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Abstract High-resolution diffuse reflectance spectra in
the visible and near-infrared wavelengths were used to
predict chemical properties of sediment samples obtain-
ed from Lake Okeechobee (FL, USA). Chemometric
models yielded highly effective prediction (relative per-
cent difference (RPD) = SD/RMSE >2) for some sedi-
ment properties including total magnesium (Mg), total
calcium (Ca), total nitrogen (TN), total carbon (TC), and
organic matter content (loss on ignition (LOI)). Predic-
tions for iron (Fe), aluminum (Al), and various forms of
phosphorus (total P (TP), HCl-extractable P (HCl-P),
and KCl-extractable P (KCl-P)) were also sufficiently
accurate (RPD > 1.5) to be considered useful; predic-
tions for other P fractions as well as all pore water
properties were poor. Notably, scanning wet sediments
resulted in only a 7 % decline in RPD scores. Moreover,
interpolation maps based on values predicted from wet

sediment spectra captured the same spatial patterns for
Ca, Mg, TC, TN, and TP as maps derived directly from
wet chemistry, suggesting that field scanning of perpet-
ually saturated sediments may be a viable option for
expediting sample analysis and greatly reducing map-
ping costs. Indeed, the accuracy of spectral model pre-
dictions compared favorably with the accuracy of
kriging model predictions derived from wet chemistry
observations suggesting that, for some analytes, higher
density spatial sampling enabled by use of field spec-
troscopy could increase the geographic accuracy of
monitoring for changes in lake sediment chemical
properties.
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Introduction

Environmental monitoring over large heterogeneous
systems presents a significant logistical and budgetary
challenge. In particular, traditional chemical analysis of
soil/sediment samples is expensive and labor-intensive
and presents a limiting factor affecting the resolution, in
time and space, of large-area monitoring efforts of land
and water degradation (Shepherd et al. 2015). As mon-
itoring to detect environmental changes requires in-
creasingly fine-scale sample collection, alternative tools
for sample analysis that decrease costs and maintain
reasonable accuracy may be transformative for surveil-
lance of degradation and restoration.
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One promising tool for use in large-area environmen-
tal surveillance is visible/near-infrared (VNIR) diffuse
reflectance spectroscopy, wherein patterns of electro-
magnetic radiation absorbed in the visible (350–
750 nm) and near-infrared (750–2500 nm) regions are
used to predict the physical and chemical characteristics
of a substance (soil, plant tissues, sediments) through the
use of multivariate statistical models called
chemometrics (Shepherd and Walsh 2002). Like all
remote sensing, the method depends on the absorbance
and reflectance of a particular material at different wave-
lengths of light depending on its physical (e.g., crystal-
line structure) and chemical (e.g., mineral composition,
organic content) composition. Numerous applications,
ranging from food science (Huang et al. 2008), to forage
analysis (Norris et al. 1976), and satellite and airborne
sensor applications (Kodikara et al. 2012) have demon-
strated the practical validity of statistical correlations
between the spectral characteristics of materials and a
variety of physical and chemical characteristics.

The emergence of lower cost field ruggedized
spectroradiometers has helped the technique gain favor
for large-area environmental surveillance (Shepherd
et al. 2015) and has been successfully applied over a
range of terrestrial (Chang et al. 2001; Brown et al.
2006), aquatic (Malley andWilliams 1997), and wetland
(Cohen et al. 2005) systems as a means to achieve
acceptable, and sometimes enhanced and integrative,
measurements of soil and sediment properties. Most
research has focused on chemical properties of soils.
For example, Chang et al. (2001) successfully predicted
total C (TC), total N (TN), cation exchange capacity
(CEC), moisture content, sand and silt fractions, and
extractable Ca in soils throughout the USA, and similar
success has been observed in Australia (Dunn et al.
2002; CEC, exchangeable Ca and Mg, and pH in both
topsoil and subsoil) and Africa (Shepherd and Walsh
2002; pH, CEC, Ca, Mg, organic C, and soil texture).
For a global database of terrestrial soils, Brown et al.
(2006) predicted total clay content, clay fractionation
(kaolinite vs. montmorillonite), and CEC. Notably, soil
nutrients have been predicted across several soil orders
(Lee et al. 2003), and even phosphate minerals associ-
ated with Fe, Al, Mg, and Ca have been predicted
(Bogrekci and Lee 2005a), especially after model cor-
rections for particle size.

Lake Okeechobee is a large (area ~1730 km2) shal-
low (mean depth ~2.7 m) freshwater lake in South
Florida, USA. The lake is highly managed, with a

perimeter dike and numerous flow control structures.
Water is delivered to the lake from the Kissimmee River
and a number of creeks and canals (Havens and
Steinman 2015), and from direct rainfall, which ac-
counts for 40 % of water inputs (James et al. 1995).
Water is discharged south into the Everglades Agricul-
tural Area and eventually the Everglades, east to the St.
Lucie River and west to the Caloosahatchee River
(Havens and Steinman 2015). Water quality in the lake
is impaired due to excessive nutrient loading (Reddy
et al. 2002), and its sediments are a critically important
component of phosphorus (P) cycling, since they act as
a sink for particulate P and a large internal load of
soluble reactive P (SRP; Fisher et al. 2005; Moore
et al. 1998). As such, changes in sediment depth, extent,
and chemistry are among the most important long-term
indicators of ecosystem degradation and recovery and
also of the effects of exogenous disturbances (e.g., trop-
ical storms). However, the size of Lake Okeechobee
limits sediment sampling density in space and time
due to high costs of collecting, processing, and analyz-
ing large numbers of samples.

Though terrestrial soils are different from lake
sediments, some properties have been successfully
measured with VNIR spectral techniques in lakes
(e.g., Ca, Mg, C, and N). Malley and Williams
(1997) used spectroscopy to successfully predict
concentrations of various heavy metals in sedi-
ments of an oligotrophic freshwater lake in Cana-
da. They observed that successful prediction was
predicated on associations between metal concen-
trations and organic matter (OM) content and that
OM was the attribute best predicted by near-
infrared (NIR) analysis. Similarly, Nilsson et al.
(1996) used the reflectance spectra of lake sedi-
ments to infer properties of the overlying water
column, where NIR-derived models explained
83 % of variability for total P (TP), 68 % for
total organic carbon (TOC), and 85 % for pH.

The large littoral marsh in western Lake Okeechobee
has substrates more like wetland soils than lake sedi-
ment. Cohen et al. (2005) determined that VNIR spec-
troscopy can be used to predict a variety of chemical
characteristics from wetland soils, including P, a key
nutrient of interest in Lake Okeechobee’s sediments.
As such, there is strong precedent for the efficacy of
this approach given a robust calibration library.

Spectral analysis offers significant cost benefits
over traditional wet chemistry, in part because
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multiple sample characteristics can be predicted
simultaneously from a material’s spectral profile.
For systems like Lake Okeechobee, whose size
limits the spatial and temporal density of sampling,
using spectral predictions as a component of mon-
itoring efforts could increase the attainable resolu-
tion by offering a low-cost alternative to traditional
analyses. However, most of the sample costs are
incurred in collecting samples, bringing them back
to the laboratory, and using extensive preparation
(drying, grinding, sieving) before analysis (Nilsson
et al. 1996; Malley and Williams 1997). Because
field-portable spectroradiometers are now widely
available and could be used to collect sediment
spectra on site, the possibility exists to scan sedi-
ments in the field, obviating the costs associated
with sample collection, preservation, transport, and
pre-processing. A principal constraint that has lim-
ited field application of spectral prediction is that
moisture content strongly affects spectra (Kooistra
et al. 2003). In settings where moisture contents
vary (e.g., terrestrial soils), this may affect model
performance sufficiently to render this technique
untenable. However, lake sediments are generally
saturated, minimizing the effects of variable mois-
ture content. As such, we predicted that wet scan-
ning may allow sufficient performance for lake
sediment surveillance. Our specific objectives in
this study were to develop a spectral library and
associated chemometrics for multiple properties of
sediments from Lake Okeechobee and to compare
the effectiveness of models derived from spectra of
dried sediments to spectra from saturated samples.

Methods

Sample collection and preparation

Sample locations spanning Lake Okeechobee were se-
lected based on 174 sites visited during past surveys
(Fisher et al. 2005). Eighteen of these previously sam-
pled sites were inaccessible during the dry conditions
encountered during our survey, so sediment cores were
ultimately obtained at 156 stations (Fig. 1), either using
a piston corer (in deep water) or by manually pushing
the core tube into the substrate to refusal (in shallow
water). Sampling occurred during one field season
(summer 2007), with duplicate cores obtained at
12.5 % of sampling sites (one in eight, yielding 19
randomly selected locations). A minimum of 10 cm of
site water was left standing above each core, and each
was capped and kept on ice during transport to the lab,
where it was refrigerated at 4 °C. Cores were extruded
inside an N2-purged hood to maintain anaerobic condi-
tions. Surface sediments (0–10 cm) of each core were
sectioned for chemical and spectral analysis. Pore water
was extracted by centrifugation in airtight containers at
10,000 rpm for 10min. Syringes were inserted through a
rubber stopper in the tube cap to remove pore water
without exposing the sample to the atmosphere.

Following pore water separation, sediments were
dried in an oven at 70 °C for 3 days to determine
moisture content and bulk density and then ground in
a mortar and pestle and ball-milled to pass through a
20-μm sieve. Part of the sample was retained for spectral
analysis, and the remainder was analyzed for a suite of
physical and chemical properties according to standard

Fig. 1 a Map of sampling sites
from 2006 sampling effort on
Lake Okeechobee (in South
Florida, inset). Spatial domains
(gray boxes) selected to compare
maps derived from measurements
with maps from spectral
predictions of b Ca, c LOI%, d
TP, e TN, and f Mg
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methods: TP (EPA 365.1), TC and TNwith a Carlo Erba
NA-1500 CNS analyzer, bulk density, HCl-P (EPA
365.1), HCl-extractable Ca, Mg, Fe, and Al (EPA
200.7), KCl-P (EPA 365.1), KCl-NH4-N (Mulvaney
1996), and NaHCO3-P (EPA 365.1). Pore water was
analyzed for TP (EPA 365.1), SRP (EPA 365.1), total
Kjeldahl N (TKN; EPA 351.2), NH4-N (Mulvaney
1996), pH (EPA 150.1), conductivity (EPA 120.1), as
well as Ca, Mg, Fe, and Al (EPA 200.7).

Dried and milled samples were scanned by using a
FieldSpec Pro spectroradiometer (Analytical Spectral
Devices, Boulder, CO). This device measures diffuse
spectral reflectance in the visible (350–750 nm) and
near-infrared (750–2500 nm) range in 1-nm bands, by
using Spectralon (Labsphere, Hutton, NH) as a white
reference. Samples were scanned from below through
borosilicate glass dishes (Shepherd et al. 2003). Spectra
were resampled at 10-nm increments to reduce
data dimensionality prior to statistical analysis.
Raw spectra were derivative transformed to high-
light spectral response patterns (Fearn 2000), re-
duce albedo effects, and control for minor differ-
ences between batches in light source intensity and
effects of differential sample grinding.

To compare spectral prediction accuracy between
wet and dry spectra, sediment scans were obtained after
dry samples (held dry for 3 months) were rewetted to
saturation by using distilled deionized water, and mixed
to a homogeneous consistency, then scanned wet after
standing for approximately 20 min to ensure saturation
and equilibration.

Data analysis

Partial least squares (PLS) regression was used to de-
velop statistical predictions of sediment and pore water
chemistry from the spectral data (Nilsson et al. 1996;
Dunn et al. 2002; Lee et al. 2003; Bogrekci and Lee
2005b) by using Statistica v. 8.0 (StatSoft Inc., Tulsa,
OK). Sites were randomly divided into calibration
(67 % of the data) and validation (33 %) sets (Dunn
et al. 2002). Separately randomized sets for calibration
and validation were used for the wet and dry spectral
experiments. This was justified by an ex post facto test
on the element with largest prediction differences be-
tween dry and wet spectra, Ca, which showed that using
the identical sites yielded similar metrics for model
performance. Outlier removal and log transformation
were used with some analytes (pore water Fe, TP, SRP,

NH4-N, KCl-P, and AL and sediment TP, bulk density,
and HCl-P) to control for non-normal distributions. Any
negative values predicted by the models were assumed
to be equal to zero.

Model performance was evaluated by using multiple
metrics, including the coefficient of determination (R2)
derived from a linear regression between observed and
predicted values, the root mean squared error (RMSE)
between predicted and observed values, and the RPD
statistic, which is a unitless ratio of the population
standard deviation to the RMSE (Chang et al. 2001;
Dunn et al. 2002). Model efficiency is inferred from
high R2 and RPD and low RMSE.While no accuracy or
usability thresholds exist for R2 or RMSE, RPDs less
than 1.5 are generally considered unsuitable, whereas
greater than 2.0 is considered outstanding performance
(Chang et al. 2001; Dunn et al. 2002; Cohen et al. 2005);
intermediate values are useful in some cases. In addition
to evaluating model performance across the suite of
analytes , we compared wet and dry model
chemometrics as a basis for determining future feasibil-
ity of wet scanning.

Map comparisons

Spatial patterns of sediment properties are an important
component of monitoring activit ies in Lake
Okeechobee. An open question when using
chemometrics to supplement, or even replace, tradition-
al forms of analysis is whether the resulting data are of
sufficient quality for mapping purposes. To test the
utility of spectral modeling (both wet and dry) for map-
ping and trend/hotspot detection, separate calibration
and validation sets were created for sediment TP, TN,
loss on ignition (LOI), and total Ca and Mg. These
validation sets were chosen on a spatial rather than
random basis and from locations in the lake where
spatial features such as gradients or hotspots were ob-
served in maps interpolated from traditional chemical
analysis. The areas were of large enough size to encom-
pass roughly one quarter (~40) of the sites. Sample
observations outside the target areas were used to cali-
brate the model.

The map assessment protocol to measure spectral
analysis performance in a simulated field setting had
four steps. First, select a region for map validation
encompassing ca. 25 % (n = 40) of the sites. Second,
construct an interpolation surface for that region using
an ordinary kriging model using traditional wet
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chemistry data. We cross-validated these reference maps
to estimate and map the spatial interpolation prediction
error. This provides a reference level of prediction un-
certainty against which we compare the spectral predic-
tions and their associated maps. Third, we used ordinary
kriging of spectral predictions over the domain to map
chemometric performance; because the calibration data
were always outside the area of interest, this map reflects
validation performance. Fourth, we compare the first
map (wet chemistry measurements) to the second (spec-
tral predictions) to determine the magnitude and pattern
of mapping error. All kriging models were run in
ArcGIS v 9.3 (ESRI Inc., Redlands, CA) by using 12
lags of ca. 1600 m (except for Ca and TP, which were
approximately 650 and 600 m) and modeled semi-
variance by using a spherical function applied to the
data after second-order trend removal.

Results

Summary statistics were derived for the laboratory mea-
surements of sediment and pore water analytes
(Table 1). A wide range of values was observed for all
analytes, typically spanning at least two orders of mag-
nitude. Pore water Fe, TP, SRP, NH4-N, and KCl-P and
sediment TP, bulk density, HCl-P, and KCl-P were
transformed by using natural logs prior to analysis to
meet the criteria of normally distributed chemometric
model residuals.

Summary statistics for PLS modeling results were
tabulated for dry (Table 2) and wet (Table 3) scanning.
Most sediment properties were successfully modeled
(RPD > 1.5) under both dry and wet conditions. Spectral
predictions of Ca, Mg, TC, LOI, bulk density, moisture
content, and TN were highly effective (RPD > 2), while

Table 1 Sediment and pore water properties based on US EPA standard methods of analysis

Analyte Mean Standard deviation Range Method

Total P [sediment] (mg/kg) 593.2 490 16.6 to 2859 EPA 365.1

Total C [sediment] (g/kg) 140.2 127 1.1 to 490 NA-1500 CNS

Total N [sediment] (g/kg) 9.06 8.87 0.07 to 41 NA-1500 CNS

Total Ca [sediment] (g/kg) 64.7 65.9 0.1 to 347 EPA 200.7

Total Mg [sediment] (g/kg) 13.0 15.5 0.04 to 91.5 EPA 200.7

Total Fe [sediment] (mg/kg) 3480.3 2991 39.1 to 10,748 EPA 200.7

Total Al [sediment] (mg/kg) 797.5 602 0 to 2299 EPA 200.7

Bulk density (g/cm3) 0.61 0.68 0.04 to 2.06

Site moisture content (%) 62.68 27.2 6.3 to 95

KCl-P (mg/kg) [residual] (mg/kg) 0.66 1.31 0.08 to 12.6 EPA 365.1

KCl-NH4-N (mg/kg) [residual] (mg/kg) 20.32 43.1 0.05 to 428 Mulvaney 1996

NaHCO3-SRP (mg/kg) [residual] (mg/kg) 13.36 9.97 1 to 37.2 EPA 365.1

NaHCO3-TP (mg/kg) [residual] (mg/kg) 14.18 11.0 1 to 58.6 EPA 365.1

Loss on ignition [sediment] (%) 27.41 24.3 0.5 to 92.7

HCl-extractable P [sediment] (mg/kg) 410.3 372.1 2.1 to 2357 EPA 365.1

pH [pore water] 7.64 0.42 4.9 to 8.3 EPA 150.1

Conductivity [pore water] (μS/cm) 477.6 220.0 178 to 1656 EPA 120.1

Total P [pore water] (mg/L) 0.24 0.41 0.02 to 4.1 EPA 365.1

Soluble reactive P [pore water] (mg/L) 0.20 0.40 0.001 to 3.9 EPA 365.1

Total Kjeldahl N [pore water] (mg/L) 4.39 4.04 0.9 to 38 EPA 351.2

Ammonium (NH4-N) [pore water] (mg/L) 2.25 3.55 0.007 to 34.5 Mulvaney 1996

Total Ca [pore water] (mg/L) 74.84 29.7 19.3 to 243 EPA 200.7

Total Mg [pore water] (mg/L) 18.24 7.33 3.8 to 53.1 EPA 200.7

Total Fe [pore water] (mg/L) 1.20 11.5 0 to 136 EPA 200.7

Total Al [pore water] (mg/L) 0.01 0.07 0 to 0.5 EPA 200.7
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predictions for Fe, Al, and TPwere moderately effective
(1.5 < RPD < 2.0). Sediment SRP was poorly predicted.

RPD scores for sediment predictions from dry
sediment scales were, on average, 7 % higher than

from wet scans (Fig. 2). Ca and NaHCO3-extract-
able TP models were markedly better using dry
scans, while KCl-extractable P and Mg performed
better with wet scans.

Table 2 Sediment attribute spectral results using scans of dry samples including calibration and validation efficiencies (R2), root mean
square error, mean error, and RPD (ratio of population standard deviation to RMSE)

Dry scan

Sediment attribute Calibration efficiency Sample Validation efficiency Sample RPD RMSE ME (bias)

Ca (g/kg) 0.93 126 0.88 46 3.08 21.0 −5.9
KCl-NH4-N (mg/kg) 0.57 115 0.59 40 2.35 17.4 −8.37
Loss on ignition (%) 0.82 126 0.84 46 2.34 10.23 1.59

Bulk density (g/cm3) 0.46 117 0.62 42 2.28 0.30 −0.13
Total C (g/kg) 0.82 126 0.83 46 2.24 56.1 12.0

Moisture content (%) 0.82 117 0.76 43 2.23 12.32 2.53

Mg (g/kg) 0.85 126 0.76 46 2.15 7.0 0.29

Total N (g/kg) 0.74 126 0.86 46 1.98 4.41 0.76

Fe (mg/kg) 0.91 126 0.67 46 1.70 1726 120

Al (mg/kg) 0.82 126 0.65 46 1.68 348 −9.09
TP (mg/kg) 0.65 126 0.51 46 1.53 316 −59.5
NaHCO3-TP (mg/kg) 0.48 115 0.33 40 1.53 7.84 −0.80
HCl-P (mg/kg) 0.36 126 0.54 46 1.52 242 −37.8
NaHCO3-SRP (mg/kg) 0.43 115 0.31 40 1.38 7.92 −0.74

Table 3 Sediment attribute spectral results using scans of wet samples including calibration and validation efficiencies (R2), root mean
square error, mean error, and RPD (ratio of population standard deviation to RMSE)

Wet scan

Sediment attribute Calibration efficiency Sample Validation efficiency Sample RPD RMSE ME (bias)

Mg (g/kg) 0.91 116 0.70 58 2.39 6.3 −1.4
Ca (g/kg) 0.97 116 0.80 58 2.28 28.3 −2.3
Total N (g/kg) 0.88 116 0.83 58 2.09 4.23 −0.35
KCl-NH4-N (mg/kg) 0.67 105 0.61 52 2.08 20.2 −2.35
Moisture content (%) 0.89 108 0.73 54 2.08 13.1 −1.31
Loss on ignition (%) 0.84 116 0.80 58 2.07 11.7 −1.74
Total C (g/kg) 0.87 116 0.79 58 2.05 62.6 −1.62
Bulk density (g/cm3) 0.86 107 0.66 53 1.86 0.30 −0.05
Al (mg/kg) 0.83 116 0.69 58 1.74 338 −18.60
Fe (mg/kg) 0.84 116 0.57 58 1.55 1894 −317.2
Total P (mg/kg) 0.85 115 0.57 57 1.54 280 −37.3
HCl-P (mg/kg) 0.71 115 0.56 57 1.51 214 −28.3
KCl-P (mg/kg) 0.89 105 0.42 52 1.51 0.82 0.01

NaHCO3-SRP (mg/kg) 0.28 105 0.31 52 1.26 8.69 −0.76
NaHCO3-TP (mg/kg) 0.59 105 0.29 52 1.13 10.6 −1.15
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Parallel results for pore water (Tables 4 and 5) indi-
cate that pore water properties were not well predicted
by spectral methods, with low coefficients of determi-
nation and RPDs below 1.5.

Interpolation maps for observed and predicted
values of TP, TN, LOI, Ca, and Mg were developed
((Figs. 3, 4, 5, 6, and 7), and model performance
was statistically determined (Table 6). The figures
compare map results derived from traditional analyt-
ical procedures and results from VNIR prediction
(validation performance) of sediment properties at
each site. Major analytes of interest for lake

management were presented. Spatial regions over
which a large chemical gradient or other feature of
interest was observed were chosen, in order to com-
pare results from spectral analysis to those obtained
from traditional methods.

The Ca map from laboratory measurements
(Fig. 3a) showed a strong gradient from west to
east; the attendant spectral predict ion map
corresponded strongly with this trend (Fig. 3b).
The Mg map included two sediment concentration
hotspots (Fig. 7a), and the spectral prediction maps
captured the spatial location and intensity of these

Fig. 2 Comparison of dry vs. wet
scan RPD for sediment spectral
results. The dotted line represents
the 1:1 line, where wet and dry
scans resulted in similar
predictive performance

Table 4 Pore water attribute spectral results using scans of dry samples including calibration and validation efficiencies (R2), root mean
square error, mean error, and RPD (ratio of population standard deviation to RMSE)

Dry scan

Pore water attribute Calibration efficiency Sample Validation efficiency Sample RPD RMSE ME (bias)

Fe (mg/L)a,b 0.41 112 0.27 38 1.26 1.11 −0.35
Total P (mg/L)a,b 0.33 114 0.22 40 1.38 0.70 −0.19
SRP (mg/L)a,b 0.54 114 0.24 40 1.17 1.35 −0.32
NH4-N (mg/L)a,b 0.28 114 0.27 40 1.14 1.09 −0.28
KCl-P (mg/kg)b 0.75 115 0.05 40 1.11 0.74 0.00

TKN (mg/L) 0.64 115 0.46 40 1.93 2.03 −1.20
pH 0.23 114 0.13 40 1.59 0.25 0.05

Ca (mg/L) 0.48 115 0.14 40 1.01 29.8 4.47

Mg (mg/L) 0.40 115 0.10 40 1.01 6.52 0.32

Conductivity (μS) 0.30 114 0.07 40 0.89 236 33.9

a Outlier(s) removed from set
b Natural log transformation performed on variable
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hotspots (Fig. 7b). The TP map included both a
strong west to east (Fig. 6b) concentration gradient,

as well as a single hotspot (Fig. 5a); the spectral
map generally captured this pattern, though a

Table 5 Pore water attribute spectral results using scans of wet samples including calibration and validation efficiencies (R2), root mean
square error, mean error, and RPD (ratio of population standard deviation to RMSE)

Wet scan

Pore water attribute Calibration efficiency Sample Validation efficiency Sample RPD RMSE ME (bias)

SRP (mg/L)a 0.02 105 0.00 51 1.07 0.22 0.02

TKN (mg/L) 0.55 105 0.68 52 1.05 3.77 0.53

NH4-N (mg/L) 0.64 105 0.66 52 1.00 3.52 0.34

Total P (mg/L)a 0.42 105 0.27 51 0.91 0.27 0.00

pH 0.29 104 0.22 52 0.90 0.44 −0.03
Al (mg/L)a 0.14 104 0.03 52 0.82 0.08 0.00

Mg (mg/L) 0.12 105 0.12 52 0.74 9.58 1.57

Conductivity (μS) 0.01 104 0.01 52 0.73 303 59.4

Ca (mg/L) 0.34 105 0.01 52 0.72 42.6 4.73

Fe (mg/L)a 0.10 105 0.02 51 0.61 1.26 0.12

a Outlier(s) removed from set

Fig. 3 Maps of observed Ca, predicted Ca, error between predicted and observed, and the standard error of prediction for the same spatial
region based on the lake-wide wet chemistry-derived values. All units in g/kg
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predicted hotspot was present where one was not
actually observed (Fig. 5b). The spectral map for
LOI also largely predicted regional patterns of ele-
vated organic matter content (Fig. 4b), albeit without
the fine detail evident in the map derived from
laboratory measurements (Fig. 4a). As with the other
analytes, the spectral-derived map for TN (Fig. 6b)
compared extremely well with the map using lab
measurements (Fig. 6a), though several minor is-
sues with hotspot prediction were evident.

We further evaluated the performance of the spec-
tral prediction by comparing the prediction errors
implicit in kriging interpolation (panel c in Figs. 3,
4, 5, 6, and 7) with a map showing the difference
between spatial patterns observed using the tradition-
al laboratory methods vs. the spectral predictions
(panel d in Figs. 3, 4, 5, 6, and 7). In each case, the
intrinsic errors associated with the fitting of a semi-
variogram model were larger than the differences
between the two sources of mapped data (i.e.,

traditional and spectral predictions of sediment prop-
erties). While both sources of error are relevant, the
former can be attenuated with greater spatial sam-
pling intensity, while the latter denote the errors
associated with removing wet chemical methods
from the monitoring protocol. We interpret the great-
er magnitude of the kriging errors vis-à-vis the com-
parative method errors as indicating the considerable
benefits of efforts to spatially intensify sampling
using VNIR spectral methods. Indeed, the evidence
suggests that methodological errors are markedly
smaller than interpolation errors, leading to the ten-
tative conclusion that monitoring efforts over large
complex lake systems may be better served by in-
creased geographic density enabled by spectral pre-
dictions of sediment chemistry than by the greater
accuracy but lower spatial resolution afforded by
conventional analyses. This may have important im-
plications for designing future monitoring efforts on
this and other large, complex lake systems.

Fig. 4 Maps of observed LOI, predicted LOI, error between predicted and observed, and the standard error of prediction map for the same
spatial region based on the lake-wide traditionally derived values. All units in %
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Discussion

VNIR model performance

Our results support previous research showing that
VNIR spectroscopy can be used as a fast and relatively
inexpensive means of predicting the physical and chem-
ical characteristics of Lake Okeechobee’s sediments.
Most key sediment properties had statistical prediction
efficiencies that suggest either excellent or adequate
prediction. Because laboratory analysis represents a sig-
nificant fraction of the sampling cost, this may present
opportunities to significantly augment the spatial and
temporal resolution of lake ecosystem monitoring, with
consequences for understanding the dynamic nature of
these resources (e.g., in response to storms, seasons, and
climate variation) and better tracking of degradation and
restoration trajectories.

Despite success across a wide variety of analytes, P,
the nutrient of major concern to lake managers and the
pollutant responsible for eutrophication of the lake

(Florida Department of Environmental Protection
2001), was not well predicted. This is notable because
previous studies have reported greater success with
spectral prediction of P concentrations. For example,
Nilsson et al. (1996) were able to derive a model that
explained 83 % of the variance in lake water P from
spectroscopic analysis of surface sediments. Similarly,
Cohen et al. (2005) observed high RPD (2.40) for wet-
land soil TP, while Dunn et al. (2002) experienced low
RPD (1.1) for soil TP in their work. Our TP models,
which exhibit RPD values around 1.5, do correspond
closely to results of Lee et al. (2003), who saw coeffi-
cients of determination (R2) for TP prediction in the
range of 0.52–0.66. This weaker prediction efficiency
may be a function of a relatively small calibration set.
More likely, however, is that P is present in Lake
Okeechobee sediments in multiple forms (various min-
erals, organic bound), confounding a simple spectral
signature approach. Regardless of the origins of weak
prediction efficiency, it is clear that spectral predictions
of TP are unlikely to supplant traditional laboratory
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measurements except where spatial scales of heteroge-
neity are short, necessitating substantially denser spatial
sampling to capture extant lake sediment patterns.

We also note that while solid-phase predictions were
effective, determination of pore water properties was
uniformly poor. Low validation and calibration R2

values, as well as low RPD scores suggest that VNIR
spectroscopy is not suited for predicting pore water
chemistry in Lake Okeechobee, at least when scanning
is on dry or rehydrated samples (i.e., not fresh samples).
This could be due to the transient nature of pore water
chemistry, which is susceptible to time-varying environ-
mental factors such as temperature, dissolved oxygen
levels, and redox status and not just the composition of

the parent substrate matrix in which they reside. How-
ever, given the strong expected links between pore water
chemistry and the properties of the sediment matrix, it
was surprising to see such low prediction performance.
We note that associations between laboratory measure-
ments of pore water chemistry and sediment properties
were also surprisingly weak. Whether this suggests lim-
itations of the laboratory methods or handling proce-
dures can only be determined with analysis of future
samples; if the expected associations between sediment
and pore water chemistry emerge in further sampling, it
is likely that spectral predictions of pore water chemistry
may also improve, perhaps sufficiently to justify use in
monitoring applications.

Fig. 6 Maps of observed TN, predicted TN, error between predicted and observed, and the standard error of prediction map for the same
spatial region based on the lake-wide wet chemistry-derived values. All units in g/kg
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One of the most promising results of our work was
the observation that chemometric models developed
from saturated samples performed comparably to those
from dry samples. This supports what has been a tacit
objective of the spectroscopy approach since the outset,
namely that the technique obviates the need for sample

collection and transport, but rather allows direct field
measurements. This promising development suggests
that successful field determination of sediment proper-
ties is tenable, which could save substantial time and
effort and further cut costs associated with sampling. We
do note that our wet samples were dried and

Fig. 7 Maps of observed Mg, predicted Mg, error between predicted and observed, and the standard error of prediction map for the same
spatial region based on the lake-wide wet chemistry-derived values. All units in g/kg

Table 6 Spectral results for five analytes based on spatial selection of the validation set including calibration and validation efficiencies (R2),
root mean square error, mean error, and RPD (ratio of population standard deviation to RMSE)

Sediment attribute Calibration efficiency Sample Validation efficiency Sample RPD RMSE ME (bias)

TP (mg/kg) 0.69 134 0.74 40 2.02 239 −79.6
Mg (g/kg) 0.98 132 0.72 42 1.54 9.7 −1.5
TN (g/kg) 0.94 134 0.74 40 1.52 5.81 −1.80
LOI (%) 0.92 132 0.84 42 1.98 12.2 −6.62
Ca (g/kg) 0.93 135 0.83 39 2.45 26.3 3.3
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homogenized samples that had been rehydrated, neces-
sitating further research to determine if accuracy levels
can be maintained with wet spectra obtained under field
sampling and scanning conditions. However, given that
most of the costs for monitoring large and spatially
heterogeneous lake ecosystems is embedded in the re-
trieval and laboratory analysis of samples, even a mod-
est decline in performance under true field conditions
may be acceptable given the altered spatial and temporal
resolution of monitoring that field scanning enables.

Mapping performance

To explore the efficacy of spectral predictions for cap-
turing the extant spatial patterns in various analytes, we
explicitly compared maps made from validation predic-
tions with maps made with the laboratory analyses and
quantified the error (i.e., difference between them). In
almost every case, the spectrally derived maps compare
favorably to those derived from laboratory values, both
in the visible spatial gradients and trends and also in
specific hotspot detection; for Ca, the maps were nearly
identical. This is not entirely surprising for analytes
where the prediction utility of the models was judged
to be good. However, the concordance between spectral
and raw data maps of TP was strong despite lower
predictive utility (i.e., low RPD) of chemometrics for
TP. This is encouraging and demonstrates that the
Bapplication-dependent^ proviso for models with inter-
mediate levels of RPD should be taken at face value.
That is, analytes for which RPD values are compara-
tively low should not be written off as lacking spectral
prediction utility in all contexts. The utility of VNIR
spectroscopy for lake sediment mapping would likely
lie in either mapping analyte variation at high spatial
resolution (e.g., to better detect boundary locations)
because of reduced overall sampling costs. It may also
be valuable where the spatial range of variation is small,
a condition that makes kriging models with sparse con-
ventional sampling prone to significant map prediction
error. Finally, it may demonstrate promise as a large-area
surveillance screening tool where larger scale trends in
chemical properties can be detected to guide more effi-
cient sampling procedures that employ more precise
laboratory methods. We argue that utilizing two tiers
of monitoring precision—i.e., lower precision spectral
screening tool and higher precision laboratory-based
validation—may ultimately provide the appropriate bal-
ance for large-area surveillance and monitoring.

One way to evaluate the performance of the spectral
predictions for mapping is to consider the difference be-
tween the maps from the two analysis methods and the
error associated with spatial interpolation. Our rationale is
that higher density sampling using spectral methods would
lower the spatial interpolation error, but do so utilizing an
analytical approach that may sacrifice accuracy. Our find-
ings suggest that the magnitude of spatial interpolation
errors is as high or higher than the prediction differences.
For example, the RMSE comparing themaps derived from
the spectral and laboratory data was lower than the RMSE
of the kriging models for all analytes except for TP, which
was comparable (RMSE = 239 mg/kg for method com-
parison vs. 226 mg/kg for spatial interpolation errors). In
short, denser spatial sampling enabled using spectral
methods would likely benefit spatial characterization of
lake sediment properties.

For this spatial analysis comparison, it should be noted
that a relatively small dataset was used to calibrate and
test the spectral models. One would ideally have as large
a calibration set as possible in order to better capture
variation in spectral reflectance and other properties.
While some point of diminishing returns emerges with
adding calibration points as spectral models approach
maximum effectiveness, we are confident that our small
sample size (105–126 samples, depending on the analyte)
presents an important constraint on accurate representa-
tion of potential spectral model efficacy. That is, we
strongly believe that a larger sample size would yield
spectral prediction improvements. A future research pri-
ority is to determine the sample library size at which
model performance is maximized for Lake Okeechobee’s
sediments. Once a suitable spectral library is constructed
(based on future field surveys from which both spectral
and laboratory analytical approaches are available), it
seems likely that spectral monitoring of sediment proper-
ties may become cheaper and streamlined.

Considerations for spectral approaches for routine
monitoring

The decision to employ VNIR spectroscopy for lake
sediment assessment necessarily balances the predictive
limitations of spectral methods presented here against
savings in both cost and effort, which can be substantial
or substantially increased spatial or temporal sampling
intensity. Considering only the five analytes mapped
using spectral methods, field sampling is the largest cost
and would be present regardless of the method used, but
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processing and analytical costs could be greatly reduced
using VNIR in lieu of wet chemistry. In addition to
reducing the cost by approximately 25 %, there would
also be a significant reduction in time and effort in-
volved in obtaining the data, especially if samples were
scanned and discarded in the field. Because one spec-
trum can be used to determine multiple characteristics of
a sample, the savings in cost can increase if spectral
methods are used to simultaneously determine multiple
analytes of interest.

Conversely, where high accuracy observations are
required (e.g., for testing of specific legal criteria or
close scrutiny of localized management goals), VNIR
technology may not be sufficiently accurate to be a
primary analytical tool, and traditional wet chemistry
may be preferred. Because of the large size of Lake
Okeechobee and the resulting expense and effort asso-
ciated with high spatial and temporal resolution sam-
pling, the use of VNIR technology could allow for more
detailed mapping and monitoring of this system, partic-
ularly where a small subset of samples are returned to
the laboratory for wet chemistry verification of the
spectral predictions. Such a combined approach of con-
ventional sampling with denser spectral in-fill sampling
could well yield optimal results. The results from this
study contribute to the growing body of evidence that
suggests that a move to entirely field-based sampling
may be both feasible and desirable for specific environ-
mental monitoring applications and certain analytes of
interest. In large-area systems that will be subjected to
repeated monitoring and sampling, the reduction in time
and cost to collect spectrally derived data offers an
opportunity to increase the spatial and temporal resolu-
tion of sampling efforts. The ability to obtain real-time
chemical predictions from spectra in the field via use of
a laptop could also allow for adaptive spatial sampling,
allowing managers or researchers to home in on areas of
particular interest, where samples might be collected for
traditional chemical testing. As the VNIR-associated
hardware, software, and statistical analysis methods
continue to improve, this resource is likely to be increas-
ingly utilized to increase the efficiency with which
monitoring and sampling occur.
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