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Abstract Land use change can greatly alter spatial
pattern and overall ecosystem service values (ESV).
The goal of this study was to explore the likely effects
of land use change on ESV in China. In this paper, the
spatially explicit land use changes across China from
2010 to 2020 under the 2000s trend scenario and the
planning scenario were projected using the Dyna-CLUE
model. The ESV evaluation method was improved by
adjusting the ESV coefficients using biomass data to
reduce the generalization error of proxy-based method.
The results revealed that between 2010 and 2020, total
ESVincreased by 1798 and 2215 billion RMB a−1 under
the 2000s trend scenario and the planning scenario,
respectively. The spatial pattern of ESV in 2010 and
2020 presented a logical geographic distribution. The
areas with ESV of 50,000 RMB ha−1 a−1 and higher
occurred primarily in northeastern and southern China,
while the areas with ESV of 5000 RMB ha−1 a−1 and
lower were mainly located in northwestern China. The
spatial differences between the two scenarios were in-
significant except that the increase of ESV in southwest-
ern China was more prominent in the planning scenario
than that in the 2000s trend scenario, while the total

ESV in 2020 under the planning scenario was larger
than that in the 2000s trend scenario. The increase of
ESV occurred mainly in northeastern, southern, and
southeastern China due to forest growth and woodland
expansion in 2020 compared with 2010. The results of
this study can provide useful information for the public
and land managers to consider.

Keywords Spatial modeling . Ecosystem service
values . Land use change . China

Introduction

Land use change is important to environmental manage-
ment due to its influence on ecosystem services, climate
change, and biodiversity (Foley et al. 2005; Newbold
et al. 2015; Su et al. 2012). In fast-growing developing
countries, such as China, the rapidly changing land use
became increasingly dramatic. Therefore, sustainable
trajectories of land use change are of great importance.
Understanding the potential impacts of land use changes
on ecosystem service values (ESV) may provide infor-
mation for improving ecosystem services and functions
of landscape (Wu et al. 2015). The effects of land use
change on ecological environment and the value of
ecosystem services have attracted the interest of many
ecologists and geographers (Baral et al. 2014; Costanza
et al. 2014; Fürst et al. 2013; Lawler et al. 2014; Li and
Wu 2013; Song et al. 2015; Su et al. 2012).

In general, the methods to estimate ecosystem service
values can be broadly divided into two groups: the first
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is primary data-based method, which is based on prima-
ry data from within the study region, and the other is
proxy-based method (Eigenbrod et al. 2010). The
proxy-based method has been widely used, which views
land use type as a proxy of ecosystem services, and the
variation of ecosystem service values is estimated by
analyzing the changes in land use structure. Studies of
this category have usually been carried out from the
perspective of land use change and its effect on ecosys-
tem services. Many researchers have investigated the
ESVs of different ecosystems (TEEB 2010; Bateman
et al. 2013). Costanza first classified the biosphere into
16 ecosystems and evaluated ESVs for 17 ecosystem
service function types (Contanza et al. 1997). Costanza
et al. (2014) revised the value according to their previ-
ous study and other related studies. Xie et al. (2008)
evaluated the value coefficient of Chinese ecosystem by
surveying 700 Chinese ecologists. The coefficients
mentioned above have been widely used to assess eco-
system service values of different ecosystems. However,
the proxy-based method is criticized for some reasons.
The main problem is that it ignores spatial heterogeneity
that may exert influence on the process of ecosystem
changes, and the ESVs can be different within the same
land use type due to variation of physical environment.
Moreover, the ESV coefficients may change with time,
which has not been considered in many studies. The
primary data-based methods directly assess the ESVs
using the primary data from within the study region. It
can be subdivided further into maps based on represen-
tative sampling across the study region and into
modeled surfaces based on primary data (Eigenbrod
et al. 2010). The calculation process is relatively com-
plicated, and somemodels have been developed, such as
InVEST, MIMES, ARIES, SoLVES model, etc. The
running of these models usually involves many input
datasets and numerous parameters. Perhaps the greatest
obstacle use the primary data-based method is insuffi-
ciency of data for most of the studies, especially for
large scale studies, such as those at the national or global
scale. Therefore, the primary data-based method is
widely used in research at smaller areas or in research
that identifies hotspots for ecosystem services (Andrew
et al. 2014; Martínez-Harms and Balvanera 2012;
Swetnam et al. 2011; Syswerda and Robertson 2014).
It can be concluded that the advantage of primary data-
based method is high accuracy and the disadvantage the
complexity, while the proxy-based method (value trans-
fer method) is relatively easier to operate but the

accuracy is usually a challenge. In addition, in some
cases, land use changes may increase some ecosystem
services but at the expense of others (Lawler et al. 2014).
For example, the increase in woodland could lead to
increase in timber production and species conservation,
but decrease in food production. Such tradeoff can make
it difficult to provide policy advice. Pricing the ecosys-
tem services would allow the comparison of value
changes of each ecosystem service in a common mon-
etary metric.

Few studies are available to investigate ESV varia-
tions from land use change across China. Particularly,
analysis of spatial difference of ESV changes due to
land use change across the whole China is still lacking
(Wang et al. 2014). Wang et al. (2014) examined the
impact of land use change from the 1980s to 2010 on the
ESVs, compared the spatial differences, and optimized
land use structure to maximize the total ESVs in 2020.
Their results were very useful for land managers.
Unfortunately, they failed to estimate the spatial pattern
of land use change and ESVs in the future, which may
provide useful information for land use planning and the
enhancement of ESVs. The CLUE model, a dynamic
model to simulate the spatial pattern of land use change,
has been successfully used across countries and even
continents (Jiang et al. 2015; Verburg and Overmars
2009; Zheng et al. 2015). It helps explore future land
use patterns. Finally, the spatial heterogeneity of ESV
changes can be examined based on the simulated land
use pattern and ecosystem valuation approach. In this
study, we attempt to explore potential impacts of land
use change on ESVs. Specifically, the purposes of our
study are to (1) predict spatially explicit land use chang-
es across China using Dyna-CLUE model, (2) develop
an improved method for estimating ESVs based on
value transfer method, and (3) simulate how ESVs
change under different land use scenarios.

Study area and data sources

Study area

The territory of China is situated approximately between
18°N and 54°N, and 73°E and 135°E, covering 34
provinces and encompassing an area of approximately
9,600,000 km2. The plateau and mountainous regions
account for about 60 % of the total land area, while
plains account for one fifth, and the rest consists of
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basins and hills. The climate is dominated by a conti-
nental monsoon climate. Seasonal changes and annual
variability of temperature and precipitation are signifi-
cant in most regions of China, which are major factors in
the formation of complex and diverse climate as well as
topography (Chi et al. 2015).

Data sources

Our study includes land use data, forest inventory data,
climatic and demographic data, socioeconomic data,
natural reserve distribution data, development policy
data, and ecosystem services value coefficients.

Land use maps of China for 2000, 2005, and 2010
were provided by the Institute of Remote Sensing and
Digital Earth, Chinese Academy of Sciences (Liu et al.
2003). Land use data types were classified into six
categories: cropland, grassland, woodland, water area,
built-up land, and unused land (Table 1). The grid size of
land use data was resampled to 2×2 km (4 km2) in this
study.

Land use development policy data were provided by
the Chinese government (National General Land Use
Planning Outline 2008). The market price of agricultural
production was obtained from China’s statistical year-
book, the food production data from cropland for each
province from China’s agricultural statistics yearbook,
and the forest age data around 2010 from the China’s
national forest inventory database during 2009–2013.
The province-specific biomass densities for woodland,
cropland, grassland were obtained from published liter-
ature (Fang et al. 1996, 1998; Piao et al. 2007, 2009).
The physical and socioeconomic datasets used as

driving factors for land use location, including eleva-
tion, slope, soil texture, temperature, precipitation, traf-
fic, population, gross regional domestic product, and so
on have been collected in one of our previous studies
(Sun et al. 2015), and here, the datasets were directly
used. The natural reserve data were collected by our
previous study (Fan et al. 2013).

Methodology

Spatially explicit land use change modeling

The changes in national land use claims mentioned
above are spatially allocated using the Dyna-CLUE
model based on dynamic simulation of competition
between land uses (Verburg and Overmars 2009).
Spatial allocation rules can be specified based on em-
pirical analysis, user-specified decision rules, and neigh-
borhood characteristics. A detailed description of the
Dyna-CLUE model is given by Verburg and Overmars
(2009). The actual allocation accounts for constraints
defined by the model user based on the processes and
constraints relevant to the scenarios and characteristics
of land use types (Verburg and Overmars 2009). The
settings and data inputs can be classified into four cate-
gories: (1) land use requirements, (2) location suitability,
(3) conversion rules, and (4) spatial policies and
restrictions.

Land use requirement

Two scenarios of land use change at the national level
from 2010 to 2020 are developed in this study: the
2000s trend scenario is developed based on the extrap-
olation of land use trends from 2000 to 2010; and the
planning scenario is projected using land use-related
policy objectives. In the planning scenario, spatial pat-
terns of land use change are simulated based on the
national development targets of each land use type
adopted by the sector administration of the Chinese
Government (National General Land Use Planning
Outline 2008). Land use requirements for each land
use type under the two scenarios are shown in Table 2.

Location suitability

Location suitability is a major determinant of the com-
petitive advantage of different land use types at a

Table 1 Description of land use types

Type of land
use

Descriptions

Cropland Irrigated and non-irrigated cropland

Grassland Natural and man-made grassland with a ground-
coverage higher than 5 %

Woodland Woodland arbor, shrubbery, bamboo, and orchard

Water area River, lake, reservoirs, water facilities, shallows,
and wetland.

Built-up land Land for cities and town, industrial, transportation,
and residential quarters in rural areas

Unused land Desert, gobi, bare ground, bare rock, sandy land,
and other unused lands
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specific location (Verburg and Overmars 2009). Logistic
stepwise regression was used to quantify location pref-
erences of different land use types based on the relation
between the occurrence of a land use type and physical
and socioeconomic conditions (driving factors) of the
location. The logistic regression uses land use type as
dependent variable and land use driving factors as inde-
pendent variable. In this study, the driving factors in-
clude demographic, soil-related, traffic, geomorpholo-
gic, and climatic variables. The factors are selected
based on expert experience and literature review. Two
categories of driving factors are distinguished in this
study. The first type of driving factors are supposed to
remain constant from 2005 to 2020 (e.g., altitude, slope,
and soil texture), while the second type of changes (e.g.,
main road distribution, railway distribution, and popu-
lation) will change in the future, namely dynamic driv-
ing factors. The traffic data sets in 2010 and 2020 were
taken from the mid- and long-term engineering system
planning map of China. The population data sets in the
future were derived with the surface modeling of popu-
lation distribution method (Yue et al. 2005a, b).

Land use type specific conversion rules

Since land use types have distinctive features that cause
differences in conversion behavior, each land use type is
characterized with a set of conversion rules and conver-
sion elasticity indices. In this study, the parameterization
of the conversion rules and conversion elasticity for
each land use types are calibrated based upon a combi-
nation of experts’ judgment and knowledge of specific
conversion processes. Built-up land is allowed to be
converted to cultivated land, and cultivated land to
built-up land, grassland, and forest. The conversion
from built-up land to forest and grassland is not allowed.
The grassland is allowed to be converted to built-up land
and cultivated land outside the natural reserve. The
forest outside the natural reserve is allowed to be con-
verted to built-up land, cultivated land, and grassland.
The conversion elasticity implies the reversibility of
land use change, which ensures the influence of current

land use pattern on the future pattern (McConnell et al.
2004). The value of the conversion elasticity ranges
from 0 (easy conversion) to 1 (irreversible change). In
this study, the conversion elasticity values for built-up
land, cultivated land, grassland, forest, water area, and
others are set to be 1, 0.7, 0.6, 0.9, 1, and 0.3,
respectively.

Spatial policies and restrictions

Spatial policies restrict certain land use change in des-
ignated areas. In this study, the conversion from grass-
land, shrub, and forest to built-up and cultivated land is
not allowed within the natural reserve areas, suggesting
that people cannot disturb the ecosystem in nature pres-
ervation zones.

After setting the parameters of the Dyna-CLUE
model, the probability for each grid cell was calcu-
lated based on location suitability, conversion rules,
and conversion elasticity. An iterative procedure was
performed until total allocated area of each land use
type equaled total land demands specified in the
scenarios. Validation of the Dyna-CLUE model was
performed. Setting 2000 as the initial year, with his-
torical areas of 2000, 2005, and 2010 for each land
use type, the land use pattern of 2010 was simulated
by the Dyna-CLUE using the parameters mentioned
above. Simulated land use distribution for 2010 was
compared with the observed data for 2010 to evaluate
the allocation algorithm and the relationships between
land use types and driving factors. Kappa coefficient
is frequently used for evaluating the prediction per-
formance of the classifiers. However, the kappa coef-
ficient was criticized by some authors recently. It was
reported that kappa indices failed to provide useful
information because they attempt to compare accura-
cy to a baseline of randomness, and some kappa
indices have fundamental conceptual flaws (Pontius
and Millones 2011). Two measures of quantity dis-
agreement and allocation disagreement prove to be
useful to summarize a cross-tabulation matrix than
the kappa indices. Therefore, in our study, the

Table 2 Total area of each land use type in 2020 in the two scenarios (×104 km2)

Cropland Woodland Grassland Water area Built-up land Unused land

2000s trend scenario 181.68 240.91 265.40 18.75 15.65 228.19

Planning scenario 182.36 250.22 280.56 21.06 12.22 204.14
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evaluation of spatial agreement between simulated
and observed land use data was based on the two
new proportions: the quantity disagreement and allo-
cation disagreement (Pontius and Millones 2011).

Assessment of ecosystem service

Assignment of the ESV coefficient

Xie et al. (2008) proposed a method to value the eco-
system services in China by surveying more than 700
Chinese ecologists. This method has been widely
adopted to calculate ecosystem services in China, which
classifies ecosystem services into four categories: sup-
plying services consist of food production and raw
material supply; regulating services consist of gas regu-
lation, climate regulation, hydrological regulation, and
waste treatment; supporting services consist of soil for-
mation and retention and biodiversity protection; and
cultural services consist of recreation and culture (Xie
et al. 2008). The method set the function of food pro-
duction as standard, with its equivalent ESV coefficient
as 1, and coefficients of other functions were equivalent
values compared with the standard value of 1 (Table 3).

The ESVs calculated by Xie et al. (2008) are based
on the grain price in 2007. Since the price index has
increased rapidly in recent years in China, the ESV per
unit was recalculated in this study based on the grain
price in 2010 using the method proposed byWang et al.
(2014). The average natural food production data from
cropland per hectare per year and the market price of
foodstuffs from 2010 were used to calculate local ESVs
(Wang et al. 2014). The average price for foodstuff was

about 2.02 RMB kg−1, and the average annual food
production from cropland between 1985 and 2010 were
calculated for each regions based on the provincial data.
Calculated ESVs for each land use type in different
regions of China were shown in Table 4.

Adjustment of the ecosystem services values

The ecosystem service value coefficients in Table 3
were the mean values for each land use type. It is well
known that the ESV has a good positive correlation
with biomass. The biomass varies greatly spatially for
the woodland. Therefore, to cope with the effect of
heterogeneity on ESV valuation, biomass data were
used to adjust ecosystem service values for the wood-
land.

Padjusted ¼ b

B
� P0

where Padjusted is the adjusted ESV per unit for each
grid cell within the wood land, P0 is the ESV before
adjustment, b represents the biomass of the grid cell,
and B is the average biomass per unit of woodland.

The distribution of biomass from 2010 to 2020 in
China was calculated using the density method based on
the future land use patterns and province-specific bio-
mass densities (Sun et al. 2015). It is assumed that
biomass densities of grassland and cropland within a
province are constant. The biomass density of woodland
varies with age. Therefore, woodland biomass densities
were modified by age based on their empirical relations
(Nabuurs et al. 2007). The age of woodland in 2010 was
obtained from the national forest inventory during

Table 3 Equivalent value coefficients of ecosystem services in China proposed by Xie et al. which were developed by surveying 700
Chinese ecologists

First level Second level Cropland Woodland Grassland Water Unused

Supplying services Food production 1 0.33 0.43 0.45 0.02

Raw material 0.39 2.98 0.36 0.30 0.04

Regulating services Gas regulation 0.72 4.32 1.5 1.46 0.06

Climate regulation 0.97 4.07 1.56 7.81 0.13

Hydrological regulation 0.77 4.09 1.52 16.11 0.07

Waste treatment 1.39 1.72 1.32 14.63 0.26

Supporting services Soil formation and retention 1.47 4.02 2.24 1.20 0.17

Biodiversity protection 1.02 4.51 1.87 3.56 0.4

Cultural services Recreation and culture 0.17 2.08 0.87 4.57 0.24

From Xie et al. (2008)
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2009–2013, while in the future, they were obtained from
the output of Dyna-CLUEmodel that tracked the year of
woodland establishment and clearing.

Results

Change in the spatial structure of land use in China
from 2010 to 2020

The simulated and observed land use data of 2010 were
compared to validate the performance of the land use
model using two parameters: quantity disagreement and

allocation disagreement. The quantity disagreement is
0.02 and the allocation disagreement is 0.16, indicating
that the Dyna-CLUE model and the parameters can
specify the location quiet well.

The spatial distributions of six land use types were
explained well by selected physical and socioeconomic
location factors as indicated by the ROC (receiver oper-
ating characteristic) values that indicate the goodness-
of-fit of the logistic regression models. High ROC
values were found for built-up land (0.976), cropland
(0.916), and water area (0.913).

Spatial patterns of land use in 2010 and changes
between 2010 and 2020 under the 2000s trend scenario

Table 4 ESVs for each land use type in different regions of China (RMB ha−1 a−1)

Cropland Woodland Grassland Water Unused

North Supply 1395.5864 3323.3024 793.17489 752.56324 60.24129

Regulating 3865.4731 14257.068 5923.7112 40146.74 522.0912

Supporting 2500.0073 8564.2808 4126.5175 4776.268 572.2923

Cultural 170.68323 2088.3592 873.4964 4585.6187 240.9652

Total 7931.75 28,233.01 11,716.90 50,261.19 1395.59

Northeast Supply 1773.1579 4222.4123 1007.7658 956.1669 76.53928

Regulating 4911.2647 18114.276 7526.3524 51008.317 663.3404

Supporting 3176.3764 10881.322 5242.9337 6068.4726 727.1232

Cultural 216.86104 2653.3588 1109.8181 5826.2436 306.1571

Total 10,077.66 35,871.37 14,886.87 63,859.20 1773.16

East Supply 1958.0684 4662.7389 1112.8589 1055.879 84.52101

Regulating 5423.4268 20003.291 8311.2243 56327.626 732.5154

Supporting 3507.6189 12016.061 5789.6834 6701.3122 802.9496

Cultural 239.47599 2930.0595 1225.5534 6433.8228 338.084

Total 11,128.59 39,612.15 16,439.32 70,518.64 1958.07

Mid-south Supply 1848.012 4400.6615 1050.3087 996.53154 79.77022

Regulating 5118.5945 18878.971 7844.0778 53161.636 691.3419

Supporting 3310.4676 11340.677 5464.2644 6324.6535 757.8171

Cultural 226.01586 2765.3704 1156.6691 6072.1989 319.0809

Total 10,503.09 37,385.68 15,515.32 66,555.02 1848.01

Southwest Supply 1720.0564 4095.9626 977.58608 927.53244 74.24719

Regulating 4764.1849 17571.803 7300.9593 49480.764 643.4757

Supporting 3081.2521 10555.456 5085.9225 5886.7392 705.3483

Cultural 210.36661 2573.8979 1076.5821 5651.7643 296.9888

Total 9775.86 34,797.12 14,441.05 61,946.80 1720.06

Northwest Supply 1677.8268 3995.4007 953.58551 904.76023 72.42432

Regulating 4647.218 17140.39 7121.7146 48265.942 627.6774

Supporting 3005.6034 10296.305 4961.0588 5742.2116 688.031

Cultural 205.20184 2510.705 1050.1511 5513.0057 289.6973

Total 9535.85 33,942.80 14,086.51 60,425.92 1677.83
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and planning scenario are shown in Fig. 1. The model
projects substantial land use change between 2010 and

2020 under both the 2000s trend scenario and the plan-
ning scenario. The cropland is projected to shrink under

Fig. 1 Spatial patterns in land use in 2010 and changes between 2010 and 2020 under the 2000s trend scenario and the planning scenario,
for cropland (a), woodland (b), grassland (c), and water area (d)
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both scenarios. The total decreased areas of cropland are
19,956 and 13,135 km2 for the 2000s trend scenario and
the planning scenario, respectively. The loss in cropland
is primarily in southwestern and eastern China where
urban growth is rapid. In recent years, the government
has been taking measures to slow down the loss of
cropland to ensure food security. Therefore, some loca-
tions would be converted to cropland to make up lost
areas due to urban growth. In northeastern China, which
is an important agricultural region in China, some aban-
doned cropland would be recovered in 2020 (Fig. 1a).
The woodland area showed modest increase under the
2000s trend scenario and large increase under the plan-
ning scenario, with the increase of 42,708 and
135,842 km2 under the 2000s trend scenario and the
planning scenario, respectively. The forest coverage
would be 26.5 % under the planning scenario. The
increase of woodland is primarily in the southern
China under both scenarios (Fig. 1b). We project a large
decrease in grassland, with a decrease of 6 % under the
2000s trend scenario. The decrease of grassland would
happen primarily in the fringe of grassland (Fig. 1c).
While in the planning scenario, the government will
take measures to contain fast deterioration of grassland,
and the grassland would have a complex pattern of gains
and losses. Water area has been obviously diminished in
the past decades, and the trend is also obvious under the
2000s trend scenario. Water area protection has attracted
the attention of the government. The decline would be
slowed down or stopped under the planning scenario.
The artificial wetland construction or returning cropland
to lake measures would take place in some locations
(Fig. 1d).

Ecosystem service value change analysis

Based on simulated land use data, the ESVs for each
land use category in different regions of China (Table 3),
and the biomass data to adjust the ESV coefficients, the
ESV map for the future can be produced. First, biomass
distribution data were calculated using the biomass den-
sity approach taking forest age into consideration.
Figure 2 shows the spatial pattern of biomass in 2010
and 2020 under the two scenarios. We can see that the
spatial variability in biomass is considerable, so the
adjustment of the ESV coefficients based on the bio-
mass data is necessary to better understand the spatial
pattern of ESV in China.

Table 5 is a summary of the ESV valuation results.
We estimated that ecosystems provide RMB
18,766.94, 20,565.52, and 20,981.82 billion worth of
services annually for 2010, 2020 under the 2000s trend
scenario, and 2020 under the planning scenario, re-
spectively. Approximately 60 % of the total ESV was
contributed by woodland. The grassland, cropland, and
water area contributed approximately 18, 8, and 5 %,
respectively. With the increase in woodland, forest
growth, and other land use conversions, the increases
in overall ESV of the 2000s trend scenario and the
planning scenario were 1798 and 2215 billion Yuan
RMB a−1, respectively. Take the planning scenario as
an example; the overall ESV increased by 11.8 %, the
supplying service value by 13.1 %, the regulating
service value by 11.6 %, the supporting service value
by 11.6 %, and the cultural service value by 12.1 %.
The ESV values of cropland and grassland in 2020
decreased under both scenarios compared with that in
2010. The ESV value of woodland increased under
both scenarios, and the increment is higher under the
planning scenario than the 2000s scenario. The ESV
value of water area in 2020 increased compared with
that in 2010 under the planning scenario while de-
creased under the 2000s scenario (Table 5).

The ESV maps in 2010 and the spatial distribution of
ESV changes from 2010 to 2020 under the two scenar-
ios were created based on land use data and ESV coef-
ficients (Fig. 3). These maps reveal more spatially de-
tailed information. The biomass data was applied to
produce a more reasonable spatial distribution of
ESVs. We found that the ESV map represents a logical
geographic distribution. Water area and woodland with
high biomass, such as those in northeastern and south-
western China show high ESVs. The lowest ESVs occur
primarily in northwestern China, where the land use
types are mainly desert, sandy land, and gobi. The
southwestern and eastern China covered by grassland
and cropland have moderate ESVs. The spatial differ-
ences between the two scenarios are insignificant, while
the increase of ESV in southwestern China is more
prominent under the planning scenario than the 2000s
trend scenario (Fig. 3b, c). The results of the scenario
analysis show that land use changes may lead to a
continuous increase in the ESV especially in southern
China during the years 2010–2020 (Fig. 3d, e).

Temporal changes of various ecosystem services,
namely the supplying service, the regulating service,
the supporting service, and the cultural service across
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the period 2010–2020 under the 2000s trend scenario
and the planning scenario for different regions, was
evaluated using the ESV of 2010 as the baseline
(Fig. 4). We found that the increase of the ecosystem
services value increased largest in mid-south region
compared with other regions. One reason is that the
expansion of woodland and decrease in grassland were
the main changes in the mid-south region. The increases
in the east region and southwest region are also signif-
icant. The reason is that in the east, southwest, and mid-

south region, woodland is the main land use type
(Fig. 1), and the forest age in these regions are young
(Sun et al. 2015); thus, the increase of forest biomass is
fast, which results in the increase of ESV values.

Discussion

We synergistically combined land use data, biomass
distribution data, and ESV coefficients to generate

Fig. 2 Spatial pattern of biomass in China in 2010, 2020 under 2000s trend scenario, and 2020 under planning scenario

Table 5 ESV values in 2010 and 2020 under the two scenarios for different land use types (billion RMB a−1)

Region Scenario Supplying services Regulating services Supporting services Cultural services Total ESV

Cropland 2010 319.84 885.95 572.96 39.04 1817.79

2020 (2000s trend) 316.43 876.51 566.86 38.63 1798.43

2020 (planning) 317.71 880.05 569.15 38.78 1805.69

Woodland 2010 1345.05 5771.02 3466.66 845.18 11427.90

2020 (2000s trend) 1595.87 6847.22 4113.13 1002.80 13559.03

2020 (planning) 1607.30 6896.25 4142.58 1009.98 13656.12

Grassland 2010 264.05 1972.90 1374.35 290.84 3902.14

2020 (2000s trend) 247.37 1848.27 1287.53 272.46 3655.64

2020 (planning) 261.83 1956.29 1362.78 288.39 3869.28

Water area 2010 19.06 1017.32 121.02 116.19 1273.60

2020 (2000s trend) 17.77 948.54 112.84 108.34 1187.49

2020 (planning) 19.85 1059.53 126.04 121.01 1326.44

Unused land 2010 14.85 129.28 141.82 59.56 345.51

2020 (2000s trend) 15.68 136.55 149.79 62.91 364.94

2020 (planning) 13.94 121.34 133.11 55.90 324.29

Total 2010 1962.85 9776.47 5676.81 1350.82 18766.94

2020 (2000s trend) 2193.14 10657.09 6230.15 1485.15 20565.52

2020 (planning) 2220.63 10913.46 6333.66 1514.07 20981.82
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national maps of ESV in 2010 and in 2020 under the
2000s trend scenario and the planning scenario. The
result is useful for supporting decision-making during
sustainable development at the regional level. To the
best of our knowledge, there is still no other study that
takes biomass into consideration when estimating ESVs
in China.

In this study, two land use scenarios were developed,
the 2000s trend scenario and the planning scenario.
However, the results of these two scenarios are not in
opposite directions, and the total ESV values in both
scenarios increased during 2010–2020. In late twentieth
century, national ecological restoration programs started
to be carried out, such as the ecological returning to
forest project, the natural forest protection project, and
the three north shelter forest projection. As a result, the
woodland showed an increase trend between 2000 and
2010. Therefore, in the 2000s trend, the woodland
would also increase, but the increased value is relatively
smaller than the planning scenario.

Spatial patterns of land use in 2020 under the 2000s
trend scenario and the planning scenario were simulated
first. Relatively high-to-moderate ROC values were
found for forest (0.817) and grassland (0.810). These
differences in good-of-fit occurred because built-up land
lies in locations with specific characteristics (e.g., high
population and high GDP, close to roads, moderate
slope), similar to the cropland that forms in area with
certain drainage and clay texture conditions. Whereas
grassland and forest could be found in altitude zones and
represent a wide range of different activities; hence,
lower ROC values were received.

The method to adjust the ecosystem service values
in this study was based on a hypothesis that the ESV
has a good positive correlation with biomass.
However, this hypothesis is not always reasonable for
all land use types. The species composition, distribu-
tion, and diversity, and the human landscape could
also have some effects on the ESV except for the
biomass. There are considerable uncertainties

Fig. 3 Spatial pattern of ESVs in China in 2010 (a), 2020 under the 2000s scenario (b), 2020 under the planning scenario (c), and changes
between 2010 and 2020 under the 2000s trend scenario (d) and the planning scenario (e)
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associated with the modeling and calculations of
ESVs. First, the validation of the land use simulations
can be possible for historical land use changes only.
There is no guarantee that it will work in the future,
since it only provides an indication of the validity in
the downscaling procedure and the allocation algo-
rithm of the model. Evidences from other studies
indicate that the relationship can be stable over one
or two decades despite land use changes (Schulp et al.
2008). Second, the value transfer method used in this
study is widely criticized. One of the errors in ecosys-
tem service mapping based on value transfer is asso-
ciated with the failure to include spatial variability in
biophysical measurements of ecosystem services, and
the ecosystem service for a particular land cover type
is constant across the entire area being mapped

(Eigenbrod et al. 2010). Despite the demerit of value
transfer method, currently it is still a useful way to
estimate the value of ecosystem services. At the na-
tional scale, the collection of primary data is
constrained, and the value transfer method can be used
to estimate the ecosystem service values with lower
expenses than primary survey. The correction and
adjustment applying the biomass data in this study
could reduce the uncertainties and improve practical
accuracy in mapping the ESVs. Third, in line with
previous studies (Xie et al. 2008; Wang et al. 2014),
the ecosystem service values of built-up land were
assumed to be zero since the ESV coefficients of
built-up land are unavailable. However, the built-up
land may have negative regulating and supporting
service values (Wu et al. 2015), and the urban green

Fig. 4 Projected changes under the two scenarios (the blue bar for
the BAU scenario and the red bar for the planned scenario) relative
to 2010 for a supplying services, b regulating services, c

supporting services, d cultural services, e total ecosystem services
of different regions, and (f) the region boundary. The bars in a–e
display the difference between the two scenarios and 2010
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is able to provide ecosystem services (Long et al.
2014). Fourth, market and biophysical forces such as
societal preference shift, the development of new tech-
nologies, and natural disasters t as well as the ESV
coefficient variation cannot be anticipated and taken
into consideration in our study. Last but not the least,
despite these modeling caveats, the results provide an
empirically estimation of the effect of land use change
on ecosystem services. Since the primary goal of this
study is to explore the effects of land use change rather
than to predict future land use, unanticipated events
and the defects in method will influence future land
use under both scenarios. Therefore, the predictions of
the difference between scenarios are less uncertain
than the prediction of future condition itself.

Conclusion

In this study, we developed a spatially explicit method to
examine the effects of land use change on ecosystem
service values by projecting future land use change
under the 2000s trend scenario and the planning scenar-
io, and integrating land use change dynamic model and
ecosystem service valuation methods. We found that in
2010, the ESV could be estimated at RMB 18,766.94
billion in China, and approximately 60 % of the ESV is
contributed by woodland. Focus should be in the value
of forest ecosystems. The ESV values in 2020 increased
1798 billion Yuan RMB a−1 under the 2000s trend
scenario and 2215 billion Yuan RMB a−1 under the
planning scenario compared with 2010. We found that
the adjusted ESV map by biomass presented a logical
national geographic distribution. The high ESVs oc-
curred primarily in northeastern and southern China,
while the places with ESV value lower than 5000
RMB ha−1 a−1 were located in the northwestern China.
The increase of ESV mainly occurred in southern China
where the forest coverage was high.

We hope that the results of this study can serve as an
alternative tool for assessing sustainability and green
GDP. Theoretically, the ESV maps with spatial informa-
tion can provide more information and support than
simply a national accounting spreadsheet. Practically,
this easily used method for simulating ESV spatially
can help avoid or mitigate negative impact on ecosys-
tems, and the study can be a reference for national
institutions and programs, such as the land use planning
department and national ecological projects.
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