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Abstract Mapping and modeling vegetation distribu-
tion are fundamental topics in vegetation ecology. With
the rise of powerful new statistical techniques and GIS
tools, the development of predictive vegetation distribu-
tion models has increased rapidly. However, modeling
alpine vegetation with high accuracy in arid areas is still
a challenge because of the complexity and heterogeneity
of the environment. Here, we used a set of 70 variables
from ASTER GDEM, WorldClim, and Landsat-8 OLI
(land surface albedo and spectral vegetation indices)
data with decision tree (DT), maximum likelihood clas-
sification (MLC), and random forest (RF) models to
discriminate the eight vegetation groups and 19 vegeta-
tion formations in the upper reaches of the Heihe River
Basin in the Qilian Mountains, northwest China. The
combination of variables clearly discriminated vegeta-
tion groups but failed to discriminate vegetation forma-
tions. Different variable combinations performed

differently in each type of model, but the most consis-
tently important parameter in alpine vegetation model-
ing was elevation. The best RF model was more accu-
rate for vegetation modeling compared with the DT and
MLC models for this alpine region, with an overall
accuracy of 75 % and a kappa coefficient of 0.64 veri-
fied against field point data and an overall accuracy of
65 % and a kappa of 0.52 verified against vegetation
map data. The accuracy of regional vegetation modeling
differed depending on the variable combinations and
models, resulting in different classifications for specific
vegetation groups.

Keywords Classification tree . Random forest .

Landsat8OLI . Spectral vegetation indices . Vegetation
mapping . QilianMountains

Introduction

Vegetationmaps provide important baseline information
on the spatial distribution of species and vegetation
communities, and they provide an important reference
for resource management, biodiversity conservation,
and ecological services assessment (Newell and
Leathwick 2005; Ohmann et al. 2014). Accurate vege-
tation mapping and classification has become a funda-
mental topic for vegetation ecology research (van der
Maarel and Franklin 2013) and a key requirement for
ecosystem management and global change research
(Xie et al. 2008; Corbane et al. 2015).
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Traditional field surveys are the first step and main
data resource for vegetation mapping. Field surveys can
collect a wide range of reliable data, but they are costly
and labor intensive, especially in remote areas such as
alpine regions and arid ecosystems where ground-based
data mapping becomes more logistically challenging
(Schmidt and Skidmore 2003). For large-scale mapping,
the boundaries of different vegetation units are manually
defined using information based on the external aspects
of the landscape, such as elevation or soil type (Zhang
et al. 2008), and this can cause inaccuracy in transition
areas.

Remote sensing techniques offer new ways to map
vegetation, especially for complex and inaccessible
areas (Burai et al. 2015). Today, a broad variety of data
are available from different sensors, e.g., multi-
resolution optical (multispectral and hyper spectral) im-
agery, radar, and LiDAR products. These produce useful
information for mapping natural habitats and their status
(Corbane et al. 2015). The main sensors used for vege-
tation mapping were reviewed by Xie et al. (2008).
Although technological advances have produced inno-
vative remote sensors, including hyper spectral sensors
(Schmidt and Skidmore 2003) and synthetic aperture
radar (SAR) (van Beijma et al. 2014), the multispectral
images from Landsat ETM+ are still among the most
useful platforms for landscape-scale vegetation map-
ping (Cohen and Goward 2004; Hansen and Loveland
2012; Loveland and Dwyer 2012). Digital environmen-
tal data layers (terrain, geology, and soils) were incor-
porated as either ancillary or collateral data in the early
efforts to develop regional vegetation maps from remote
sensing data, and image classification methods have
been well described (Richards and Richards 1999;
Schowengerdt 2006). However, mapping plant commu-
nities through image classification is still limited by
spectral similarities among different communities
(Zhang et al. 2014). Predictive vegetation mapping de-
termines the geographic distribution of vegetation com-
position across a landscape frommapped environmental
variables using different models (Franklin 1995). As
described by Franklin (2010), machine learning model-
ing methods, which are free from distributional assump-
tions (Guisan and Zimmermann 2000), can produce
more realistic results than traditional vegetation map-
ping methods (Sluiter 2005). These new methods in-
clude support vector machines, artificial neural net-
works, and classification trees (Hastie et al. 2009). The
hope is that predictive vegetation mapping will solve

some of the shortcomings of traditional vegetation map-
ping and image classification (Franklin 1995, 2010;
Cawsey et al. 2002; Newell and Leathwick 2005).

Alpine regions are more sensitive to climate change
than warmer climates and there are few refuges for
alpine plants; therefore, vegetation mapping in alpine
areas is essential (Zimmermann and Kienast 1999;Mark
et al. 2000). However, vegetation mapping in alpine
regions is challenging because of the rapidly changing
environmental gradients and variations in micro-
topography that accompany increasing elevation. In al-
pine regions, spatial vegetation patterns are mainly con-
trolled by water and temperature (Zhang et al. 2008),
although solar radiation and wind also influence vege-
tation distribution (Frank 1988). Though climate vari-
ables control the vegetation distribution in alpine re-
gions, climate is influenced by local terrain and can be
hard to measure. Therefore, terrain variables are widely
used as surrogates (Zhang et al. 2008). Compared to
alpine environments in wetter regions, mapping alpine
vegetation in arid areas is even more complicated, be-
cause distributions cover a range of vegetation types
from desert in the lower reaches to glaciers in the upper
reaches. Developing reliable, accurate mapping
methods for such vegetation types is essential, especial-
ly in remote and undeveloped areas (Wang et al. 2003;
Zhao et al. 2006; Cheng et al. 2014).

The Qilian Mountains in northwestern China, which
include the upper reaches of the second longest inland
river in China, the Heihe River, form the ecotone of the
Qinghai–Tibet Plateau, the Loess Plateau, the Central
Asian desert, and the Qaidam desert (Chen et al. 1994).
The region’s vegetation is typical alpine located in an
arid area, and it is an ideal study site for developing an
integrated vegetation mapping method for highly het-
erogeneous vegetation (Zhao et al. 2006; Cheng et al.
2014). Furthermore, vegetation changes in the Qilian
Mountains will significantly affect the water yield of the
Heihe River. This in turn will affect desert ecosystem
stability in Inner Mongolia in the lower reaches and
oases that supply water for large human populations
and maintain environmental stability along the Silk
Road in the middle reaches. There are some existing
reports on land cover and species distribution in the
region (Han 2002; Zhao et al. 2006; Gong et al. 2014).
However, there has been no attempt to develop amethod
for mapping vegetation using multiple data sources for
this complicated landscape and crucial region (Cheng
et al. 2014).
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In this paper, we developed a framework to integrate
multi-temporal satellite data with geographic informa-
tion and ground-based vegetation mapping data to en-
hance the accuracy of vegetation distribution modeling.
The objectives were to determine which spectral and
geospatial predictor variables had a significant relation-
ship with different types of vegetation and enhanced
classification accuracy for vegetation mapping and to
identify a suitable modeling method for arid alpine
vegetation distribution in the upper reaches of the Heihe
River Basin in the Qilian Mountains, northwestern
China.

Methods

Study area and vegetation

The upper reaches of the Heihe River Basin are located
in the middle section of the Qilian Mountains, which
range from 98° 34′ to 101° 11′E and 37° 41′ to 39° 05′N
(Fig. 1) and cover an area of approximately 10,009 km2.
The Qilian Mountains lie to the north of the Qinghai–
Tibet Plateau and to the south of the Hexi Corridor (Silk
Road). Elevation ranges from 1668 to 5062 m (calcu-
lated from ASTER GDEM, http://westdc.westgis.ac.
cn/). The area is a typical arid and semi-arid alpine
region. The mean annual precipitation ranges from 149
to 486 mm. The mean annual temperature ranges from
6.9 to −9.8 °C, with cooler averages at higher elevations
(climate data sourced from WorldClim, http://www.
worldclim.org/). Precipitation decreases from east to
west and increases from north to south in the study
area, but temperature shows the reverse pattern (Zhao
et al. 2005; Qin et al. 2013; Gao et al. 2014).

The most recent vegetation map is the Vegetation
Map of the People’s Republic of China (VMC,
1:1,000,000) (Editorial Committee of Vegetation Map
of China, the Chinese Academy of Sciences 2007). The
map contains 11 vegetation groups, 55 vegetation types,
and 859 vegetation formations and sub-formations. It
was completed in 2007 based on field survey data.
There are vegetation, cultivated vegetation, eight vege-
tation types, and 18 formations in the study area
(Table 1). The lowlands (1600–2400 m) are mainly
desert and the upper regions (2400–2800 m) are steppe,
consisting of Stipa spp., with needle-leaf forest in the
north ranging from 2400 to 3200 m, scrub-meadows
from 3200 to 4000 m, and alpine vegetation, mainly

Saussurea spp., in areas higher than 4000 m. Glaciers
form at the peaks of somemountains. The main land use
is grazing; the forest is protected by the government, and
logging has been forbidden in recent years. Some culti-
vated vegetation is grown near county towns, but culti-
vation covers an area of less than 1 % in this region.

Vegetation and training data

The training and model assessment data were obtained
from multiple sources, including field data collected in
April 2013, July 2013, and September 2014, Heihe eco-
hydrological transect survey data (Feng et al. 2014), and
data published in the literature. These data contained
information on total vegetation cover, plant species cov-
er and abundance, and vegetation height. A total of 1220
vegetation plots were surveyed, of which 1007 were
used for model training and 213 for model assessment.
For every vegetation formation, 51–60 datasets were
used, whereas for every vegetation group, all data in
the formations belonging to the group were used, total-
ing between 51–260 datasets. In this area, there was
only one additional vegetation type classified from the
higher level vegetation groups, and this vegetation type
(Stipa spp.) is difficult to distinguish from others using
remote sensing data, or even by field survey. Therefore,
for vegetation modeling, we only used two units, i.e.,
vegetation group and vegetation formation. The VMC
vegetation map was used for model assessment.

Spectral and geospatial data

ASTERGDEM (30-m grid) was acquired from the Cold
and Arid Regions Science Data Center at http://westdc.
westgis.ac.cn/. Elevation, aspect, and slope were
derived from the ASTER GDEM. These are widely
used terrain variables in vegetation distribution
modeling (Franklin 2010).

Climate data with a 1-km resolution was downloaded
from WorldClim (Hijmans et al. 2005) at http://www.
worldclim.org/and was resampled to a 30 × 30 m grid
cell size using a nearest-neighbor method in ArcGIS
v.10.0 (ESRI, Redlands, CA, USA 2010). The
downloaded data included minimum, maximum, and
average annual temperature and average precipitation.
These data have a proven relationship with vegetation
distribution (Franklin 2010) and are commonly used as
bioclimatic constraints in vegetation models (Sitch et al.
2003).
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Landsat 8 OLI images (part of WRS-2 path 133, row
34; path 133, row 33; path 134, row 31) in summer
(July 2013), autumn (early October 2013), and winter
(January 2014) were acquired from the United States
Geological Survey at http://www.usgs.gov/and
Geospatial Data Cloud at http://www.gscloud.cn/.
Image pre-processing included geographic correction,
radiometric correction, FLASSH atmosphere correction,
and image subset mosaicking in ENVI v.5.1 (Exelis
VIS, Boulder, CO, USA 2013).

The spectral response of vegetated areas represents a
complex mixture of vegetation, soil brightness, environ-
mental effects, shadow, soil color, and moisture
(Bannari et al. 1995). Preliminary studies have shown
that spectral vegetation indices (SVIs) are more sensi-
tive to vegetation type and phenology than individual
spectral bands (Bannari et al. 1995). SVIs are widely
used to discriminate vegetation type and land cover and
are at the heart of ecological applications of remote
sensing (Cohen and Goward 2004). SVIs are beneficial
in landscape classification and deriving continuous es-
timates of vegetation biophysical characteristics. The
most widely used SVI is the normalized difference
vegetation index (NDVI) (Price et al. 2002; Cohen and
Goward 2004). Various SVIs have been tested to find

the best index for vegetation discrimination (Table 2).
The soil-adjusted vegetation index (SAVI) combines
soil and vegetation reflectance. Different vegetation
types have different reflectance ratios for SAVI calcula-
tion. We used fixed adjustment factors of 1.16 and 1.5 in
SAVI (Huete 1988) and in the optimized soil-adjusted
vegetation index (OSAVI) (Rondeaux et al. 1996).

For simplicity, we refer to Landsat8 OLI land surface
albedos (LSA) and spectral vegetation indices (SVIs) as
spectral variables and others as geospatial variables.
There were seven geospatial variables and 63 spectral
variables (seven SLAs and 14 SVIs for summer, au-
tumn, and winter). All of the grid data (70 variables)
were resampled to the OLI pixel size because this was
the principal data source for discerningmajor vegetation
units. Different variable combinations were used when
decision tree (DT) and random forest (RF) classifica-
tions were derived (Table 3). Variable combinations 1–8
contained either one type of geospatial or seasonal spec-
tral variable, combination 9 contained geospatial vari-
ables, combinations 10–15 contained geospatial vari-
ables with one additional set of either SLAs or SVIs in
the same season, combinations 16–18 contained
geospatial variables with one additional seasonal SLAs
and SVIs, and combination 19 used all of the variables.

Fig. 1 The location and DEM of the upper reach of Heihe
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Vegetation distribution models

Decision tree (DT), random forest (RF), and maximum
likelihood classification (MLC) models were used to
model vegetation distribution. The DT model has a
visual structure and uses classification and regression
tree algorithms (Hastie et al. 2009) to generate classifi-
cation rules. Different DTs have different classification
rules. We used a DT with five layers, in which the
smallest parent node had 40 samples and the smallest
child node had 10 samples.

RF is an ensemble method and a black box model
and has been applied successfully in a number of eco-
logical land cover studies (Cutler et al. 2007; Corcoran
et al. 2013). The RF algorithm improves classification
accuracy considerably, as well as being largely insensi-
tive to noisy data sets (Gislason et al. 2006). RF can also
produce estimates of variable importance, providing
quantitative analysis of variable contributions
(Gislason et al. 2006; Corcoran et al. 2013). The RF

models were generated using the default settings in
EnMAPBox, with 100 trees, and a Gini coefficient
was used for the node impurity function (van der
Linden et al. 2015). The values of each variable and
classification precision for each model were calculated.

MLC is a widely used supervised classificationmeth-
od and one of the best methods for many classification
problems (Franklin 2010; Burai et al. 2015). The algo-
rithm is based on a Gaussian probability density func-
tion model and each pixel is allocated to the class with
the highest probability. The number of training samples
must be larger than the number of variables in MLC;
therefore, only variable combinations 1–5, 9–12, and 19
were used.

Predicted vegetation maps were generated for DT
and RF using 19 variable combinations, and for MLC
using ten variable combinations, resulting in 48 maps.
The DT and RF model results contained variable
importance, indicating which variables were important
for vegetation discrimination.

Table 1 Classification units of the vegetation of China

Vegetation groups Vegetation types Formations (sub-formations)

1. Needle-leaf forest (1) Cold-temperate and temperate mountains needle-leaf forest (1) Picea crassifolia forest

2. Scrub (2) Subalpine broadleaf deciduous scrub (2) Salix gilashania scrub

2. Scrub (2) Subalpine broadleaf deciduous scrub (3) Salix oritrepha scrub

2. Scrub (2) Subalpine broadleaf deciduous scrub (4) Salix oritrepha,Dasiphora fruticosa scrub

2. Scrub (2) Subalpine broadleaf deciduous scrub (5) Dasiphora fruticosa scrub

3. Desert (3) Temperate semi-shrubby and dwarf semi-shrubby desert (6) Sympegma regelii desert

4. Steppe (4) Temperate needle-grass arid steppe (7) Stipa krylovii steppe

4. Steppe (4) Temperate needle-grass arid steppe (8) Stipa penicillata steppe

4. Steppe (4) Temperate needle-grass arid steppe (9) Stipa breviflora, S. bungeana steppe

4. Steppe (5) Alpine grass, Carex steppe (10) Stipa purpurea alpine steppe

5. Meadow (6) Alpine Kobresia spp., forb meadow (11) Kobresia pygmaea alpine meadow

5. Meadow (6) Alpine Kobresia spp., forb meadow (12) Kobresia humilis alpine meadow

5. Meadow (6) Alpine Kobresia spp., forb meadow (13) Kobresia filifolia alpine meadow

5. Meadow (6) Alpine Kobresia spp., forb meadow (14) Kobresia schoenoides, Carex spp.
swamp alpine meadow

5. Meadow (6) Alpine Kobresia spp., forb meadow (15) Elymus nutans, Roegneria nutans
alpine meadow

6. Alpine vegetation (7) Alpine sparse vegetation (16) Saussurea medusa, Saussurea spp.
sparse vegetation

6. Alpine vegetation (7) Alpine sparse vegetation (17) Saussurea spp., Rhodiola rosea,
Cremanthodium spp. sparse vegetation

7. Culture vegetation (8) One crop annually short growing period cold-resistant crops (18) Spring barley, spring wheat, potatoes,
turnip, pea, rapessed

8. Land without vegetation (9) Land without vegetation (19) Glaciers and snow limit
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Model assessment

The remaining 213 field data points that were not used
in the training process and the VMCwere used to assess
the overall accuracy and kappa coefficient of the
models. For the kappa coefficient, Landis and Koch
(1977) defined values from 0.7 to 1.0 as indicating very
good-to-perfect agreement, 0.55–0.70 for good-to-very
good agreement, 0.40–0.55 for fair-to-good agreement,
0.2–0.4 for poor-to-fair agreement, and 0.0–0.20 for no-
to-poor agreement.

Results

Vegetation modeling and accuracy assessment

None of the models accurately discriminated vegetation
distribution at the vegetation formation level, with over-
all accuracy and a kappa coefficient of <40 % and 0.2,
respectively.

Vegetation distribution was clearly discriminated at
the vegetation group level. The accuracy and kappa
coefficients of the maps generated by complex variable
combinations (9–19) were better than with simple

variable combinations (1–8) in all of the models
(Tables 4 and 5). In the simple variable combinations
(1–8), topography had the best accuracy and kappa
coefficient results.When assessed using field point data,
the RF model with variable combination 13 gave the
best result: the overall accuracy was 75 % and the kappa
coefficient was 0.64. The bestMLCmodel used variable
combination 12with an overall accuracy of 67.86% and
a kappa coefficient of 0.52. The best DT model used
variable combination 8 with an accuracy of 68.75 % and
a kappa coefficient of 0.55. When assessed using the
vegetation map, variable combinations 9–19 were better
than variable combinations 1–8 in all of the models. The
RFmodel that used either variable combination 15 or 19
had the highest overall accuracies at >65%with a kappa
value of 0.52. The best MLC model used combination
19 and had similar results with an overall accuracy of
63.84 % and a kappa coefficient of 0.51. The best DT
model used variable combination 18 and had an accu-
racy of 57.31 % and a kappa coefficient of 0.47 (Fig. 2).

Compared with the assessment using field point data,
the assessment of the models against the vegetation map
showed low overall accuracy and kappa coefficients.
Using the same variable combinations, the different
models had similar performances assessed against the

Table 2 The vegetation index

Index Abbreviation Formula Author and year

Ratio vegetation index RVI NIR/Red Pearson and Miller 1972

Brightness index BI 0.2909Blue+ 0.2493Green+ 0.4806Red
+ 0.5568NIR+ 0.4438SWIR1+ 0.1706SWIR2

Crist et al. 1986

Green vegetation index GI −0.2728Blue-0.2174Green
-0.5508Red + 0.7221NIR
+ 0.0733SWIR1-0.1648SWIR2

Crist et al. 1986

Wetness index WI 0.1446Blue + 0.1761Green + 0.3322Red
+ 0.3396NIR-0.6210SWIR1-0.4186SWIR2

Crist et al. 1986

Differenced vegetation index DVI NIR-Red Clever 1986

Green ratio GR NIR/Green Price et al. 2002

MIR ratio MR NIR/SWIR1 Price et al. 2002

Soil-adjusted vegetation index SAVI (1.5(NIR-Red))/((NIR + Red + 0.5)) Huete 1988

Optimization of soil-adjusted vegetation index OSAVI (1.16(NIR-Red))/((NIR + Red + 0.16)) Rondeaux et al. 1996

Atmospherically resistant vegetation index ARVI (NIR-(2*Red-Blue))/(NIR+(2*Red-Blue)) Kaufman and Tanre 1992

Normalized difference vegetation index NDVI (NIR-Red)/(NIR + Red) Rouse et al. 1974

Enhanced vegetation index EVI 2.5[(NIR-Red)/(NIR + 6*Red-7.5Blue + 1)] Huete et al. 2002

Normalized difference tillage index NDTI (SWIR1-SWIR2)/(SWIR1 + SWIR2) van Deventer et al. 1997

Normalized difference senescent
vegetation index

NDSVI (SWIR1-Red)/(SWIR1 +Red) Marsett et al. 2006
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field point data; however, DT had a significantly lower
predictive power than RF and MLC when assessed
against the vegetation map.

Significant variables

Elevation was the most important of the 70 variables in
both the DT and RF models (Table 6). Maximum tem-
perature was the second most important, followed by a
number of other WorldClim variables, especially in the
RF models. Slope was important in RF but not in DT
(Table 6). The spectral variables of summer and autumn
were highly important in DT, but in RF some winter
SVIs were important. Summer and autumn SAVI,
OSAVI, NDVI, and GI were important SVIs in DT,
while winter BI was important in RF. SLAs showed a
medium level of importance.

Discussion

We aimed to develop a framework to integrate widely
available multi-temporal satellite data with geographic
information and ground-based vegetation data to en-
hance the accuracy of vegetation distribution modeling
in arid alpine landscapes. ASTER GDEM, WorldClim
data, and Landsat images are commonly used in vege-
tation and species distribution models (Sesnie et al.
2008; Franklin 2010). Although other data, such as
geology, soil, radiation, and high spectral and spatial
resolution remote sensing images, are also effective for

vegetation mapping, these data are not easily available
for some regions. The data used in this research are
easily obtainable for most parts of the world, including
alpine regions for which field data are lacking.

Factors affecting vegetation classification levels

Vegetation classification is a fundamental issue in ecol-
ogy, and most classification schemes have two or more
classification levels. For global or large areas, a hierar-
chical classification scheme is usually applied (Faber-
Langendoen et al. 2014). In the VMC, the highest
classification levels (vegetation groups and vegetation
types) mainly stem from the appearance of communities
and climate, the middle classification level (vegetation
formations) stems from dominant species, while the
lowest level (associations) stems from community struc-
ture and the dominant species in each synusia. For
climate and hydrology models, vegetation groups are
suitable for use as land surface types, but for biological
conservation and resource utilization studies, especially
for rare species, the lower levels of classification are
needed (Newell and Leathwick 2005). In vegetation
distribution modeling, the level of discrimination de-
pends on the input variables. Terrain and climate vari-
ables indicate the vegetation environment, while spec-
tral variables reflect land surface objects. The input
variables can discriminate vegetation when there are
significant differences (Price et al. 2002; Franklin
2010). When the input variables can distinguish most
types in a classification level, this is called the

Table 3 Variable combinations

Variables Variable combinations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Geospatial variables

Topography variables ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Climate variables ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Spectral variables

Summer LSAs ✓ ✓ ✓ ✓

Autumn LSAs ✓ ✓ ✓ ✓

Winter LSAs ✓ ✓ ✓ ✓

Summer SVIs ✓ ✓ ✓ ✓

Autumn SVIs ✓ ✓ ✓ ✓

Winter SVIs ✓ ✓ ✓ ✓

LSA stands for land surface albedo, SVI stands for spectral vegetation index
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distinguishable level. In this study, the distinguishable
level was vegetation group.

In alpine regions, although climate varies consider-
ably, some vegetation formations have a similar habitat
and appearance (Wang et al. 2003). They lack signifi-
cant differences in spectral features, which make them
difficult to distinguish. For example, the dominant spe-
cies found in steppe and meadow formations are mainly
Kobresia spp. and Stipa spp. These are hard to distin-
guish even in the field and often grow together, espe-
cially in this ecotone (Editorial Committee of Vegetation
Map of China and the Chinese Academy of Sciences
2007). At elevations from 2700 to 3400 m, there is a
large transition zone for steppe and meadow, with parts
of the steppe distributed up to 4000–5000 m (mainly
Stipa purpurea in the alpine steppe). Generally, steppe is
a relatively xeromorphic habitat, while meadow is me-
somorphic; however, both are common in this ecotone
(Wang et al. 2003; Editorial Committee of Vegetation
Map of China and, Chinese Academy of Sciences
2007). Similarly, scrub is mainly distributed from 3200

to 3800 m, and meadows are also found at these eleva-
tions. In this study, Salix gilashania was 1 to 2 m in
height, but Dasiphora fruticosa was <0.5 m, making it
hard to distinguish frommeadow vegetation by its spec-
tral features. Distinguishing forest is easy in alpine
regions because there are only a few forest types (Zhao
et al. 2006; Han 2002).

Phenology is important for vegetation discrimination,
especially forest vegetation. There is a higher accuracy
when distinguishing between broad-leaved and needle-
leaved forest, although identifying species within each
forest type is difficult because they often have similar
spectral reflectance curves (Gao et al. 2015). In Kansas,
different Landsat band combinations and vegetation in-
dices could distinguish six grassland types because the
grasses in this region have different phenologies (Price
et al. 2002).When using satellite images, naturally mixed
pixels always create problems with identifying vegeta-
tion and to some extent reduce the accuracy of classifi-
cations because of spectral confusion (Domaç and Süzen
2006). Different resolutions can also lead to problems

Table 4 Model assessment by filed data

Variable
combination

Decision tree Random forest Maximum likelihood classification

Overall accuracy
(%)

Kappa
coefficient

Overall accuracy
(%)

Kappa
coefficient

Overall accuracy
(%)

Kappa
coefficient

1 54.91 0.39 63.39 0.50 63.39 0.50

2 37.95 0.25 52.68 0.37 47.77 0.33

3 54.91 0.34 54.46 0.37 37.05 0.25

4 50.89 0.34 52.23 0.37 41.52 0.28

5 50.00 0.35 58.93 0.46 59.82 0.47

6 49.11 0.29 57.14 0.41

7 60.27 0.43 54.46 0.40

8 68.75* 0.55* 60.27 0.47

9 54.46 0.38 68.30 0.56 62.50 0.48

10 57.14 0.42 72.77 0.62 61.61 0.49

11 64.73 0.50 63.84 0.50 62.95 0.49

12 61.61 0.48 70.09 0.59 67.86* 0.56*

13 59.82 0.45 75.00* 0.64*

14 57.59 0.42 66.52 0.53

15 59.38 0.45 73.21 0.62

16 59.82 0.45 71.88 0.61

17 57.59 0.42 60.27 0.45

18 59.38 0.45 71.43 0.60

19 59.82 0.46 70.98 0.59 66.07 0.52

Data with * were the best results. Variable combinations were shown in Table 3
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because some pixel sizes are too coarse to detect narrow
gullies (van Beijma et al. 2014). In our study, all alpine
vegetation had a short growing season over a similar time
period and phenology, and the WorldClim data was at a
1-km resolution, both of which resulted in classification
errors for several vegetation types.

Different remote sensing sensors may overcome
these issues. For example, hyper spectral data contains
many narrow, contiguous spectral bands, while SAR is
relatively unaffected by atmospheric effects. Both are
promising for future vegetation classification (Corbane
et al. 2015; Landmann et al. 2015), and integrating
hyper spectral and SAR data may provide opportunities
for a more comprehensive understanding of land cover
and change. However, those new methods are under
development and are mostly used on airborne platforms.
Their images tend to cover smaller areas than coarser
resolution sensors. For example, the hyper spectral sat-
ellite, Hyperion, has an image width of 7.5 km, which is
not suitable for large area vegetation mapping. There-
fore, although they have the advantage of being able to

discriminate between vegetation species, their airborne
platform sensors and lack of repeat coverage currently
limit their use in landscape-scale vegetation mapping
and monitoring (van Beijma et al. 2014).

The importance of variables in modeling

Elevation is the most important variable for vegetation
mapping in alpine regions, especially in mountains
where there are large elevation variances (Dirnbock
et al. 2003; Dobrowski et al. 2008; Sesnie et al. 2008).
Elevation is also an important factor in species distribu-
tion models (Oke and Thompson 2015). In the Qilian
Mountains, the elevation range is >3000 m. The
WorldClim climate variables are highly correlated with
elevation and in some regions may not contain much
more additional information than elevation (Sesnie et al.
2008). However, we found that theWorldClim variables
were important in both the DT and RF models. In DT,
many mid-level nodes were WorldClim variables, espe-
cially maximum temperature and annual precipitation.

Table 5 Model assessment by vegetation map

Variable
combination

Decision tree Random forest Maximum likelihood classification

Overall accuracy
(%)

Kappa
coefficient

Overall accuracy
(%)

Kappa
coefficient

Overall accuracy
(%)

Kappa
coefficient

1 39.85 0.20 41.80 0.23 43.29 0.24

2 29.30 0.14 41.87 0.23 11.89 0.00

3 15.27 −0.02 4.98 0.00 0.08 0.00

4 3.15 0.00 3.22 0.00 15.42 0.00

5 3.28 0.00 2.70 0.00 0.17 0.00

6 40.92 0.24 46.93 0.31

7 47.11 0.29 45.91 0.31

8 49.76 0.34 51.76 0.38

9 42.53 0.20 62.66 0.48 62.37 0.50

10 37.24 −0.02 63.80 0.51 59.89 0.47

11 38.28 −0.02 63.09 0.49 60.38 0.47

12 38.04 −0.02 63.73 0.50 63.18 0.51

13 57.61 0.42 64.28 0.51

14 56.33 0.40 64.50 0.51

15 57.31 0.42 65.60* 0.52*

16 57.61* 0.42 64.72 0.52

17 38.12 −0.02 63.98 0.50

18 57.31 0.47* 64.83 0.52

19 38.11 −0.02 65.42 0.52 63.84* 0.51*

Data with * were the best results. Variable combinations were shown in Table 3
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The separation of desert from other zones depended on
precipitation being <221 mm, while the separation of
alpine vegetation from other vegetation occurred at tem-
peratures below 2 °C. In this research, slope also had a

high importance value and may influence the distribu-
tion of some vegetation.

SVIs were combinations of LSAs, and contained
more information than single LSAs (Bannari et al.

Fig. 2 The modeling vegetation map with highest accuracy by
decision tree model (a), random forest model (b), maximum
likelihood classification (c), and the Vegetation Map of the

People’s Republic of China in the upper reach of Heihe (d). The
legend represents vegetation groups shown in Table 1

Table 6 Top ten most important variables

Decision tree model variables Standardized importance (%) Random forest model variables Normalized importance

Elevation 100.0 Elevation 1.37

Maximum - temperature 81.0 Maximum - temperature 1.19

Autumn - SAVI 75.0 Slope 1.08

Autumn - OSAVI 75.0 Precipitation 1.06

Autumn - NDVI 75.0 Minimum - temperature 0.95

Autumn - NDTI 74.2 Mean - temperature 0.93

Summer - GI 73.5 Summer - WI 0.82

Summer - DVI 72.8 Summer - MR 0.76

Mean - temperature 69.7 Summer - LSA7 0.74

Summer - SAVI 69.0 Winter - BI 0.73

The abbreviations were shown in Tables 2 and 3
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1995). SVIs had higher important values than LSAs or
raw bands in our study and other studies (Price et al.
2002; Sesnie et al. 2008). For the DT model, summer
and autumn spectral variables were more important than
winter ones, because summer and autumn images con-
tain more information in alpine regions. In the winter
false color image, forest differed significantly from oth-
er vegetation and some shrub vegetation also could be
distinguished, but other vegetation showed no visual
difference. In the summer and autumn false color im-
ages, forest, scrub, desert, alpine vegetation, and cultural
vegetation showed visual differences, but the steppe and
meadow were not distinguishable from each other. In
the RF model, seasonal differences were not significant,
because RF is an ensemble method (Cutler et al. 2007)
that reduces the difference between spectral variables.
BI, GI, and WI were combinations of all TM bands and
they contained more information than the SVIs, which
contained only two bands. NDVI, SAVI, and DVI were
important in the DT. These are combinations of near
infrared and red bands, which reflect important infor-
mation on vegetation, because visible radiation in the
red wavelengths (630–690 nm) is absorbed by chloro-
phyll while radiation in the near infrared (760–900 nm)
is strongly reflected by leaf cellular structures (Bannari
et al. 1995). To compare the importance of individual
variables for each season and group seasonal variables
in RF assessed by filed data, the model had >50 %
accuracy and kappa coefficient >0.37 when group sea-
sonal variables were used; the model had <35 %

accuracy and kappa coefficient <0.2 when an individual
variable was used.

The performance of different models

The modeled vegetation maps show that multi-source
geospatial and spectral variables successfully mapped
vegetation groups. Previous research has found that the
RF model performs better when modeling vegetation
distribution compared with other methods (Sluiter
2005). In this research, RF performed better than MLC
and DT. RF was more stable with an increase in vari-
ables, while MLC was limited by the input variable
numbers. DT produced low accuracy prediction maps
when the training points were limited, but because DT
had a visual structure, it was useful in extracting classi-
fication rules. In this research, elevation was the first
node, while summer and autumn SVIs were used at the
lowest levels of classification, so that it was clear how
the classification was carried out (Fig. 3). The main
vegetation groups that were confused were scrub,
steppe, and meadow. Steppe and meadow cover a large
transition region, while scrub is also scattered among the
meadow vegetation communities. Meadow and alpine
vegetation, steppe, and desert ecotones might change in
different years, which may contribute to low accuracy in
the model results. Furthermore, the Chinese vegetation
map is an ecological classification scheme, and not a
remote sensing classification one, so some vegetation
had similar spectral characteristics (Ouyang et al. 2015),

Ele<4100

yes no

MaxT<184.5 A-MR<7.03

Slo<7.82 Pre<220

Ele<3751 S-WI<-141.51

A-BI<3115.22 S-B3<378

5 3

4

1 7

6 8

2 4

5

Fig. 3 The structure of the
decision tree model using variable
combine 19 shown in Table 3.
The numbers represent vegetation
groups in Table 1. Ele represents
elevation, Slo represents slope,
MaxT represents maximum
annual temperature, and Pre
represents average precipitation,
A-BI represents autumn
brightness index, A-MR
represents autumn MIR ratio, S-
WI represents summer wetness
index, and S-3 represents summer
land surface albedo for green
band
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which increased the discrepancy between the modeled
and existing vegetation maps.

Compared with other studies using similar variables
and similar size study areas, our results had similar
accuracy using both point and map assessment, with
the point accuracy being higher than the map accuracy.
Vegetation mappers in the Sierra Nevada obtained their
best result using DT models with an overall accuracy of
75 % and kappa coefficient of 0.69 using point assess-
ment (Dobrowski et al. 2008). In Costa Rica and Nica-
ragua, the overall accuracy was 81 % using point as-
sessment (Sesnie et al. 2008), while in Svalbard, Nor-
way, an overall accuracy of 55.36 % and a kappa coef-
ficient of 0.48 were obtained using a conventional veg-
etation map assessment (Johansen et al. 2012). In this
study, assessment points were taken from either field
surveys or visual interpretation, and we are confident of
their accuracy. Compared with conventional vegetation
maps, the transition zone and natural mixed pixels al-
ways result in lower accuracy (Domaç and Süzen 2006);
therefore, mapping accuracy is lower than it is with
point assessment. This suggests that point assessment
is the best choice for areas without conventional vege-
tation mapping but may not be useful over wide areas.
However, while conventional vegetation map assess-
ment may be less accurate than point assessment, these
maps are useful for understanding the modeled vegeta-
tion distribution trend. A combination of conventional
vegetation map assessment and point assessment is rec-
ommended for accurate assessment when both types of
data are available. In this study, the vegetation group
map predicted by the best RF model and the VMC map
had similar distributions. However, there were some
differences, e.g., boundary for meadow vegetation, and
false classification for vegetation in specific areas, e.g.,
vegetation close to riversides were classified as desert at
low elevations and alpine sparse vegetation at high
elevations; however, in the VMC, they were classified
into nearby vegetation groups because they had similar
species compositions. Although there were some differ-
ences, the results were acceptable based on the accuracy
and kappa coefficient values.

Conclusion

The combination of ASTER GDEM, WorldClim, and
multi-season Landsat-8 OLI data can be used to dis-
criminate alpine vegetation at relatively coarse

vegetation classification levels, i.e., vegetation groups
in the Qilian Mountains in an arid area of northwestern
China. However, the data failed to classify vegetation
into more detailed classes, i.e., vegetation formation.
Among the 70 variables used for modeling, elevation
was the most important. The RF model classified vege-
tation more accurately than the MLC and DT models.
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