
Accuracy of land use change detection using support vector
machine and maximum likelihood techniques for open-cast
coal mining areas

Shivesh Kishore Karan & Sukha Ranjan Samadder

Received: 25 December 2015 /Accepted: 19 July 2016 /Published online: 27 July 2016
# Springer International Publishing Switzerland 2016

Abstract One objective of the present study was to
evaluate the performance of support vector machine
(SVM)-based image classification technique with the
maximum likelihood classification (MLC) technique
for a rapidly changing landscape of an open-cast mine.
The other objective was to assess the change in land use
pattern due to coalmining from 2006 to 2016. Assessing
the change in land use pattern accurately is important for
the development and monitoring of coalfields in con-
junction with sustainable development. For the present
study, Landsat 5 Thematic Mapper (TM) data of 2006
and Landsat 8 Operational Land Imager (OLI)/Thermal
Infrared Sensor (TIRS) data of 2016 of a part of Jharia
Coalfield, Dhanbad, India, were used. The SVM classi-
fication technique provided greater overall classification
accuracy when compared to the MLC technique in
classifying heterogeneous landscape with limited train-
ing dataset. SVM exceeded MLC in handling a difficult
challenge of classifying features having near similar
reflectance on the mean signature plot, an improvement
of over 11 % was observed in classification of built-up
area, and an improvement of 24 % was observed in
classification of surface water using SVM; similarly,
the SVM technique improved the overall land use

classification accuracy by almost 6 and 3 % for Landsat
5 and Landsat 8 images, respectively. Results indicated
that land degradation increased significantly from 2006
to 2016 in the study area. This study will help in quan-
tifying the changes and can also serve as a basis for
further decision support system studies aiding a variety
of purposes such as planning and management of mines
and environmental impact assessment.

Keywords Change detection . Coal mining . High-
resolution images . Land degradation .Maximum
likelihood classification . Support vector machines

Introduction

Due to its low cost and abundance in the nature when
compared to other fuels, especially in the case of
electricity generation, coal remains one of the most
important energy sources (Smith 1997). However,
coal mining has created a number of environmental
challenges as it causes irreversible damage to the
surrounding topography including the water regime.
Coal mining causes subsidence, air pollution, and
contamination of soil (WCA 2014). Land degrada-
tion due to land cover change in the vicinity of
mining areas is one of the most important factors
affecting ecological systems at the local scale. Mon-
itoring these changes in land cover is essential in
mapping the latest developments, especially in case
of open-cast mines, where topographical changes are
frequent. For effective planning and management of
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operations, mining areas require thorough monitoring
of open-cast pits and degraded lands; remote sensing
techniques can be highly instrumental in this regard
(Demirel et al. 2011). Sustainable development pri-
oritizing environmental accountability is the need of
the hour.

Remote sensing and GIS tools have been used
extensively in the mining industry for various pur-
poses such as mineral exploration, modelling and
monitoring, mine planning, and environmental im-
pact assessment (Van der Meer et al. 2012; Karan
and Samadder 2016). These tools provide a quick and
cost-efficient means of mapping large geographic
areas (Demirel et al. 2011). With the recent develop-
ment in sensor and satellite technologies, the latest
geospatial information has become more economical
and readily available for users to exploit. Image clas-
sification is an elaborate procedure that may be af-
fected by several factors, such as landscape, data
type, image pre-processing and classification ap-
proaches (Lu and Weng 2007). Several image classi-
fication techniques are available, each with their own
advantages and disadvantages. Support vector ma-
chine (SVM) is a recent non-parametric supervised
statistical machine learning technique that aims to
find an optimal hyperplane (Cortes and Vapnik
1995), which separates the multispectral feature data
into discrete predefined clusters consistent with train-
ing datasets. SVM-based techniques are distinctly
attractive in remote sensing due to their ability to
produce higher classification accuracy even with lim-
ited training dataset (Mantero et al. 2005).

Demirel et al. (2011) employed SVM to identify,
quantify, and analyse the spatial response of landscape
change due to mining activities in Turkey. Their results
indicated that SVM could be used efficiently in
monitoring environmental impacts of mining with
several constraints l ike remote locat ions in
mountainous region and cloud cover. Otukei and
Blaschke (2010) evaluated the performance of three
different classification algorithms, decision trees, sup-
port vector machines and maximum likelihood in
assessing the land cover change of Pallisa District,
Eastern Uganda. It was reported in their study that
although all the three techniques performed relatively
well, SVM revealed an improvement of classification
accuracy which was probably due to the simplification
of vector space needed for development of hyperplanes.
Hernandez et al. (2007) evaluated the use of SVM

classification in mapping priority habitat. Their results
revealed an improvement of about 28 % in the overall
classification accuracy when compared to maximum
likelihood classification (MLC). They also reported that
only a small training dataset was required for the defi-
nition of optimal separating hyperplane for isolating a
class of interest from other classes. Size of training data
plays an important role in the accuracy of classification
and it varies for different types of satellite images.
Selection of the optimum number of training samples
may increase the overall classification accuracy (Foody
et al. 2006). Several other studies have reported the
effectiveness of SVM classification over other pixel-
based techniques for variety of purposes like biophysi-
cal tasks, land use and land cover tasks, and geomor-
phological tasks (Melgani 2006, Tang et al. 2008;
Andermann and Gloaguen 2009; Cao et al. 2009a;
Knorn et al. 2009; Knudby and LeDrew, 2010).

In the present study, we evaluated the effectiveness of
support vector machine-based land use classification
over a conventional classification mechanism. The pres-
ent study area is densely populated around the mining
sites; this presents a problem while classifying land
cover accurately due to the presence of built-up area.
The other objective was to study the change in land use
pattern over a period of 10 years due to extensive open-
cast coal mining. Accurate assessment of this land use
change in mining areas is important for planning of
operations and mine closure.

Materials and methods

Figure 1 depicts the overall methodology of the present
study starting from data acquisition, followed by land
use classification using maximum likelihood (ML) and
SVM-based methods. After that, accuracy assessment
was carried out to validate the classification results and
to confirm which one of the two classification mecha-
nisms was more accurate. After the validation part,
change detection was performed using the results of
classified images.

Study area

A part of the Jharia Coalfield, Dhanbad, India, has been
selected for the present study to investigate the impact of
coal mining on land use and land cover. The study area
(Fig. 2) is situated at about 250 km west of Kolkata,
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India, and lies between latitudes 23° 38′N and 23° 50′N
and longitudes 86° 07′ E and 86° 30′ E. The Jharia
Coalfield is regarded as the coal capital of India and is
known as the exclusive storehouse of prime coking coal
in the country. Due to extensive and unregulated coal
mining over a century, the study area has witnessed
unrestricted environmental degradation over the years
(Prakash and Gupta 1998; Sarkar et al. 2007). Accord-
ing to the Central Pollution Control Board’s (CPCB)
Comprehensive Environmental Pollution Index (CEPI),
Dhanbad is the 24th most critically polluted city of India
(CPCB 2009). The continuous mining in the past has
changed the landscape with remnants of old abandoned
quarries, spoil dumps, subsided depressions and soil
patches baked due to mine fires.

Data acquisition

In order to evaluate the change in land use/land cover
over a period of 10 years, two different multispectral
satellite images were procured. Landsat 5 Thematic
Mapper (TM) surface reflectance data of 30 April
2006 and Landsat 8 Operational Land Imager (OLI)/
Thermal Infrared Sensor (TIRS) surface reflectance data
of 25 April 2016 were collected from USGS
EarthExplorer (Table 1, Fig. 3a, b). Near anniversary
images were collected to reduce the potential change
detection errors due to variability arising from sun angle,

atmospheric condition and phenology. Both images
were standardized and projected to the same projection
system, Universal Transverse Mercator (UTM) Zone
45 N Datum WGS 1984 projection using ArcGIS
10.2.2. The specification of the satellite images is pre-
sented in Table 1.

Image enhancements

The primary objective of any image enhancement
technique is to improve the visual interpretability
of an image by increasing the probable distinction
among the features in the scene (Lillesand et al.
2014). If two different features are of same colour,
their isolation may become difficult, but if those
features are sharply different in tone or brightness,
their separation becomes easier. For the present
study, some of the surface features had near similar
reflectance on the mean signature plot (e.g. built-up
and OB dump). Haze reduction and histogram equal-
ization techniques were performed using ERDAS
Imagine. These techniques helped in reducing the
additive effect caused by atmospheric haze and thus
improving the apparent distinction among the sur-
face features. The enhanced images were used in
visual analysis for the pseudo accuracy assessment
study as no other reference data was available for the
image of 2006.

Data Acquisition

Landsat 5 TM Landsat 8 
OLI/TIRS 

Landuse Classification

Maximum Likelihood Support Vector Machine

Accuracy Assessment

Post classification change detection

1. Data Standardization 
2. Training Data Generation

Image Enhancements

Fig. 1 Methodology flow chart
of the present study

Environ Monit Assess (2016) 188: 486 Page 3 of 13 486



Fig. 2 Location of the study area

Table 1 Properties of satellite images

Landsat 5 TM Landsat 8 OLI/TIRS

Acquisition date 30 April 2006 25 April 2016

Metadata Yes Yes

Available number of bands 7 11

Spatial resolution (in m) MULX 30 MULX 30

Spectral resolution (in μm) Blue: (0.45–0.51)
Green: (0.52–0.60)
Red: (0.63–0.69)
NIR: (0.76–0.90)

Blue: (0.45–0.51)
Green: (0.53–0.59)
Red: (0.64–0.67)
NIR: (0.85–0.88)
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Maximum likelihood classification

Maximum likelihood is one of the most commonly used
classification algorithms and is dependent upon the
probability distribution of the feature classes as per
Bayes’ theorem (Liu and Mason 2013). In this algo-
rithm, the normal probability distributions for each of
the spectral classes are demarcated using a covariance
matrix by selecting a sufficient number of pixels in each
spectral class as training sample for the classification
algorithm (Richards and Jia 2006). In MLC, the feature
space distance between cluster ωk and the image pixel Yi
are weighted by the covariance matrix Σk of ωk with an
offset relating to ratio Nk given in Eq. (2) (Liu and
Mason 2013). The algorithm for maximum likelihood

classification is given in Eq. (1).N is the total number of
pixels in the image Y. For all i, element Yi (Yi∈Y) to
cluster ωk if

∂ Y i;ωkð Þ ¼ ln
���∑k

���þ Y i−μkð ÞT∑
−1

k Y i−μkð Þ ð1Þ

−ln
Nk

N
¼ min ∂ Y i;ωrð Þf g ð2Þ

for r = 1, 2,…, m.
Both images were arranged in false colour composite

(FCC) band order, being a general case of an RGB colour
display, FCC images effectively highlight vegetation

Fig. 3 a Landsat 5 TM satellite
image (year 2006). b Landsat 8
OLI/TIRS satellite image (year
2016)
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distinctively in red (Liu andMason 2013). ArcGIS 10.2.2
was used to perform MLC by taking seven broad land
cover classes based on their representativeness in the
image for the present study area. Training sets were
generated manually by taking an appropriate number of
training samples in each representative class and then
merging them in training sample manager. A representa-
tive signature file was created for training and classifying
the images.

Support vector machine-based classification

Support vector machine (SVM) technique is based on
statistical learning theory presented by Cortes and
Vapnik (1995). SVM classifier is a modern, powerful
supervised classification method that can handle
multiple-band imagery having high resolution and large
segmented satellite data with ease when compared to
other classification techniques, where attribute table
management becomes difficult. Furthermore, SVM is a
non-parametric learning technique; hence, no assump-
tions are made on the underlying data distributions
(Fauvel et al. 2009). SVM works on the principle of
generation of a hyperplane that epitomizes a precise
separation of linearly separable classes in a hypersurface
(Szuster et al. 2011). One major advantage of SVM over
other classification algorithms is that it is less gullible to
noise, correlated bands and an unbalanced number or
size of training data within each class (Cawley and
Talbot 2010). The purpose of SVM is to create a model
(based on training data) that predicts the destination
value of testing data from the training data attributes
(Hsu et al. 2010). From the training set of instance-label
pairs (Xi, Yi), i = 1,..., l where Xi ∈ Rn and Y ∈ {1, −1}l,
the SVM (Boser et al. 1992; Cortes and Vapnik 1995)
require the solution for the optimization problem given
in Eq. (3) and Eq. (4).

minw;b;∈
1

2
WTW þ C

Xl

i¼1

∈i ð3Þ

Y i W
T∅ X ið Þ þ b

� �
≥1−∈i;

Subject to;
∈i≥0:

ð4Þ

In the above equation, the training vectors Xi are
charted into a higher dimensional space by the func-
tion∅. The SVM locates a linear separating hyperplane

with the maximum margin in this higher dimensional
space (Hsu et al. 2010). C > 0 is the error term penalty
parameter.

ArcGIS 10.2.2 along with ArcPy tool (Wehmann
2013) using LIBSVM classification library (Chang
and Lin 2011) with radial basis function (RBF) kernel
given in Eq. (5) was used to perform SVM classification
on both images. As SVM utilizes a maximum margin
hyperplane for a decision boundary, only a part of the
training data, known as support vectors are needed to
describe its position. The RBF kernel non-linearly maps
training samples to a higher dimensional space.

K xi; x j
� � ¼ exp −γjjxi−x j2

� �
; γ > 0: ð5Þ

The tool uses a training raster to learn how to produce
the classified image. In the training raster, a small number
of pixels are assigned to each training class. This is done
by coding the land cover classes with numbers, and then
changing the value of a number of pixels in the training
raster which overlay that land cover type in the satellite
image to the code of that class. All other remaining pixels
are set to 0, in order to establish that the classifier should
predict their classes based on the information that is
extracted. Training and testing data should be a single
band raster with known pixels having a value in the label
set {1,…,n} and unknown pixels are assigned a value of
0. These raster images should have the exact same extent
and gridding as the input raster. This can be ensured by
setting Extent, Snap Raster and Cell Size options appro-
priately in the environment settings during production.
The sparse representation of training data alongwith non-
linear mapping provides robust classification accuracy as
compared to other classification techniques.

Accuracy assessment

After the land use classification process, it is important
to assess the accuracy of the classified image, to peg and
quantify mapping or classification errors. Several tech-
niques are available for accuracy assessment study
(Arnoff 1982; Piper 1983; Kalkhan et al. 1995;
Rosenfield and Fitzpatrik-Lins 1986; Koukoulas and
Blackburn 2001). The most commonly used technique
is derived using a confusion or error matrix; for the
present study, the same has been used. In this method,
a simple cross tabulation of the mapped class label
against that observed in the ground or reference data is
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employed for a sample of cases at specified locations
(Canters 1997). ArcGIS 10.2.2 was used for accuracy
assessment study. Pseudo accuracy assessment was per-
formed for the classified image of 2006 as no other
reference data was available for that year. In pseudo
accuracy assessment, the same data which was used in
the classification process was enhanced and used as a
reference for the classified images of 2006. Google
Earth™, LISS IV high-resolution satellite image along
with pan-sharpened Landsat 8 data of 2016 was used as
a reference for the classified image of 2016. Random
accuracy points were generated using the Create Accu-
racy Assessment Point tool available in ArcGIS. The
tool computes the user’s and producer’s accuracy for
each of the classes and calculates an overall kappa index
to accommodate the effects of chance agreement. The
locational accuracy for the reference data of 2006 was
100 % as it employed the same dataset for the accuracy

assessment study. The locational accuracy for the refer-
ence data of 2016 was limited to 5 m (spatial resolution
of the LISS IV image). The error arising from the
locational accuracy of the 2016 reference data was con-
sidered to be negligible as the reference data had higher
resolution than the test dataset.

Change detection

Post classification change detection (CD) technique was
used for assessing the change in land use pattern over
the decade. This technique is often used as a benchmark
for the subjective assessment of other CD techniques
(Lunetta et al. 1999). During comparison, if the corre-
sponding pixels lie in the same class label, the pixel has
not been changed, or else the pixel has been changed.
One major limitation of this technique is that it may also
incorporate classification errors in the final CDmap (Xu

Fig. 4 aMaximum likelihood-based land use classification using
the Landsat 5 TM image. b Support vectormachine-based land use
classification using the Landsat 5 TM image. c Maximum

likelihood-based land use classification using the Landsat 8 OLI/
TIRS image. d Support vector machine-based land use classifica-
tion using the Landsat 8 OLI/TIRS image
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et al. 2009; Hussain et al. 2013). ERDAS Imagine was
used in the present study to perform CD analysis. A
model was created using ERDAS’s modeller to quantify
the change. Pixel values of 0 represented no change;
decrease and increase were represented by change in
pixel values, either negative change or positive change.
Also, a change matrix was generated to understand the
change from one land cover category to another due to
coal mining activities.

Results and discussions

Results of maximum likelihood classification

Seven different land use classes (i.e. surface water,
OB dump, built-up, coal quarry, vegetation, open

scrub, and barren land) were successfully delineated
using this technique (Fig. 4a, c). The results revealed
that for both the years, Vegetation dominated the land
cover type with 47.84 % in 2006 and 35.17 % in
2016, respectively. Coal quarry was observed as
3.16 % in 2006 and 3.77 % in 2016. OB dump was
found to be 11.88 % in 2006 and 34.10 % in 2016.
Likewise, the distribution of all land use classes is
presented in Table 2. From visual interpretation, it
became obvious that this technique was producing
classification errors, in the form of overestimating the
surface water for the year 2006. This error was at-
tributed to the near similar spectral reflectance of
surface water and coal quarry and the limitation of
the MLC classifier. The distribution of built-up area
and OB dump were also erroneous due to the similar
spectral reflectance of these two features.

Table 2 Land use change detection from 2006 to 2016 based on the SVM and MLC classification techniques (total area 6541.23 ha)

Classes Maximum likelihood (values in percent area) Support vector machine (values in percent area)

Year Relative change in percentage area Year Relative change in percentage area

2006 2016 2006 2016

Surface water 15.11 0.83 −94.50 0.85 0.69 −18.82
OB dump 11.88 34.10 187.03 17.66 37.61 112.96

Built-up 1.68 11.08 559.52 8.51 17.43 104.81

Coal quarry 3.16 3.77 19.30 6.18 3.33 −46.11
Vegetation 47.84 35.17 −26.48 25.94 10.70 −58.75
Open scrub 7.44 4.56 −38.70 28.81 18.32 −36.41
Barren land 12.89 10.49 −18.61 12.05 11.92 −1.07

Table 3 Accuracy assessment using the confusion matrix generated from the test training samples for Landsat 5 TM image based on the
MLC technique (overall classification accuracy 84.98 %)

Sl. no. Cover 1 2 3 4 5 6 7 Sum User’s accuracy (%)

1 Surface water 18 2 7 17 0 0 0 44 40.91

2 OB dump 0 281 7 2 0 0 0 290 96.90

3 Built-up 0 6 17 0 0 0 0 23 73.91

4 Coal quarry 4 0 0 107 0 0 0 111 96.40

5 Vegetation 2 0 1 1 157 9 0 170 92.35

6 Open scrub 0 0 0 0 0 49 0 49 100.00

7 Barren land 0 6 0 0 0 0 213 219 97.26

Sum 24 295 32 127 157 58 213
Producer’s accuracy (%) 75 95.25 53.13 84.25 100 84.48 100
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Results of support vector machine-based classification

The results of SVM classification revealed 112.96 %
increase in the area coverage of OB dump (increased
from 1155.42 ha in 2006 to 2460.8 ha in 2016). There
was also a sharp increase in the area coverage of built-up
area which increased from 8.51 % in 2006 to 17.43 % in
2016, showing an increase of 104 % (Table 2, Fig. 4b,
d). Coal quarry was observed to be 6.18 % in 2006 and
3.33 % in 2016 respectively. Likewise, the distribution
of other land use classes (barren land, surface water,
open scrub, and vegetation) is presented in Table 2.
Visual interpretation revealed higher classification accu-
racy with this method in comparison to MLC. The
difference in classification accuracy may be explained
by various factors like image quality, image resolutions,
classification errors, software errors, and user errors. For
the present study, SVM not only gave better results than
MLC in classifying all the linearly separable classes but

it also produced better results while training the classes
which were having near similar spectral reflectance(s).
As SVM is based on the principle of separating hyper-
planes, high-classification accuracy is attributed to
SVM’s ability to locate an optimal separating
hyperplane.

Results of accuracy assessment

Initial attention was focussed on the accuracy of
support vector machine-based classification over
maximum likelihood classification technique. Confu-
sion matrices revealed that SVM-based classifier
gave better results than MLC technique by almost
6 % for the Landsat 5 TM image of 2006. Using
MLC technique, the overall classification accuracy
was found to be 84.98 % with kappa coefficient of
0.82 (Table 3) for Landsat 5 TM image of 2006, and
using SVM, the overall classification accuracy was

Table 4 Accuracy assessment using the confusion matrix generated from the test training samples for Landsat 5 TM image based on the
SVM classification technique (overall classification accuracy 91.20 %)

Sl. no. Cover 1 2 3 4 5 6 7 Sum User’s accuracy (%)

1 Surface water 17 0 0 1 0 0 0 18 94.44

2 OB dump 1 287 10 1 0 0 0 299 95.99

3 Built-up 0 4 22 0 0 1 0 27 81.48

4 Coal quarry 4 0 0 125 0 0 0 129 96.90

5 Vegetation 1 0 0 0 153 5 0 159 96.23

6 Open scrub 1 0 0 0 4 52 0 57 91.23

7 Barren land 0 4 0 0 0 0 213 217 98.16

Sum 24 295 32 127 157 58 213
Producer’s accuracy (%) 70.83 97.29 68.75 98.43 97.45 89.66 100
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Table 5 Accuracy assessment using the confusion matrix generated from the test training samples for Landsat 8 OLI/TIRS image based on
the MLC technique (overall classification accuracy 90.7 %)

Sl. no. Cover 1 2 3 4 5 6 7 Sum User’s accuracy (%)

1 Surface water 119 0 0 9 0 0 0 128 92.97

2 OB dump 7 300 1 1 0 1 0 310 96.77

3 Built-up 1 51 78 0 0 0 0 130 60.00

4 Coal quarry 0 0 0 55 0 0 0 55 100.00

5 Vegetation 11 0 0 0 97 6 0 114 85.09

6 Open scrub 0 0 0 0 1 105 0 106 99.06

7 Barren land 3 13 0 0 0 0 226 242 93.39

Sum 141 364 79 65 98 112 226
Producer’s accuracy (%) 84.40 82.42 98.73 84.62 98.98 93.75 100



observed as 91.20 % with kappa coefficient of 0.89
(Table 4) for Landsat 5 TM image of 2006.

The built-up area does not appear to have any partic-
ular diagnostic spectral reflectance and its spectral signa-
ture resembles to that of any other highly reflective
features in the study area such as overburden dump.
Therefore, it is expected that algorithms would not be
able to convincingly distinguish classes having analo-
gous spectral reflectance(s). Similarly, surface water also
resembles to coal quarry having similar peaks in the
mean signature plot. For Landsat 5 TM image, the
built-up area was delineated with an overall accuracy
(including producer and user accuracy) of 63.52% using
MLC technique. SVM offered a better result by improv-
ing the overall accuracy to 75.1 %, an improvement of
11.5 % over MLC technique. For surface water, the

accuracy difference was surprisingly even more substan-
tial, increasing almost 24.6 from 57.95% (usingMLC) to
82.63 % (using SVM). SVM-based classifiers have the
ability to generalize the unseen data and it is also known
for its higher accuracy on limited amount of training
patterns. This is why the SVM classifier has exceeded
MLC, giving higher classification accuracy for every
individual class.

In case of Landsat 8 OLI/TIRS image of 2016, con-
fusion matrices revealed an increase of almost 3 % in the
overall classification accuracy from 90.7 % with kappa
coefficient of 0.88 for MLC (Table 5) to 93.37 % with
kappa coefficient of 0.91 for SVM (Table 6). An im-
provement of about 7 %was observed in classification of
built-up area. Moreover, Landsat 8 OLI/TIRS has finer
spectral resolution (Table 1) than Landsat 5 TM; this

Table 6 Accuracy assessment using the confusion matrix generated from the test training samples for Landsat 8 OLI/TIRS image using the
SVM classification technique (overall classification accuracy 93.37 %)

Sl. no. Cover 1 2 3 4 5 6 7 Sum User’s accuracy (%)

1 Surface water 102 0 0 7 0 0 0 109 93.58

2 OB dump 38 350 12 0 0 0 0 400 87.50

3 Built-up 1 8 67 0 0 0 0 76 88.16

4 Coal quarry 0 0 0 58 0 0 0 58 100.00

5 Vegetation 0 0 0 0 97 0 0 97 100.00

6 Open scrub 0 0 0 0 1 112 0 113 99.12

7 Barren land 0 6 0 0 0 0 226 232 97.41

Sum 141 364 79 65 98 112 226
Producer’s accuracy (%) 72.34 96.15 84.81 89.23 98.98 100 100

Fig. 5 Land use change map
from 2006 to 2016 based on pixel
reflectance values
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improved the apparent reflectance of different surface
features. This is the reason why higher classification
accuracies were observed using both techniques for
Landsat 8 image. The improvement in classification ac-
curacy was although close to 3 %, but considering the
quality of the raw satellite image, this improvement may
be termed substantial.

Results of change detection

Classification maps were generated for the years 2006
and 2016 using both SVM and MLC techniques
(Fig. 4). SVM classified images reported higher accura-
cy for both 2006 and 2016, hence for post classification
change detection, SVM classified images were used. A
change detection (CD) map was created using ERDAS
Imagine, the CD map was further sub-classified into
three distinct classes (decreased, increased, constant)
(Fig. 5). It was observed that due to continuous open-
cast mining operations and high stripping ratio for cok-
ing coal, OB dump increased almost 112.96 %. Due to
rapid coal extraction, large open scrub areas were con-
verted into active mining land; as a result, open scrub
area decreased nearly 36.41 % from 1884.87 ha in 2006
to 1198.3 ha in 2016 (Table 7). Surface water and
vegetation both decreased by 18.82 and 58.75 %, re-
spectively. Large tracts of Vegetation were converted
into OB dump due to coal mining activities.

Statistical validation was not performed to evaluate
the classification algorithms as individual performance
of the algorithms cannot be established significantly
(Dietterich 1998).

Conclusions

The main aim of this paper was to compare the accuracy
of the two pixel-based classification techniques (support
vector machine and maximum likelihood classification)
in classifying satellite images of the Jharia Coalfield.
Other objective was to study the change in land use
pattern over a period of 10 years due to extensive
opencast coal mining using Landsat 5 TM data of
2006 and Landsat 8 OLI/TIRS data of 2016. The ability
of SVM to generate an optimal separating hyperplane
resulted in a better performance of SVM over MLC in
classifying high-resolution satellite imagery. Confusion
matrix-based accuracy assessment revealed that the fea-
tures with overlapping spectral reflectance values on the
mean signature plot were classified more accurately
using SVM with marginal errors, which was far better
than MLC. SVM was superior to MLC in overall clas-
sification accuracy as well as individual classification
accuracy for many classes. Post classification change
detection was used to study the change in land use
pattern over a period of 10 years from 2006 to 2016. A
change detection map was prepared to analyse the
change in land use pattern. It was observed during the
study period that nearly 47 % of the total land area
changed into other classes. The main drivers for this
land use change for the present study area were coal
mining activities. Large parts of land were converted
into mining areas. The results also indicated that the rate
of change of land cover is very high and the danger of
severe land degradation is challenging the ecological
resilience. This study will help in quantifying the land
use change; in serving as a basis for further decision

Table 7 Land use change matrix from 2006 to 2016 (all figures are in ha)

Area (ha)

Surface water OB dump Built-up Coal quarry Vegetation Open scrub Barren land 2016 total

Surface water 6.48 14.67 2.61 6.93 4.05 5.58 4.68 45.0

OB dump 34.11 765.72 159.48 228.24 358.56 726.39 188.28 2460.8

Built-up 3.42 101.34 234.27 7.11 306.45 331.47 156.42 1140.5

Coal Quarry 4.59 49.23 5.31 84.9 31.23 39.15 3.06 217.5

Vegetation 1.35 11.97 20.97 3.33 497.61 149.31 15.75 700.3

Open scrub 4.95 181.26 51.12 72.45 409.77 444.96 33.75 1198.3

Barren land 0.72 31.23 82.98 1.26 89.28 188.01 386.37 779.9

2006 total 55.62 1155.42 556.74 404.22 1696.95 1884.87 788.31
Percent difference −19.09 112.9 104.8 −46.2 −58.7 −36.4 1.06
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support system, studies aiding variety of purposes such
as environmental management, landscape planning, and
monitoring reclamation success. Modern classification
techniques such as SVM can be highly instrumental in
monitoring land use and land cover change.
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