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Abstract Monitoring of environment is a key contem-
porary issue that has necessitated search for bio-indica-
tors. The very fact that epiphytes do not have a direct
contact with soil and absorb nutrients from the environ-
ment puts them among the best indicators of environ-
mental conditions. We, therefore, selected Pyrrosia
flocculosa (D. Don) Ching—an epiphytic fern that com-
monly occurs in the Himalaya for this study. The study
focused on analyzing heavy metal concentrations in the
fronds of P. flocculosa growing along a disturbance
gradient. For this, three sites representing different
levels of disturbance viz., least disturbed, moderately
disturbed, and highly disturbed, were identified in
Kangra district of Himachal Pradesh. From each site,
fronds of P. flocculosa were collected, categorized into
three growth stages (juvenile, young, and mature), and
brought to the laboratory for analyses. After drying and
powdering, the samples were analyzed for Pb, Cd, Fe,
Ni, Cu, Mn, and Zn using atomic absorption spectro-
photometer. The results obtained were statistically com-
pared using the software package Statistica. As expect-
ed, concentration of the metals varied among the sites

and also among the identified growth stages of the
species. In general, concentration of the metals was in
the order Fe (639.28 ± 81.63) > Ni (56.03 ± 4.97) > Mn
(7.54 ± 0.69) > Zn (6.51 ± 0.36) > Cd (4.01 ± 0.86) > Cu
(1.93 ± 0.74). Barring Mn, concentration of all the
metals increased with disturbance and was positively
correlated to it. However, except for Cd and Fe, none
of the metals reported higher than threshold values.
Effective monitoring of the environment can thus be
done using P. flocculosa.
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Introduction

Environmental pollution has considerably risen across
the globe (Hauck 2009; Bajpai et al. 2014). Today, it is a
major problem that has serious ecological, economical,
and health ramifications (Gajananda et al. 2005; Sharma
et al. 2011). This, therefore, has necessitated initiatives
for monitoring the environment (Samecka-Cymerman
et al. 2010; Loppi 2014). Monitoring by setting up of
environmental stations is costly and labor intensive and
is therefore well suited for limited areas. On the other
hand, plants are easily available, widely distributed, and
relatively inexpensive to monitor. Due to their high
tolerance capacity to varied pollutants and their avail-
ability in remote areas, sampling of plants is relatively
easy. Thus, they are well suited for this purpose (Kono
and Tomiyasu 2009; Ashraf et al. 2010; Ojo et al. 2012;
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Ozturk et al. 2015). Consequently, the focus is now on
identifying plants that can be used for monitoring and
assessing the status of environment (Ozturk et al. 2008).
Species such as Salvinia herzogii, S. minima, and
S. natans have been used as indicators of water pollution
(Wolff et al. 2012). At the same time Athyrium
yokoscense, Pteris vittata, and Pityrogramma
calomelanos are commonly used for monitoring heavy
metal contamination in soil (Nishizono et al. 1987;
Mandal et al. 2014). On the other hand, Diplotaxis
tenuifolia, Phaeophyscia hispidula, Opeas pumilum,
Lecanora conizaeoides, and Tillandsia caput-medusae
have been used to monitor air pollution (Brighigna et al.
1997; Shukla and Upreti 2007; Ojo et al. 2012; Ozturk
et al. 2013; Loppi 2014; Bajpai et al. 2014).

During the past few years, pollution due to vehicles
has also increased in the Himalayan region (Meena
et al. 2012; Ganguly and Thapa 2016). Even the inte-
rior areas of Himalaya have reported a sharp increase
in vehicle density (Shukla and Upreti 2007; Uniyal and
Singh 2012; Ganguly and Thapa 2016). The fumes
resulting from gasoline combustion in the vehicles
leads to addition of lead (Pb) to the environment while
vehicle wear and tear adds iron (Fe), copper (Cu), zinc
(Zn), cadmium (Cd), etc. to the air (Ojo et al. 2012;
Aksoy et al. 1999). These heavy metals constitute
toxic pollutants and their monitoring using native plant
species is desired (Kono et al. 2012; Ojo et al. 2012).
We, therefore, selected Pyrrosia flocculosa (D. Don)
Ching (family Polypodiaceae) for analyzing heavy
metal concentration along a vehicle disturbance gradi-
ent in the Himalayan region. P. flocculosa is an epi-
phytic fern that commonly occurs in the Himalaya and
has a wide altitudinal gradient (Hovenkamp 1986).
Being an epiphyte, major source of nutrients for the
species is air (Brighigna et al. 1997; Bhatt et al. 2015).
The very fact that epiphytes do not have a direct
contact with soil puts them among the best indicators
of vehicular air pollution (Brighigna et al. 1997). The
species, thus, meets the requirements of an ideal air
quality monitoring plant (Aksoy et al. 1999;
Wolterbeek 2002).

The study specifically targeted (1) analyzing heavy
metal concentrations in the fronds of P. flocculosa grow-
ing along a disturbance gradient, i.e., at least disturbed,
moderately disturbed, and highly disturbed sites; (2)
analyzing metal concentration in different growth stages
of the fronds; and 3) correlating heavy metal concentra-
tion with disturbance.

Methodology

Site selection

Three sites representing different levels of distur-
bance viz., least disturbed, moderately disturbed,
and highly disturbed were identified in Kangra
d i s t r i c t o f H ima ch a l P r a d e s h (F i g . 1 ) .
Categorization of the sites was done based on
proximity to road and the frequency of vehicles
plying on it (Aksoy et al. 1999; Shukla and Upreti
2007). Highly disturbed site represents a state
highway that connects Baijnath to Mahakal.
Owing to presence of famous Shiv temples, vehi-
cle movement is relatively higher in this site. On
the other hand, moderately disturbed site repre-
sents a village road that has limited vehicular
movement. The least disturbed site lies in the
interiors and is a bridle path. An estimate of
vehicle density was generated by simultaneously
recording the number of vehicles plying in each
of these sites. Recordings were done on a single
pre-determined date and at three time periods
(morning, midday, and evening). Each recording
session lasted for 30 min (Table 1). At the macro
level, all the three sites are similar and lie between
900 and 930 m asl. The coordinates of the sites
were recorded using a Trimble Juno SC global
positioning system (Fig. 1).

Sample collection

At each site, three common phorophytes were
identified. From these, fronds of P. flocculosa were
collected on a day when there had been no rainfall
during the preceding 15 days. This was done to
avoid the affect of leaching (Markert 1994). The
samples were collected from tree trunks 1.5 to 3 m
above the ground level (Kono and Tomiyasu 2009;
Shukla and Upreti 2007; Khairudin et al. 2014).
Based on frond characteristics, the collected sam-
ples were categorized into juvenile, young, and
mature growth stages (Mehltreter 2010). We define
juvenile fronds as the ones that were smaller in
size, curled, and soft in texture. Fronds that had
attained full dimensions and had a fully open
lamina were categorized as young, while the
fronds that also had spores were classified as
mature (Mehltreter 2010). A total of 27 samples
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(3 sites × 3 phorophytes × 3 growth stages) were
collected. Each sample was placed separately in a
brown paper bag, labeled, and brought to the lab-
oratory for analyses.

Sample processing

Samples were weighed on a Mettler Toledo ME104
electronic balance and oven dried at 60 °C till constant

Fig. 1 Location of the study site in the west Himalayan state of Himachal Pradesh

Table 1 Number of vehicles recorded at the three time periods in the identified sites and the general characteristics of the sites

Site Morning
(8:30–9 a.m.)

Midday
(1:30–2 p.m.)

Evening
(6:30–7 p.m.)

General characteristics

Least disturbed 01 0 01 Interior area close to narrow bridle path

Moderately disturbed 26 22 9 Area away from the road with limited
vehicle movement

Highly disturbed 185 90 125 At a distance of 5 m from the state highway.
Relatively heavy vehicular movement.
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weight was achieved (Aksoy et al. 1999; Shukla and
Upreti 2007). Once dry, the samples were powdered and
sieved through a 1-mm sieve.

Heavy metal analyses

The samples were analyzed for total Pb, Cd, Fe,
Ni, Cu, Mn, and Zn. For this, the dried samples
were weighed (1 g each) and digested in a mixture
of HNO3 (15 ml) and HClO4 (3 ml). Digested
samples were filtered through Whatman filter pa-
per no 42. To the filtrate, distilled water was
added to make 100 ml volume. The samples were
then analyzed using atomic absorption spectropho-
tometer (AAS), AA-6300, Shimadzu, Japan. The
detection limits for Pb, Cd, Fe, Cu, Zn, Mn, and
Ni were 0.05, 0.005, 0.025, 0.008, 0.002, 0.01,
and 0.02 ppm, respectively.

Statistical analyses

The results so obtained were compared using
ANOVA and correlated using Pearson’s correla-
tion. To test for significant differences between
the groups, Tukey’s post hoc test was performed.
The data was subjected to discriminant analysis to
discriminate sites based on the concentration of
heavy metals. All statistical analyses have been
done using the software package Statistica
(StatSoft 2004).

Results

Trend of increasing heavy metals across the disturbance
gradient is clearly evident in the present study. As ex-
pected, the three identified sites differed with respect to
vehicular movement. Vehicle movement was higher in
the highly disturbed site as compared to the moderately
and least disturbed sites (Table 1). Similarly, heavy
metal concentration in P. flocculosa also varied among
the sites. For majority of the metals, their concentration
was higher in the samples collected from the highly
disturbed sites and lower in the samples collected from
the relatively less disturbed sites. Overall concentration
of the metals was in the order Fe (639.28 ± 81.63) > Ni
(56 .03 ± 4 .97) > Mn (7 .54 ± 0 .69) > Zn
(6.51 ± 0.36) > Cd (4.01 ± 0.86) > Cu (1.93 ± 0.74).
Lead was not detected in any of the samples.

Concentration of Cd varied among the sites and
ranged from below detection limit (BDL) to 10.96 ppm
(Table 2). It was not detected in the samples collected
from the least disturbed site. Mean concentration of Cd
was significantly greater in the highly disturbed site
(8.35 ± 0.84, p < 0.05) compared to the moderately
disturbed site. Samples from the moderately disturbed
site had 56.05 % less Cd with respect to samples from
the highly disturbed site. The coefficient of variation (CV
(%)) for Cd in P. flocculosa was 104.41 (Table 2). A
significant positive correlation was found between Cd
and Fe (r = 0.57, p < 0.05) and Cd and Ni (r = 0.57,
p < 0.05). However, in case of Cd and Mn (r = −0.75,
p < 0.05), this relationship was significantly negative
(Fig. 2). A non-significant weak positive relationshipwith

Table 2 Metal concentration (ppm) in Pyrrosia flocculosa collected from different sites

Cd Fe Cu Zn Mn Ni

Highly disturbed 4.38–10.96
(8.35 ± 0.84)

757.89–1471.34
(1165.21 ± 68.91)

BDL–18.67
(3.74 ± 1.96)

5.26–9.79
(7.30 ± 0.45)

4.02–6.72
(5.39 ± 0.34)

11.32–104.64
(72.73 ± 10.17)

Moderately disturbed BDL–10.35
(3.67 ± 1.48)

123.21–926.97
(447.18 ± 81.82)

BDL–7.24
(2.06 ± 0.84)

3.65–7.37
(5.71 ± 0.43)

2.05–13.58
(7.60 ± 1.48)

30.91–90.57
(55.99 ± 7.30)

Least disturbed BDL 208.51–414.36
(305.44 ± 22.30)

BDL 3.18–10.14
(6.53 ± 0.86)

5.98–14.29
(9.63 ± 1.08)

26.72–57.51
(39.36 ± 3.83)

CV (%) 104.41 72.10 96.96 12.23 28.12 29.78

One-way ANOVA

p value 1.6E−0.5* 0.12 0.44 0.21 0.03* 0.02*

Values outside parentheses represent the range, while those in parentheses are the means

BDL below detection limit

*Significant at 0.05
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Fig. 2 Correlation among different metals found in P. flocculosa
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Cu (r = 0.28) and almost no relationship with Zn
(r = 0.05) was recorded. Mean concentration of the metal
varied among the different growth stages of the fern
(Table 3). As compared to the mature and young fronds,
juvenile fronds reported higher concentration of Cd in
both the highly and moderately disturbed sites (Fig. 3).

In case of Fe, its concentration ranged between 123.21
and 1471.34 ppm and declined with reducing disturbance
(Table 2). Significantly higher concentration of Fe was
recorded in samples from the highly disturbed site
(1165.21 ± 68.91, p < 0.05) when compared to samples
from the moderately (447.18 ± 81.82) and least disturbed
sites (305.44 ± 22.30) (Table 2; see supplementary
material). Concentration of Fe was 61.62 % lower in the
moderately disturbed site when compared to the highly
disturbed site. On the other hand, least disturbed site had
31.70% less Fe compared to themoderately disturbed site.
Its reported CV (%)was 72.10 (Table 2). In addition to Cd,
Fe also had a significant positive correlation with Ni
(r = 0.63, p < 0.05) (Fig. 2). At the same time, weak
positive relationships of Fe with Cu (r = 0.29) and Zn
(r = 0.25) and a weak negative relationship with Mn
(r=−0.24)were not significant (Fig. 2). Among the stages,
the metal reported highest concentration (654.95 ± 112.96)
in juvenile fronds as compared to young andmature fronds
(Table 3). With respect to site and stages, in moderate and
least disturbed sites, the highest concentration of Fe was in
the juvenile fronds (Fig. 3). However, in the highly dis-
turbed site, mature (1354.10 ± 68.12) followed by young
(1134.36 ± 70.18) and juvenile fronds (1007.18 ± 128.91)
was the order (Fig. 3).

Concentration of Cu ranged between BDL and
18.67 ppm (Table 2) and followed a trend similar to Cd
and Fe. Cu reported highest mean value (3.74 ± 1.96) in
the highly disturbed site and was not detected in the
samples from the least disturbed site (Table 2). Samples

from the moderately disturbed site had 44.92 % less Cu
than the samples from the highly disturbed site. Though
Cu had a weak positive correlation with Cd, Fe, and Ni, it
had a negative correlation with Mn (r = −0.23) and
Zn (r = −0.26). However, these correlations were not
significant (Fig. 2). Its CV (%) along the disturbance
gradient was 96.96 (Table 2). Cu reported highest mean
values (3.46 ± 2.08) in mature fronds (Table 3). In all the
sites, Cu had higher values in mature fronds followed by
young and juvenile fronds (Fig. 3).

Zinc, on the other hand, reported values ranging
between 3.18 and 10.14 ppm (Table 2). Highest mean
concentration of Zn (7.30 ± 0.45) was in the highly
disturbed site, while the lowest (5.71 ± 0.43) was in
the moderately disturbed site (Table 2). Thus, concen-
tration of Zn significantly varied (p < 0.05) between the
highly and the moderately disturbed sites (see supple-
mentary material). With respect to the highly disturbed
site, 21.78 % less Zn was present in the samples from
the moderately disturbed site. Samples from the least
disturbed site had 14.36 % higher Zn compared to the
samples from the moderately disturbed site. Zn had a
weak positive and negative correlation with Fe
(r = 0.25) and Cu (r = −0.26), respectively (Fig. 2). It
had almost no relationship with Cd (r = 0.05), Mn
(r = −0.02), and Ni (r = 0.02). These correlations were
not significant (Fig. 2). Its CV (%) along the disturbance
gradient was 12.23 (Table 2). Highest concentration of
Zn (7.65 ± 0.58) was in the juvenile fronds when com-
pared to the young and mature fronds (Table 3). In all
the three sites, Zn reported highest concentration in
juvenile fronds followed by young and mature fronds
(Fig. 3).

Concentration ofMn ranged from 2.05 to 14.29 ppm.
It reported highest mean value (9.63 ± 1.08) in the least
disturbed site followed by 7.60 ± 1.48 in the moderately

Table 3 Metal concentration (ppm) in different growth stages of Pyrrosia flocculosa

Metal Juvenile Young Mature

Cadmium (Cd) BDL–10.96 (5.26 ± 1.71) BDL–8.73 (2.94 ± 1.22) BDL–10.91 (3.82 ± 1.57)

Iron (Fe) 316.41–1188.78 (654.95 ± 112.96) 244.87–1272.18 (639.90 ± 134.23) 123.21–1471.34 (623.00 ± 184.98)

Copper (Cu) BDL–4.05 (0.94 ± 0.47) BDL−4.43 (1.4 ± 0.62) BDL–18.67 (3.46 ± 2.08)

Zinc (Zn) 5.63–10.14 (7.65 ± 0.58) 3.18–9.46 (6.58 ± 0.60) 3.65–8.08 (5.30 ± 0.49)

Manganese (Mn) 2.05–14.29 (6.81 ± 1.38) 3.47–13.58 (7.69 ± 1.14) 3.7–14.26 (8.11 ± 1.12)

Nickel (Ni) 11.32–104.64 (58.39 ± 9.85) 26.72–102.6 (54.50 ± 8.97) 28.11–85.86 (55.18 ± 7.91)

Values outside parentheses represent the range, while those in parentheses are the means

BDL below detection limit
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disturbed and 5.39 ± 0.34 in the highly disturbed site
(Table 2).Mn varied significantly (p < 0.05) between the
highly and the least disturbed sites. Samples from the
least disturbed site had 26.71 % higher Mn than those
from the moderately disturbed site. On the other hand,
samples from the moderately disturbed site had 41.00 %
higher Mn compared to the samples from the highly
disturbed site. The CV (%) for Mn was 28.12 (Table 2).
Interestingly, Mn had a negative correlation with all the
metals (Fig. 2). This relationship was strong in the case
of Cd (r = −0.75, p < 0.05), moderate for Ni (r = −0.36),

and weak in the case of Fe (r = −0.24) and Cu
(r = −0.23) (Fig. 2). Mn had almost no relationship with
Zn (r = −0.02) (Fig. 2). With respect to stages, mature
fronds had highest Mn (8.11 ± 1.12) when compared to
juvenile and young fronds (Table 3). With respect to
stages and sites, mature fronds had highest Mn concen-
tration (6.21 ± 0.42) in the highly disturbed site, while
young fronds reported highest Mn concentration
(9.05 ± 2.97) in the moderately disturbed site (Fig. 3).
In the least disturbed site, juvenile fronds (10.30 ± 2.27)
had the highest Mn concentration (Fig. 3).
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Value of Ni ranged between 11.32 and 104.64 ppm.
Maximum concentration of it was recorded in the sam-
ples from the highly disturbed site (72.73 ± 10.17). In
agreement to other metals, Ni declined with declining
disturbance. It varied significantly (p < 0.05) between
the highly and the least disturbed sites. Compared to
highly disturbed site, 23.01 % less Ni was recorded in
the samples from the moderately disturbed site. From
moderately to least disturbed site, the observed decline
was 29.70 %. Its reported CV (%) was 29.78 (Table 2).
Ni had a strong positive relationship with Cd (r = 0.57,
p < 0.05) and Fe (r = 0.63, p < 0.05) and a weak positive
relationship with Cu (r = 0.25) (Fig. 2). Strength of this
relationship was moderate with Mn (r = −0.36) and
almost none with Zn (r = 0.02). These correlations were,
however, not significant (Fig. 2). Highest concentration
of Ni was in the juvenile fronds (58.39 ± 9.85) as
compared to the young and mature fronds (Table 3).
With respect to site and stage, young fronds had highest
Ni concentration (84.57 ± 13.04) in the highly disturbed
site while in the moderately and least disturbed sites,
juvenile fronds had higher Ni concentration (Fig. 3).

Overall, with respect to stages and sites, majority of
the metals did not report significant differences (see
supplementary material). However, Zn showed a signif-
icant difference (p < 0.05) between mature and juvenile
fronds in the least disturbed site. The difference in Mn
was significant betweenmature and juvenile fronds in the
highly disturbed site only (p < 0.05). Ni, on the other
hand, reported significant difference between juvenile

and young fronds in the moderately disturbed site only
(see supplementary material). Thus, less variation is seen
among the stages. Variations in metal concentration were
more prominent between the sites. This is also clearly
visible in the scatter plot generated using the discriminant
analysis (Fig. 4). The scatter plot shows that significant
and clear discrimination is possible for the highly dis-
turbed site by the first discriminant function. It is on the
right hand side of root 1. It indicates the differences
between the sites depending upon vehicle flow and con-
sequent metal concentrations (Chardi 2016).

Discussion

The study area and its surroundings are devoid of any
major industry, and thus the prime sources of pollution
in the area are vehicles and developmental activities. All
metals, except Mn, had higher concentration in the
highly disturbed site. This is expected as concentration
of heavy metals is usually higher in the highly disturbed
sites where human and developmental activities lead to
more of their emissions (Li et al. 2008; Petrotou et al.
2012). Here, relatively higher number of vehicles in the
highly disturbed site that is located in urban environs
could be the reason for this (Table 1). Past studies have
also reported a positive correlation between vehicle
density and metal concentration (Aksoy et al. 1999;
Bajpai et al. 2014). This also explains the lower con-
centration of heavy metals in the least disturbed site. As
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Fig. 4 Scatter plot of
discriminant analysis
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observed by us and also reported by other workers
(Demirezen and Aksoy 2004), a significant positive
correlation between Cd, Fe, and Ni and their relation-
ship with disturbance is noteworthy.

While some of the metals originate from fuel com-
bustion, others such as Fe and Cu are a product of
abrasion and wear and tear (Bargagli 1998; Thomson
et al. 1997). Among the studied metals, Fe reported
highest concentration at all the three sites. Alike Fe, Ni
was also present in all the three sites. Concentration of
both these metals decreased with increasing distance
from the road. Their progressively declining values
can be attributed to limited automotive exhaust and
abrasion of vehicle (Akhter and Madany 1993; Garty
1993) in the least disturbed site. Higher Ni values at all
the sites could be due to the use of kerosene, agriculture
residue, and firewood as fuel. It has been pointed out
that oil combustion in many buildings is a major source
of ambient Ni (US EPA 1995, UK NAEI 2008).
Furthermore, due to developmental activities in terms
of construction of buildings and roads that involve
welding, Ni may be higher in the area. Owing to heavy
rainfall, sloping iron roofs are preferred in the area. This
involves welding and thus welding shops are common.

As noted, these release Ni into the environment (Gube
et al. 2013; Weiss et al. 2013).

Interestingly, Pb was not detected in any of the sam-
ples. In recent times, stringent regulations with respect
to Pb emission have been put in place (Al-Khashman
2004; Kar et al. 2010). This includes lowering of lead
additive limits in gasoline and ban on leaded fuel (Loppi
et al. 2004). As a result of EPA’s regulatory efforts to
remove lead from motor vehicle gasoline, levels of lead
in the air have decreased by 89 % between 1980 and
2010 (EPA 2010). Constant improvement in automotive
technologies also has a role to play in ensuring minimal
Pb emissions (Kar et al. 2010). This along with relative-
ly low traffic density in the study area, when compared
to cities in lowland areas (Loppi and Corsini 2003) or
religious circuits in Himalaya (Sharma et al. 2015),
probably accounts for the absence of Pb in
P. flocculosa at the present site.

While Pb was not detected in any of the samples, Cd
and Cu were not detected in P. flocculosa samples
collected from the least disturbed site. This is quite
obvious as this site is the innermost and had minimal
disturbance. Cd content apart from the motor vehicle
emissions can vary depending upon the intensity of the

Table 4 Comparative account of the present study with studies done elsewhere

Taxa, study site Cd (ppm) Fe (ppm) Cu (ppm) Zn (ppm) Mn
(ppm)

Ni (ppm) Source

Brachythecium plumosum, China 1.44 ± 0.3 6159 ± 1240 36.6 ± 4.2 169 ± 34 156 ± 27 15.4 ± 6.4 Chen et al. (2010)

Eurhynchium laxirete, China 0.97 ± 0.2 4648 ± 937 19.5 ± 3.6 114 ± 21 111 ± 19 11.9 ± 2.8 Chen et al. (2010)

Taxiphyllum taxirameum, China 1.21 ± 0.3 7590 ± 1788 139 ± 27 229 ± 33 170 ± 33 16.4 ± 5.4 Chen et al. (2010)

Hygroamblystegium strictulum,
China

1.22 ± 0.4 4088 ± 651 34.9 ± 5.2 124 ± 47 109 ± 26 11.5 ± 4.3 Chen et al. (2010)

Lichens, New York – – 9–24 20–60 – – Bowen (1979)

Pseudevernia furfuracea, Italy 0.46 – 5.42 99 – – Adamo et al. (2003)

Parmelia hypogymnia, Italy <0.1–0.3 – 04–10 20–90 – – Adamo et al. (2003)

Evernia prunastri, Italy 0.05–0.09 – 1.94–4.45 20.3–53.2 – – Conti et al. (2004)

Dirinaria picta, Singapore 0.14–0.28 – 11.75–
45.13

44.17–
83.15

– – Ng et al. (2006)

Cladonia rangiformis, Argentina 0.14–0.69 – 1.06–5.29 9.15–47.6 – – Cayir et al. (2007)

Capsella bursa-pastoris,
Yorkshire, UK

0.45–1.07 – 9–26 53–200 – – Ross (1994)

Poa annua, Yorkshire, UK 0.27–0.84 – 9–26 50–151 – – Ross (1994)

Phaeophyscia hispidula,
Uttarakhand

– 4505–10,923 24.02–
35.76

84.99–
141.8

– 54–67.9 Shukla and Upreti
(2007)

Pyrrosia flocculosa, Himachal
Pradesh

BDL
−10.96

123.21–
1471.34

BDL–18.67 3.18–10.14 2.05–
14.29

11.32–
104.64

Present study

BDL below detection limit
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dust emission containing this element (Abollino et al.
2002; Li et al. 2008; Petrotou et al. 2012). Similarly,
though main source of Cu is combustion of coal
(Bargagli 1998; Anagnostatou 2008), variations in Cu
have also been related to diesel engines and excessive
use of vehicle brake pads (Anagnostatou 2008).
Potholes in the roads are a common sight in the study
area. This calls for frequent use of brakes that subse-
quently appear to be a source of the same, as has also
been reported by other workers (Dietl et al. 1997;
Fujiwara et al. 2011). Zinc is also a prime metal released
by vehicle brake shoes (Davis and Williams 1975).
Thus, its highest concentration in the highly disturbed
site is justified. Higher value of Zn in the least disturbed
site, as compared to moderately disturbed site, can be
linked to the use of pesticides and fossil fuel combustion
in the village areas. Studies done elsewhere (Adamo et al.
2003; Kar et al. 2010; Kord and Kord 2011; Loppi and
Pirintsos 2003) have also reported similar patterns.

The trend of increasing Mn with decreasing distur-
bance can be explained on the basis of land use and not
on the basis of vehicular emission. Our least disturbed
site is near agricultural fields, where use of fertilizers
and pesticides is a common practice. Use of fertilizers
and pesticidesmay have resulted in higher concentration
of Mn in the least disturbed site. Pignata et al. (2002)
also observed Mn enrichment in areas around agricul-
tural field and attributed the same to the use of fertilizers
and pesticides. Similar pattern has also been reported by
Bermudez et al. (2009). In another study, contamination
factor for Mn was found to be positively correlated with
agriculture (Wannaz et al. 2006). High value of coeffi-
cient of variation reveals particulate nature of these
metals and hence their low dispersion. High CV values
for heavy metals have also been reported by Shukla and
Upreti 2007. It indicates nature of the element accumu-
lated and entrapped by plants.

On the other hand, higher concentration of most of
the metals in juvenile stage can be linked to higher metal
sequestering capacity of the young growing tissues.
Actively developing tissues accumulate higher quantity
of elements (Pyatt et al. 1999). On the other hand,
mature plants have a temporal advantage. There are
evidences of translocation of elements to older parts of
the plant which results in their higher concentration in
older plants (Pyatt et al. 1999; Nishizono et al. 1987). In
A. yokoscense, significantly higher concentration of Zn
and Cu was found in dead leaves as compared to live
ones (Nishizono et al. 1987).

A comparative account of the present study with
studies done elsewhere, using plants as bio-indicators,
is presented in Table 4. In the present study, concentra-
tions of Cd and Ni are on the higher side and those of Fe,
Cu, Zn, and Mn are on the lower side (Table 4).
However, only Cd and Fe reported values that are higher
than the threshold limits (Allen 1989).

Conclusions

The study is among the pioneers from the west
Himalayan state of Himachal Pradesh where such stud-
ies are meager and much desired. To our knowledge, the
present study is the first to demonstrate use of
P. flocculosa as an indicator of heavy metal pollution.
In addition to vehicular movement, land use practices
also play a role in guiding distribution of heavy metals.
While increased levels of Cd, Fe, Cu, Zn, and Ni were
found to be correlated to vehicular emission and devel-
opmental activities, distribution of Mn could be ex-
plained on the basis of agriculture land use. Of all the
metals analyzed, only Cd and Fe reported values higher
than the threshold limits. Thus, P. flocculosa can be
effectively used for bio-monitoring of the environment.
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