfallþ 0:008

� geologyþ 1:091� landuseþ 1:899

� NDVI ð11Þ

FSM using SI model

Weights derived by this procedure for each class of each
layer are shown in Table 3. According to Table 3, for
slope angle classes of 0–5.7 and 5.7–15.9, positive
weight values of 1.78 and 0.78 have been obtained,
respectively, while higher slope classes have gained
negative weights, indicating that higher correlation
values between the occurrence of floods and the class
would result in larger positive values and lower corre-
lation values between the occurrence of floods and the
class would result in low and negative values.

Naturally, because the flood occurs in an area with
low slope, the weights that are obtained using SI method
should be positive for low slope with decrease in slope
and the SI value should increase. The value for the
convex class of the plan curvature parameters was neg-
ative, while it was positive for the other two classes
(concave = 0.51 and flat = 0.14). With respect to these
weights, it can be concluded that the concavely curved
and flat surfaces are more likely prone to flooding than
the convex surfaces, which corresponds to the findings
of Tehrany et al. (2015a, b). In case of altitude, 328–
2456 and 2456–2770 m obtained positive and negative
weights, respectively, while no flood occurrence was
recorded for higher altitudes. The highest weight was
for the low-altitude class (1141–328 m), which is con-
sistent with the normal behavior of flood in reality. For
lower values of TWI Factor, negative weights were
obtained; while for higher values, positive weights were
obtained. In general, we can say that by increasing TWI,
the probability of flooding increases. The highest weight
obtained was equal to 1.69, corresponding to the TWI of

7.1–8. The flooding locations recorded for model train-
ing for the SPI factor occurred in the range of 0 to
1,810,539 with no registered floods for higher values.
In the domain of flooding locations, by increasing the
SPI value, high weight was acquired. For lower SPI
values in the range of 0 to 27,432, negative weight
was obtained, while the maximum weight occurred in
the range of 1,234,458 to 1,810,539.

The sixth factor considered in this study was distance
from river, which according to the review of literature,
was one of the most important factors affecting floods
(Tehrany et al. 2015b). For this parameter, only the first
class (i.e., 0 to 500 m) gained positive weight, while
other classes were negatively weighted; this reduction of
weight was held by succeeding farther from the river.
Thus, by this interpretation, with increasing distance
from the river, the probability of flooding decreases.

For the rainfall factor, increase in rainfall result-
ed in smaller weights, meaning reduced probability
of flooding by increasing rainfall. This is best
explained by the fact that higher altitude receives
higher precipitation, while these areas are marked
with much less probability of flooding. Positive
weights were obtained for three classes of 183–
267, 267–329, and 329–375 mm, turning into neg-
ative values for the next three classes from 375 to
468 m with no registered flooding for precipitation
exceeding 468 mm.

Haraz Watershed geology consists of Paleozoic,
Mesozoic, and Cenozoic formations weighted 0.23,
0.02, and −0.06, respectively. By this notion, the geol-
ogy formations of Paleozoic are the primary factor af-
fecting flooding due to higher positive weight, with
Cenozoic unit as the least important. For land use, the
maximum weights were of the water bodies at 3.57,
followed by bare lands at 2.1, and finally residential
areas at 1.04. For rangeland with a weight of
−0.06 and forest with −0.58, there is negative
correlation between these factors and floods.
Despite the presence of 132 out of 151 flood
locations in the rangeland areas, the weight value
was negative due to extensive rangeland cores
compared with the distribution of flooding loca-
tions. In orchards and agricultural land use types,
no flood situations have been registered. The last
intended factor was NDVI, which for Haraz
Watershed obtained a range of −0.69 and −0.58.
No special relationship cannot be established be-
tween these parameters and the positive and
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Table 2 Spatial relationship between flood causative factors and flooding locations using SE

Class No. pixels in
domain

Percentage of
domain

No. of
floods

Percentage of
floods

FR Eij Hj Hjmax Ij Vj

Slope angle

0–5.7 527,064 5.31 47 31.12 5.86 0.662 1.379 2.322 0.406 0.719
5.7–15.9 2,278,837 22.95 70 46.35 2.02 0.228

15.9–24.6 3,019,849 30.41 22 14.57 0.48 0.054

24.6–33.25 2,788,907 28.09 4 2.64 0.09 0.011

33.25–66.77 1,315,332 13.25 8 5.29 0.40 0.045

Plan curvature (100/m)

Convex 4,045,570 40.74 23 15.23 0.37 0.118 1.384 1.585 0.127 0.134
Flat 2,545,930 25.64 44 29.13 1.14 0.359

Concave 3,338,493 33.62 84 55.62 1.65 0.523

Altitude (m)

328–1141 337,377 3.40 59 39.073 11.50 0.654 0.394 3.170 0.876 1.711
1141–1658 653,985 6.59 18 11.921 1.81 0.103

1658–2093 841,869 8.48 31 20.530 2.42 0.138

2093–2456 1,259,033 12.68 22 14.570 1.15 0.065

2456–2770 1,976,235 19.90 21 13.907 0.70 0.040

2770–3075 1,998,538 20.13 0 0.000 0.00 0.000

3075–3417 1,696,868 17.09 0 0.000 0.00 0.000

3417–3954 1,048,316 10.56 0 0.000 0.00 0.000

G > 3954 117,797 1.19 0 0.000 0.00 0.000

TWI

1.8–3.7 1,064,318 10.72 3 1.987 0.19 0.009 2.713 3.322 0.183 0.388
3.8–4.1 2,232,092 22.48 3 1.987 0.09 0.004

4.2–4.5 2,037,114 20.51 8 5.298 0.26 0.012

4.6–4.9 1,835,184 18.48 18 11.921 0.65 0.031

5–5.3 1,216,401 12.25 33 21.854 1.78 0.084

5.4–5.7 770,366 7.76 32 21.192 2.73 0.129

5.8–6.2 493,239 4.97 40 26.490 5.33 0.252

6.3–7 185,713 1.87 8 5.298 2.83 0.134

7.1–8 61,325 0.62 5 3.311 5.36 0.254

8.1–11.5 34,257 0.34 1 0.662 1.92 0.091

SPI

0–27,432.4 8,389,309 84.97 84 55.629 0.65 0.022 2.100 3.322 0.368 1.084
27,432.4–164,594.4 1,039,060 10.52 32 21.192 2.01 0.068

164,594.4–
411,486.2

260,354 2.64 21 13.907 5.27 0.179

411,486.2–
768,107.5

106,583 1.08 8 5.298 4.91 0.167

768,107.5–
1,234,458.6

45,996 0.47 2 1.325 2.84 0.096

1,234,458.6–
1,810,539.3

18,981 0.19 4 2.649 13.78 0.468

1,810,539.3–
2,496,349.6

7739 0.08 0 0.000 0.00 0.000

2,496,349.6–
3,319,322

3518 0.04 0 0.000 0.00 0.000

3,319,322–
4,745,807.5

1791 0.02 0 0.000 0.00 0.000

4,745,807.5–
6,995,265.5

272 0.00 0 0.000 0.00 0.000
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negative weights. In the ten classes related to this
factor, the weight for the first two classes was
positive; for the next three classes was negative;

for the next four classes was positive; and for the
final class was negative. The highest weight was
for the first class with a range of −0.35 to −0.69

Table 2 (continued)

Class No. pixels in
domain

Percentage of
domain

No. of
floods

Percentage of
floods

FR Eij Hj Hjmax Ij Vj

Distance from river (m)

0–500 945,165 9.52 128 84.76 8.91 0.868 0.809 2.585 1.236 2.115
500–1000 889,321 8.96 9 5.96 0.67 0.065

1000–1500 858,482 8.64 5 3.31 0.38 0.037

1500–2000 827,818 8.34 2 1.32 0.16 0.015

2000–2500 798,718 8.04 1 0.66 0.08 0.008

>2500 5,611,062 56.50 6 3.97 0.07 0.007

Rainfall (mm)

183–267 49,519 0.50 4 2.65 5.31 0.403 2.014 3.170 0.365 0.534
267–329 366,418 3.69 26 17.22 4.67 0.354

329–375 1,876,230 18.90 35 23.18 1.23 0.093

375–409 4,310,056 43.41 62 41.06 0.95 0.072

409–434 2,252,289 22.69 19 12.58 0.55 0.042

434–468 701,730 7.07 5 3.31 0.47 0.036

468–514 231,312 2.33 0 0.00 0.00 0.000

514–576 78,768 0.79 0 0.00 0.00 0.000

>576 61,831 0.62 0 0.00 0.00 0.000

Geology

Cenozoic 3,857,722 38.84 55 36.42 0.94 0.291 1.573 1.585 0.007 0.008
Mesozoic 5,604,514 56.43 87 57.62 1.02 0.317

Paleozoic 469,735 4.73 9 5.96 1.26 0.391

Land use

Rangeland 9,189,569 92.54 132 87.42 0.94 0.020 1.181 1.404 0.159 1.091
Bare land 72,487 0.73 9 5.96 8.17 0.170

Forest 592,322 5.96 5 3.31 0.56 0.012

Garden 13,007 0.13 0 0.00 0.00 0.000

Residential 23,406 0.24 1 0.66 2.81 0.058

Irrigation 32,539 0.33 0 0.00 0.00 0.000

Water body 7391 0.07 4 2.65 35.59 0.740

NDVI

−0.69 to −0.35 11,325 0.11 5 3.31 29.01 0.616 1.983 3.322 0.403 1.899
−0.34 to −0.18 245,042 2.47 7 4.64 1.88 0.040

−0.17 to −0.13 1,503,258 15.15 17 11.26 0.74 0.016

−0.12 to −0.08 3,142,579 31.67 15 9.93 0.31 0.007

−0.07 to −0.03 2,806,738 28.29 32 21.19 0.75 0.016

−0.02 to 0.05 1,061,917 10.70 22 14.57 1.36 0.029

0.06 to 0.18 332,396 3.35 15 9.93 2.97 0.063

0.19 to 0.33 239,320 2.41 20 13.25 5.49 0.117

0.34 to 0.47 251,095 2.53 16 10.60 4.19 0.089

0.48 to 0.73 328,562 3.31 2 1.32 0.40 0.008

Note: FR is the frequency ratio; Eij is the probability density; Hj and Hjmax are the entropy values; Ij is the information value; and Vj depicts
the resultant weight value for the parameter as a whole
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and with the weighting of 3.38. Finally, according
to Eq. 12, map of flood susceptibility by the SI
method (Fig. 4b) was created:

FSMSI ¼ slopeangleSI þ plancurvatureSI

þ altitudeSI þ TWISI þ SPISI

þ distancefromriverSI þ rainfallSI

þ geologySI þ landuseSI þ NDVISI ð12Þ

The map was classified based on the natural break
classification scheme into low, low, moderate, high, and
very high susceptibility classes.

Most of the area, by 31.17%, was devoted to the low
susceptibility to flooding, while the least area was identi-
fied by the very high susceptibility of 0.58% (22.07 km2).
The area with high susceptibility to flooding covered
662.2 km2 that equals 17.57% of the study area.

FSM using Wf model

The last method considered for assessment of susceptibility
to flooding in the Haraz Watershed was the Wf approach.
Theweights obtained by this approach can be attained from
the SI method; put simply, WFmethod receives its weights
from the SI method and the final weight is calculated as the
combination of the both weights shown in Table 3. TheWf
method, same as SE method, is applicable for the calcula-
tion of the weights of the layers; but Wf method ranges
from 0 to 100. In this method, the most important factors
for the floodingwere distance to river with a weight of 100,
altitude with a weight of 71.4, TWI with a weight of 42.2,
and slope angle with a weight of 40.1. The least important
factor in the flooding, according to the results of the recent
method, was geology. The map obtained from Eq. 13 was
classified into five classes of susceptibility to flooding
(Fig. 4c). Percent areas of the susceptibility classes of very
low, low, moderate, high, and very high were 33.89, 28.25,
22.43, 9.3, and 6.1%, respectively.

Fig. 4 Flood susceptibility mapping using a SE model, b SI model, and cWF model. F equal to flood and N equal to non-flood location
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Table 3 Spatial relationship between flood causative factors and flooding locations using SI and Wf

Class No. pixels in domain Percentage of domain No. of floods Percentage of floods SI TWI WF

Slope angle

0–5.7 527,064 5.31 47 31.12 1.78 83.63 40.16
5.7–15.9 2,278,837 22.95 70 46.35 0.71 49.95

15.9–24.6 3,019,849 30.41 22 14.57 −0.73 −15.96
24.6–33.25 2,788,907 28.09 4 2.64 −2.35 −9.40
33.25–66.77 1,315,332 13.25 8 5.29 −0.91 −7.25

Plan curvature (100/m)

Convex 4,045,570 40.74 23 15.23 −0.97 −22.39 10.59
Flat 2,545,930 25.64 44 29.13 0.14 6.09

Concave 3,338,493 33.62 84 55.62 0.51 43.18

Altitude (m)

328–1141 337,377 3.40 59 39.073 2.45 144.72 71.42
1141–1658 653,985 6.59 18 11.921 0.60 10.87

1658–2093 841,869 8.48 31 20.530 0.89 27.74

2093–2456 1,259,033 12.68 22 14.570 0.15 3.29

2456–2770 1,976,235 19.90 21 13.907 −0.35 −7.31
2770–3075 1,998,538 20.13 0 0.000 None None

3075–3417 1,696,868 17.09 0 0.000 None None

3417–3954 1,048,316 10.56 0 0.000 None None

G > 3954 117,797 1.19 0 0.000 None None

TWI

1.8–3.7 1,064,318 10.72 3 1.987 −1.67 −5.02 42.21
3.8–4.1 2,232,092 22.48 3 1.987 −2.42 −7.25
4.2–4.5 2,037,114 20.51 8 5.298 −1.34 −10.75
4.6–4.9 1,835,184 18.48 18 11.921 −0.43 −7.70
5–5.3 1,216,401 12.25 33 21.854 0.59 19.45

5.4–5.7 770,366 7.76 32 21.192 1.02 32.49

5.8–6.2 493,239 4.97 40 26.490 1.68 67.38

6.3–7 185,713 1.87 8 5.298 1.05 8.41

7.1–8 61,325 0.62 5 3.311 1.69 8.45

8.1–11.5 34,257 0.34 1 0.662 0.66 0.66

SPI

0–27,432.4 8,389,309 84.97 84 55.629 −0.41 −34.70 19.27
27,432.4–164,594.4 1,039,060 10.52 32 21.192 0.71 22.74

164,594.4–411,486.2 260,354 2.64 21 13.907 1.67 35.14

411,486.2–768,107.5 106,583 1.08 8 5.298 1.60 12.81

768,107.5–1,234,458.6 45,996 0.47 2 1.325 1.06 2.11

1,234,458.6–1,810,539.3 18,981 0.19 4 2.649 2.63 10.53

1,810,539.3–2,496,349.6 7739 0.08 0 0.000 None None

2,496,349.6–3,319,322 3518 0.04 0 0.000 None None

3,319,322–4,745,807.5 1791 0.02 0 0.000 None None

4,745,807.5–6,995,265.5 272 0.00 0 0.000 None None

Distance from river (m)

0–500 945,165 9.52 128 84.76 2.20 281.25 100
500–1000 889,321 8.96 9 5.96 −0.40 −3.57
1000–1500 858,482 8.64 5 3.31 −0.95 −4.75
1500–2000 827,818 8.34 2 1.32 −1.83 −3.66
2000–2500 798,718 8.04 1 0.66 −2.49 −2.49
>2500 5,611,062 56.50 6 3.97 −2.64 −15.87

Rainfall (mm)

183–267 49,519 0.50 4 2.65 1.68 6.72 14.63
267–329 366,418 3.69 26 17.22 1.55 40.32
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FSMWf ¼ 40:15 � slopeangleSI þ 10:58

� plancurvatureSI þ 71:42� altitudeSI þ 42:21

� TWISI þ 19:26� SPISI þ 100

� distance from riverSI þ 14:63� rainfallSI þ 1

� geologySI þ 9:33� landuseSI þ 27:66

� NDVISI ð13Þ

Validation of the FSMs

Validation is one of the primary and important steps in
the development and evaluation of the obtained maps
from different methods (Pourghasemi et al. 2012a),
without which no models would be regarded as

scientifically sound (Chang and Fabbri 2003; Nampak
et al. 2014). Efficiency of flood susceptibility model is
usually estimated by independent information that is not
available to build a model. The total of 211 flood loca-
tions recorded in the Haraz Watershed were randomly
divided into two groups, 70% (151 location) and 30%
(60 location), which were respectively used for the
purposes of modeling and validation. In the current
study, the following two methods were used for valida-
tion of the produced maps of susceptibility to flooding
by the SE, SI, and Wf methods.

Histograms

To implement this method, in addition to the recorded
floods, non-flooded locations were also utilized. For re-
cording of 211 non-flooded locations as random spots on

Table 3 (continued)

Class No. pixels in domain Percentage of domain No. of floods Percentage of floods SI TWI WF

329–375 1,876,230 18.90 35 23.18 0.21 7.52

375–409 4,310,056 43.41 62 41.06 −0.05 −2.80
409–434 2,252,289 22.69 19 12.58 −0.58 −11.00
434–468 701,730 7.07 5 3.31 −0.75 −3.74
468–514 231,312 2.33 0 0.00 None None

514–576 78,768 0.79 0 0.00 None None

>576 61,831 0.62 0 0.00 None None

Geology

Cenozoic 3,857,722 38.84 55 36.42 −3.53 −3.53 1
Mesozoic 5,604,514 56.43 87 57.62 1.81 1.81

Paleozoic 469,735 4.73 9 5.96 2.08 2.08

Land use

Rangeland 9,189,569 92.54 132 87.42 −0.06 −7.57 9.33
Bare land 72,487 0.73 9 5.96 2.10 18.88

Forest 592,322 5.96 5 3.31 −0.58 −2.91
Garden 13,007 0.13 0 0.00 None None

Residential 23,406 0.24 1 0.66 1.04 1.04

Irrigation 32,539 0.33 0 0.00 None None

Water body 7391 0.07 4 2.65 3.57 14.30

NDVI

−0.69 to −0.35 11,325 0.11 5 3.31 16.90 16.90 27.67
−0.34 to −0.18 245,042 2.47 7 4.64 4.50 4.50

−0.17 to −0.13 1,503,258 15.15 17 11.26 −4.84 −4.84
−0.12 to −0.08 3,142,579 31.67 15 9.93 −17.21 −17.21
−0.07 to −0.03 2,806,738 28.29 32 21.19 −8.84 −8.84
−0.02 to 0.05 1,061,917 10.70 22 14.57 7.06 7.06

0.06 to 0.18 332,396 3.35 15 9.93 16.49 16.49

0.19 to 0.33 239,320 2.41 20 13.25 34.31 34.31

0.34 to 0.47 251,095 2.53 16 10.60 23.11 23.11

0.48 to 0.73 328,562 3.31 2 1.32 −1.81 −1.81
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the hills, mountains, and places, where there were no flood
events, Google Earth images were used (Tehrany et al.
2014a). Non-flooded locations were divided into two clas-
ses of 70% (151 positions) and 30% (60 locations); 30%of
flooded and non-flood locations were used for the prepa-
ration of the histogram. Initially, susceptibility map was
broken into ten levels (Dai and Lee 2002; Shirzadi et al.
2012); then, it overlaid the map of flooded and non-
flooded locations and the final histogram was produced
(as illustrated in Fig. 5). If the achieved maps are accurate,
30% of flood locations should be located in high-
susceptibility classes (right wing of the graph) and 30%
of non-flooded location should be located in low-
susceptibility classes (left wing of the graph) (Meng et al.
2015). Therefore, no flooding locations must fall into the
low to very low classes, and this also holds for the highly
accurate and valid non-flooded locations. Thirty percent of
the non-flooded locations must fall into the lower tails of
the graph and must not fall into the high to very high
classes; otherwise, the results of the model would not be
sufficiently robust.

The results indicated that the Wf and SI models were
comparatively more accurate, since most of the flooding
locations fell into the high to very high susceptibility
classes. However, given the other two classes, it is clear
that the SI model is particularly accurate (there were
flooding locations in the moderate class in the Wf meth-
od, while none was observed in the SI). SE model did
not work properly (in comparison to SI andWf) as there

were flooding locations, even in the fourth class, con-
tributing to the low and very low susceptibility classes.

ROC curve

This method is one of the most popular (Pradhan 2010a,
b; Pourghasemi et al. 2013; Tehrany et al. 2015a, b;
Youssef et al. 2016) techniques to evaluate efficiency of
the models, since it estimates the result of the model and
quantitatively calculates efficiency. Prediction rate and
success rates should be assessed as a necessary part of
any program (Pourghasemi et al. 2012b). Thus, to eval-
uate the effectiveness and validity of FSMs, both suc-
cess rate and prediction rate curves were produced using
70 and 30% of flooding locations, respectively (Youssef
et al. 2016). Training data sets of floods were used in the
production of floodmaps; thus, success rate could not be
used to assess the ability of the model (Pourghasemi
et al. 2012b; Tehrany et al. 2015b; Youssef et al. 2016).
Prediction rate, which is now widely used to measure
and evaluate the performance and ability of the models
(Lee et al. 2007; Tien Bui et al. 2011), was applied to
efficiency of FSMs. Prediction rate indicates how well
the model can predict floods in a given area. In this
regard, 30% of non-flood locations that have been gen-
erated in the histogram section have been used there
also. AUC of prediction rate can quantitatively measure
the accuracy of model’s prediction (Pradhan and Lee
2010). Figure 6a, b denotes success rate and prediction
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Fig. 5 Histogram of the predicted flood susceptibility for the validation data set (flooding and non-flooding location)
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rate, respectively, for SE, SI, and Wf models. The range
of AUC is between 0.5 and 1, where one represents the
highest accuracy indicating that the model is able to
predict natural hazards without any bias (Pradhan
2010a).

For the preparation of success rate and prediction rate,
susceptibility maps with 70 and 30% of flooding locations
were overlaid and, eventually, the cumulative percentage
of flood occurrence (in descending order, from highest to

lowest) was calculated. The success and prediction rate
plots were prepared with the x-axis representing the cumu-
lative percentage of flood occurrence and the y-axis
representing the flood probability index.

According to the success rate curve and based on the
model validation results, the AUC values for SE, SI, and
Wf models were respectively measured 0.9253, 0.9971,
and 0.981, which were responsible for 92.53, 99.71, and
98.1% accuracy achievement. According to prediction
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rate curve and based on the model validation results,
AUC values for SE, SI, and Wf models were measured
0.9142, 0.9872, and 0.976, respectively, which were
responsible for 91.42, 98.72, and 97.6% accuracy
achievement. Yesilnacar (2005) believes that quantita-
tive relationship between the AUC and the accuracy of
the model’s prediction can be classified into the follow-
ing classes: weak (0.5–0.6), moderate (0.6–0.7), good
(0.7–0.8), very good (0.8–0.9), and excellent (0.9–1).
Overall, bivariate statistical models are very suitable for
large size of study areas that have a limited data (Zhang
et al. 2016) and are very easy to run in a GIS environ-
ment (Oh et al. 2011) but have a disadvantage that equal
weights are assumed for different effective factors
(Pourghasemi and Kerle 2016). Meanwhile, this prob-
lem is solved by Shannon’s entropy approach. With this
interpretation, results of all of the models fall in the
excellent category and propose for land use planning
and flood management department in the Haraz
Watershed, Mazandaran Province.

Conclusion

Flood is one of the world’s most hazardous natural
events that human societies have faced for decades,
while many measures have been done to control and
mitigate it. One of the critical steps in this regard is
preparation of flood susceptibility maps for future
flooding; the most important item for preparation of
FSMs is having a reliable and accurate method. The
main aims of this study were as follows: (1) floods
susceptibility mapping in the Haraz Watershed,
Mazandaran Province (due to annual severe flood
events) by various methods, namely, FR, SE, SI, and
Wf; (2) assessment of models’ efficiency in producing
flood susceptibility maps; and (3) determination of the
most important factors for the occurrence of floods in
the study area.

For preparation of flood susceptibility map, initially,
the ten causative factors were determined based on the
literature review as slope angle, plan curvature, altitude,
TWI, SPI, distance from river, rainfall, geology, land
use, and NDVI. Then, 211 flood locations (according to
field surveys and documentary sources) were identified,
of which 70 and 30% were designated, respectively, for
the purpose of modeling and validation. Three methods,
including SE, SI, and Wf, were used and the relation-
ships between flood events and each of the ten factors

were evaluated. In order to evaluate their performance,
the models’ efficiencies were compared with that of the
FR model, which is one of the popular bivariate statis-
tical techniques in this field.

The histogram and ROC curve methods were used
for assessment of the models’ ability. In the histogram
method, the best model for identification of flooding and
non-flooding locations was SI method. By using the
AUC, success rate and prediction rate were quantitative-
ly measured for assessment and comparison of FSMs
achieved by the four models. The largest area under the
success rate curve belonged to the SI (99.71%), follow-
ed by the Wf (98.1%) and SE (92.53%).

The results showed that SI method particularly better
fitted the training data sets and obtained higher prediction
rate by 98.72%. Following the SI method, the AUC values
for the Wf and SE methods were measured 98.1 and
92.53%, respectively. The results of four models in the
ranking of results were excellent. The results of this re-
search showed that the SI and other models could be
regarded as efficient and effective methods for FSMs in
GIS environment. Another objective of the current study
was determination of the most important causative factor
in the HarazWatershed. Based on the results of theWf, the
order of factors was distance from the river, TWI, and
slope angle, while it changed for the SEmethod to distance
from the river, land use, and altitude classes. For either
method, the least significant factor was geology.

The results of this study, in addition to utilization as a
base map for flood hazard and flood risk mapping, can be
used as a contingency plan for the governmental depart-
ments of water, disaster management, planning, and others
to take appropriatemeasures to prevent andmitigate floods
and their consequent damages in the future.
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