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Abstract Performance evaluation is a critical step when
developing land-use and cover change (LUCC) models.
The present study proposes a spatially explicit model
performance evaluation method, adopting a landscape
metric-based approach. To quantify GEOMOD model
performance, a set of composition- and configuration-
based landscape metrics including number of patches,
edge density, mean Euclidean nearest neighbor distance,
largest patch index, class area, landscape shape index,
and splitting index were employed. The model takes
advantage of three decision rules including neighbor-
hood effect, persistence of change direction, and urban-
ization suitability values. According to the results, while
class area, largest patch index, and splitting indices
demonstrated insignificant differences between spatial
pattern of ground truth and simulated layers, there
was a considerable inconsistency between simulation
results and real dataset in terms of the remaining
metrics. Specifically, simulation outputs were sim-
plistic and the model tended to underestimate num-
ber of developed patches by producing a more compact
landscape. Landscape-metric-based performance evalu-
ation produces more detailed information (compared to

conventional indices such as the Kappa index and overall
accuracy) on the model’s behavior in replicating spatial
heterogeneity features of a landscape such as frequency,
fragmentation, isolation, and density. Finally, as the main
characteristic of the proposed method, landscape metrics
employ the maximum potential of observed and simulat-
ed layers for a performance evaluation procedure, provide
a basis for more robust interpretation of a calibration
process, and also deepen modeler insight into the main
strengths and pitfalls of a specific land-use change
model when simulating a spatiotemporal phenomenon.

Keywords Performance evaluation . Landscape
metrics . Spatial simulation . GEOMOD . Land-use and
cover change

Introduction and problem definition

With the increased availability of spatial data from 3S
technologies derived from GIS, RS, and GPS and de-
velopment of functional computer software for land-use
and cover change (LUCC) models (Al-shalabi et al.
2012), a significant increase has occurred in LUCC
change modeling. This field of investigation has
witnessed a large number of applications employing
micro-simulation models such as agent-based and cel-
lular automata (CA) simulation methods (Al-ahmadi
et al. 2008; Feng et al. 2011; Wang et al. 2012; Jokar
et al. 2013; Sakieh 2013; Dezhkam et al. 2014; Sakieh
et al. 2015). Various spatially explicit models and
simulation techniques based on different conceptual
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foundations are developed for simulating transitions
between initial and ending time years, thereby enabling
the modeler to generate a prediction map for a subse-
quent time. As a critical step, it is important to assess the
performance of the model when simulating a dynamic
phenomenon such as the LUCC process.

Due to their simplicity, potential for dynamic spatial
simulation, capability for high resolution modeling, and
compatibility with GIS and remotely sensed data
(Sullivan and Torrens 2000), CA-based models are
among the frequently used modeling methods. Recent
computer programs based on CA modeling concepts
include DINAMICA (Soares-Filho et al. 2002),
SLEUTH (Clarke et al. 1997), iCity (Stevens and
Dragicevic 2007), CLUE-S (Verburg et al. 2002), and
IDRISI’s CA-Markov and GEOMOD models (Pontius
et al. 2001). GEOMOD has been used frequently to
analyze baseline scenarios of deforestation for carbon
offset projects at different scales and within various
geographic regions. GEOMOD as a grid-based model
is able to simulate the spatial arrangement of land
change forwards and backwards in time. The model
simulates transitions between exactly two categories
denoted as developed and non-developed.

Performance of a model can be evaluated through
multiple methods including intellectual, statistical, and
spatial techniques. Each method has its own pitfalls and
strengths that provide the user with information on
agreement between quantity and location of modeling
effort and the actual layer when simulating the LUCC
phenomenon. Some of these methods are simple least
squares regression (Silva and Clarke 2002), Kappa-
based statistics derived from a contingency table
(Pontius 2000; Pontius and Millones 2011), and area
under the relative operating characteristic (ROC) curve
(Pearce and Simon 2000; Pontius and Schneider 2001;
Pontius and Batchu 2003; Pontius and Si 2014). One
major pitfall of these indices is their incapability of
providing information on morphological agreement be-
tween simulated and reference layers. Therefore, apply-
ing a method for quantifying the simulation accuracy
based on spatial pattern agreement could provide the
modeler with valuable information on the model
performance.

Landscape metrics as descriptive measures of con-
figuration attributes of a landscape pattern can be pow-
erful tools in evaluating simulation success. These indi-
ces can address spatial heterogeneity and variation di-
mensions such as frequency, isolation, density, and

distance from nearest neighbor of a spatial pattern. The
utility of landscape metrics in describing spatiotemporal
processes and dynamics of LUCC has been well-
documented in the literature (Herold et al. 2003;
Poelmans and Rompaey 2009; Onsted and Chowdhury
2014; Asgarian et al. 2014), but the number of studies
applying these measures as model performance indices
are limited. Herold et al. (2005) reported the efficacy of
landscape metrics in assessing model performance in
terms of location agreement between spatial distribution
of urban development for both simulated and reference
maps. Wu et al. (2009) evaluated performance of
SLEUTH model through multiple methods, and the
landscapemetric-based performance assessment provid-
ed a more powerful interpretation of the model’s ability
concerning location agreement between simulation and
the ground truth layers. Mas et al. (2010) believe that
landscape metrics are powerful tools for consideration
of spatial pattern other than location. Guan et al. (2011)
developed an integrated CA-Markov chain model incor-
porated with socioeconomic factors in Saga, Japan.
They highlighted that landscape metrics are spatially
explicit measures of urban morphology and are of po-
tential for providing spatial information concerning
model performance when calibrating a model.

This paper specifically aims to answer the following
question: Do landscape metrics have the potential for
more detailed performance evaluation of a spatial mod-
el compared to conventional indicators such as Kappa
index and overall accuracy?

Materials and methods

Study area

Karaj city is the capital of Alborz Province, spanning
between latitudes 35° 67′–36° 14′ N and longitudes 50°
56′–51° 42′ E and covers a total area of 141 km2. Alborz
mountain bounds this city in the north and the elevation
descends from north to south. The average elevation is
1320m above the sea level and dominant wind direction
is North-West. Annual rainfall is 246.3 mm, and the
annual average temperature varies between 15
and16 °C. The total population of the city is 1,686,521
(Iranian Statistics Center 2012) (Fig. 1).

Following the designation of the area as new prov-
ince of the country, dramatic population growth has
occurred with accompanying unplanned expansion of
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urban and industrial sites that demands sustainable de-
velopment plans be designed and employed to direct
future changes (Sakieh et al. 2014b). Factors including
proximity to Tehran city (capital of Iran), the surround-
ing environment, transportation system, affordable gen-
eral facilities, and educational benefits have made the
city as an attractive destination for immigrants from
different parts of the country such that the Karaj city is
now claimed to be one of the most culturally mixed
regions in Iran. Accordingly, population growth associ-
ated with accelerated urbanization in the area has
alarmed the necessity of spatial and regional planning
efforts that support decisions made by policy makers. In
addition, geospatial simulation models of LUCC are
also considered to be potential tools that provide virtual
environments for testing the possible outcomes of strat-
egies adopted by authorities in the region (Sakieh et al.
2014a). Therefore, the area has been chosen since its

historical growth profile provides enough information
regarding urban land-use change that makes a geospatial
model to work properly.

Data processing

This study implements a GEOMOD model in a GIS
environment and evaluates the simulation success of the
model in terms of correspondence between spatial pat-
terns of the simulated and ground truth maps. As spa-
tially explicit indices, landscape metrics were calculated
to address the level of similarity of local spatial patterns.
Figure 2 illustrates our research flowchart.

Urban land-use layers were the most time-consuming
input data to produce. Cloud-free Landsat TM images
collected in 1984, 2000, 2006, and 2011 were processed
for extracting developed lands. This historical profile is
mainly selected to furnish the model with sufficient

Fig. 1 Geographic location of study area across Alborz Province, Iran
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change in urban areas to make the model to work
properly and to detect urban growth general patterns.
The images were co-registered using the Universal
Transverse Mercator (UTM) projection with acceptable
RMSE (less than one pixel) using the nearest neighbor-
hood algorithm. Quality control indicated that no no-
ticeable distortions such as striping, banding, sweep
error, duplicate pixels, or atmospheric error of clouds
were found. The digital images had an acceptable radio-
metric quality. After geometric correction of the imag-
ery, a hybrid method for image classification was
employed including supervised (traditional maximum
likelihood classifier), unsupervised (ISODATA cluster-
ing algorithm), and on-screen visual classifications.

Synthetic bands including NDVI- and PCA-derived
layers were also calculated to further improve the clas-
sification accuracy.

We decided to conduct a hybrid classification process
since the input data layers included only one category of
developed lands. According to its historical profile in
our study area, this category only increases through time
and there is a very low amount of losses for this land
feature. This characteristic allowed us to conduct for-
ward and backward revisions through a visual control
process. To be specific, for accuracy and consistency of
classification process, the 1984 map layer was first
totally checked to remove salt-pepper effect and to
modify delineated borders of the developed lands (after
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supervised and unsupervised classifications). Although
very time-consuming, this process allowed us to pro-
duce a map with highest possible accuracy. In the next
step, the 1984 and 2000 maps were cross-tabulated and
revised. In this case, as the pervious step, boundaries
were carefully delineated and the revised 2000 map was
used for cross-tabulation with 2006 layer and the same
process was also undertaken (forward revision for 2006
and 2011). Similarly, a backward revision was then
carried out (delineated borders were carefully checked
and modified to eliminate any possible inconsistency
and misclassifications). In addition, accuracy evaluation
was visually undertaken through pixel-by-pixel compar-
isons with various true and false color composites of the
corresponding dates (1, 2, and 3; 4, 3, and 2; 3, 2, and 1;
2, 3, and 4; 1, 4, and 5), so that no apparent inconsis-
tency was present in the maps in the end. The classifi-
cation process explained here allowed us to produce
highly accurate map layers since geospatial simulation
models are sensitive to the accuracy of their input data.
In addition, this classification method has found to be
popular in areas where ground truth information is in-
accessible due to physical or legal constraints (Mahiny
and Clarke 2012, 2013; Sakieh et al. 2015; Jafarnezhad
et al. 2015). The resultant raster layers of the years 1984,
2000, 2006, and 2011 included two categories of devel-
oped and non-developed coded as 1 and 2, respectively.

Urbanization suitability analysis

Applying the spatial multi-criteria evaluation (SMCE)
method, suitability of the land for urban construction
was calculated. SMCE is a grid-based analysis through
which suitability of the land in response to a set of
multiple digital input layers as evaluation criteria is
determined. In order to reflect the relative importance
of pixel’s values within a raster and to make input layers
comparable and ready to integrate as well as considering
uncertainty embedded in datasets, fuzzy set theory
(Zadeh 1965) was implemented for map standardiza-
tion. Relative importance of each input data was calcu-
lated through pair-wise comparison of the analytic hier-
archy process (AHP) method (Saaty 1980) (Table 1). In
this case, a series of experts with knowledge on local
growth patterns in the area were interviewed on the
relative importance of the employed criteria. They were
selected from scientific communities, who have con-
ducted similar researches in our study area. In addition,
authorities from Karaj city municipality were also

interviewed since they have more updated information
regarding growth regulations. In the SMCE process, a
collection of nine factors (elevation, slope, aspect, geol-
ogy, distance to faults, distance to flood plain, proximity
to urban edges, proximity to roads, and proximity to
power lines) and six constraints (slopes higher than
20 %, elevations above 2300 m from the sea level, a
series of buffer zones including 150 m distance from the
main roads, 250 m distance from power lines, 300 m
distance from flood potential areas, and 1000m distance
from faults) were selected. The criterion maps employed
in this study were deemed to be the most important for
urban environments in Iran (Makhdoum 2007; Mahiny
and Clarke 2012) and were available for our study. The
environmental attributes of the land implemented in our
study site are decided with respect to the minimal risk of
natural hazard (i.e., seismic activity and flood potential
areas), terrain stability, construction expenses, environ-
mental protection, conservation of riparian habitats, and
accessibility to urban areas, main roads, and power
lines. The layers were integrated using the following
formula:

SMCE for urbanization suitability ¼
Xn
i¼1

WiX i

 !
∏Ci

ð1Þ

where Wi is the relative weight of factor i, Xi is the
fuzzified (standardized) factor i, ∏ is the multiplication
operator, and Ci is constraint i. The SMCE process
produces a single layer with values ranging between 0
and 255. The higher values indicate higher suitability for
the land-use in question.

With the aim of brevity and saving space, clas-
sification of evaluation criteria, weighting scores,
and fuzzification method are organized in Table 1.
Figure 3 demonstrates the urbanization suitability
surface of the study location derived from the
SMCE process.

Finally, with respect to Tobler’s first law of ge-
ography: BAll things are related, but nearby things
are more related than distant things^ (Tobler 1969),
the universal spatial auto-correlation Moran’s I sta-
tistics (Rook’s case) was calculated for studying
spatial auto-correlation of the urbanization suitability
map. The Moran I auto-correlation coefficient ranges
from −1 to +1 and it approaches 1, when the spatial
auto-correlation is high. The calculated statistics
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Table 1 Classification of evaluation criteria, weighting scores, and fuzzification method

Criteria Weight Subcriteria Weight Indicator Weight Constraint Factor

Ecological 0.800 Topography 0.224 Elevation 0.080 Elevations
above 2300 m

Elevations extending between 400 and 1200 m
were given the highest suitability to
encourage urban sprawl in middle altitudes,
where wind direction in daytime and
nighttime is more suitable for air circulation
in an urban environment.

Slope 0.127 Slopes higher
than 20 %

Slopes ranging between 0 and 20 % were
linearly standardized such that slopes
between 0 and 6 % were specified fuzzy
membership value of 255, and the rest of
the slope values extending between 6 and
20 % were standardized using a
monotonically decreasing trend.

Aspect 0.017 – Regarding to semiarid environment of the
study area, northern and eastern aspects
were fuzzified with higher suitability
values than western and southern
aspects. The fuzzification schema for
aspect layer was based on solar radiation
received in built-up areas and
architecture purposes for appropriate
temperature in summer and winter.

Geology 0.075 – 0.075 – According to Makhdoum (2007), different
rock formations comprising 11 categories
were evaluated of their potential for urban
construction and waste disposal. The
resultant layer was fuzzified in a range
between 0 and 255.

Natural
threats

0.501 Distance to
faults

0.430 Buffer zone
of 1000 m

Nearby lands to the faults were linearly
standardized through which pixels with
5000-m distance received the highest
suitability value.

Distance to
flood
plain

0.072 Buffer zone
of 300 m

The suitability of the immediate lands
to the flood plains was gradually
increased through a linear function
and became constant at 3000 m
(suitability value of 255).

Socioeconomic 0.200 LULC 0.150 Proximity to
urban
edges

0.150 – To address higher suitability of the immediate
lands to urban areas in terms of better
service delivery and establishment of urban
infrastructure (e.g., drainage systems and
disposal management systems), lands
within the l000-m distance from urban
patches were specified the highest fuzzy
membership value. The lands with 2500-m
distance were assigned a value of 128, and
the remaining pixels were fuzzified apply-
ing a monotonically decreasing function up
to 6000 m, the maximum distance.

Infrastructure 0.050 Proximity
to roads

0.038 Buffer zone
of 150 m

Areas with 150-m distance from the main roads
were given the suitability values of 255,
which remains constant up to 5000-m dis-
tance, and then, the values are decreased
through a linear monotonically trend and
become 0 at 15,000 m.
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indicated that Moran’s I index meets the acceptable
threshold (0.9566) (Eastman 2009).

GEOMOD modeling

GEOMOD is a raster-based LUCCmodel that simulates
the spatial arrangement of land change forwards or
backwards in time. The model simulates transitions
between exactly two land-use classes coded as 1 and
2, in our study referred to as non-developed and

developed. A map of a beginning time and information
related to the number of grid cells of each class at an
ending time is necessary. GEOMOD selects the location
of the grid cells among the non-developed pixels that are
most likely to be transformed into the developed cate-
gory. Conversely, if there is a net increase in the number
of non-developed pixels, the GEOMOD will explore
among the developed areas to select the cells that are
highly capable of being converted to the non-developed
category between the time profiles. The minimum input

Table 1 (continued)

Criteria Weight Subcriteria Weight Indicator Weight Constraint Factor

Proximity
to power
lines

0.013 Buffer zone
of 250 m
distance

The adjacent lands to the buffer zone were
determined to possess the highest
suitability (255) based on assumption
that closer lands to power lines are more
attractive for urbanization.

Fig. 3 Urbanization suitability
surface of the study area
generated through SMCE process
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layers for model calibration are images of beginning and
ending time as well as a suitability map of the targeted
land-use. The most important output of the model is a
map of the simulated landscape of the developed against
non-developed pixels at the end time. Accordingly,
using four reference map layers of the years 1984,
2000, 2006, and 2011 that depict the actual pattern of
the developed lands, three simulation runs were execut-
ed to regenerate the landscape pattern of the years 2000,
2006, and 2011.

GEOMOD’s decision rules to specify the location
of change

The GEOMOD model assigns the location of land con-
version according to three decision rules. The first deci-
sion rule addresses the persistence of change direction
between land categories. In this paper, the model simu-
lates a one-way change, from non-developed to devel-
oped lands. The second decision rule concerns the
neighborhood effect. According to this rule, each cell
is interactive with its adjacent neighbors (cells that are
on the edge between developed and non-developed) and
transformations between land categories are restricted
within a small square window around each developed
cells. This rule simulates the manner that new developed
cells can grow out of previous development. The simu-
lation process updates the definition of edge at every
time step. If the model is required to transform more
pixels than are available within the search radius of the
window, all available cells within the search width are
first converted and then the models start to convert cells
within a wider search width to obtain enough number of
cells for conversion. The third rule regards the suitability
map, which depicts suitability values for the developed
land category. Based on the third rule, GEOMOD sim-
ulates further development by exploring the landscape
for areas of non-developed lands that have the highest
suitability score. A model is said to be Bdynamic^ when
the conditions at one time affect the transformation rules
at the subsequent time. In this case, GEOMOD is not
dynamic in the sense of the suitability map. On the
contrary, referring to the neighborhood effect decision
rule, the GEOMOD is dynamic such that the model
recalculates for each year the adjacent cells on the
edge between the developed and non-developed cate-
gories. Figure 4 illustrates reference maps versus their
simulated versions.

Landscape metric-based performance evaluation

The correspondence between the simulated patterns of
developed cells against their actual arrangement in ref-
erence maps was assessed using a series of landscape
metrics. Although a wide variety of landscape metrics
have been developed and applied in describing spatial
composition and configuration of a landscape pattern
(O’Neill et al. 1999; Turner et al. 2001; Herold et al.
2002, 2003; Dietzel et al. 2005; Dibari 2007; Weng
2007; Tang et al. 2008; Su et al. 2011; Tian et al.
2011), similar aspects of landscape patterns are mea-
sured by them due to overlap with each other. To reduce
the data redundancy, a set of basic and most frequently
applied metrics (Table 2) were selected (Luck and Wu
2002; Herold et al. 2003; Dietzel et al. 2005; Tang et al.
2008; Wu et al. 2009; Rafiee et al. 2009; Pham et al.
2011; Lechner et al. 2013; Asgarian et al. 2014; Jaafari
et al. 2015; Sakieh et al. 2015; Jafarnezhad et al. 2015).
They have then been calculated by FRAGSTATS main-
ly due to the following reasons (Botequila et al. 2006):

(1) These metrics quantify fundamental aspects of a
landscape structure (number, area, size, distance,
and shape of the patches), and the majority of the
metrics are derived from these primary measures.

(2) They are easy to understand and interpret.
(3) They would be reliable when they are applied

together, aiming to explain spatial complexity
of a landscape in terms of patches, patch spatial
distribution and patch shape complexity, and
connectivity.

The metrics included number of patches (NP), edge
density (ED), largest patch index (LPI), mean Euclidean
nearest neighbor distance (ENN_MN), total class area
(CA), splitting index (SPLIT), and landscape shape
index (LSI).

In order to quantitatively address spatial similarity of
the compared maps, the relative error (RE) index was
calculated using Eq. (1):

RE ¼ Mr−Mp

� �
Mr

� �
*100 ð2Þ

whereMr indicates value of the landscapemetric extracted
from the reference map and Mp refers to the value of the
landscape metric derived from the simulated map.
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NP metric indicates total number of developed
patches in the landscape. This metric is chosen mainly
to explain model’s ability in correct simulation of patch
numbers. The formula is as follows:

NP ¼ ni ð3Þ
where ni indicates number of patches in the landscape
belonging to the class developed lands.

ED equals the number of developed patches divided
by total landscape area (m2) and multiplied by
10,000 (to convert to 100 ha). ED equals the
sum of the lengths (m) of all edge segments in-
volving the corresponding patch type, divided by
the total landscape area (m2), and multiplied by
10,000 (to convert to hectares). ED reports edge length
on a per unit area basis that facilitates comparison

Fig. 4 Reference maps of the study area obtained through hybrid classification (first row) versus simulated maps of the developed lands of
the years 2000, 2006, and 2011 (second row)

Table 2 Descriptions of landscape metrics used in the study (Mc Garigal and Marks 1995)

Landscape metrics Abbreviation Units Range Type of metric Concept

Number of patches NP None NP≥ 1, without limit Landscape composition Fragmentation

Edge density ED Meters per
hectare

ED≥ 0, without limit Landscape configuration Density

Largest patch index LPI Percent 0 < LPI≤ 100 Landscape composition Dominance

Mean Euclidean nearest
neighbor distance

ENN_MN Meters ENN> 0, without limit Landscape configuration Isolation

Total class area CA Hectare CA>0, without limit Landscape composition Area

Splitting index SPLIT None 1 ≤ SPLIT ≤ number of cells
in the landscape area squared

Landscape configuration Cumulative patch
area distribution

Landscape shape index LSI None LSI ≥ 1, without limit Landscape configuration Shape, aggregation
index
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among landscapes of varying size. The formula to cal-
culate ED metric is the following:

ED ¼

Xm
k¼1

eik

A
10; 000ð Þ ð4Þ

where eik denotes total length (m) of edge in landscape
involving patch type developed lands; it includes land-
scape boundary and background segments involving the
corresponding patch type and A that stands for total
landscape area (m2).

LPI corresponds to the area (m2) of the largest patch of
the respective patch type divided by total landscape area
(m2) and multiplied by 100 (to convert to a percentage).
The LPI metric at the class level measures the percentage
of total landscape area comprised by largest patch.

LPI ¼ max ai j
� �n

j¼1

A 100ð Þ ð5Þ

where aij means area (m2) of patch ij and A is total
landscape area (m2).

ENN_MN metric equals the distance (m) to the
nearest neighboring patch of the same type, based on
shortest edge-to-edge distance. The ENN_MNmetric is
a measure of patch context and can be used to quantify
patch isolation. The formula for this metric is as follows:

ENN MN ¼ mean hi jð Þ ð6Þ
where mean refers to the sum, across all patches of

the corresponding patch type, of the corresponding
patch metric values, divided by the number of patches
of the same type and hij is distance (m) from patch ij to
nearest neighboring patch of the same type (class),
based on patch edge-to-edge distance.

CAmetric is a measure of landscape composition and
equals the sum of the areas of developed land category
(hectares). This metric is specifically selected to depict
the simulation success in terms of correspondence be-
tween simulated and the actual area of land-use in
question. The equation is as follows:

CA ¼
Xn
j¼1

ai j
1

10; 000

� �
ð7Þ

where aij area (m2) of developed lands is divided by
10,000 to convert to hectares.

SPLITmetric is the total landscape area (m2) squared
divided by the sum of patch area (m2) squared, summed

across all patches of the corresponding patch type.
SPLIT equals 1 when the landscape consists of a single
patch. The value for this metric increase as the main
patch type is significantly fragmented into smaller
patches. SPLIT is based on the cumulative patch
area distribution and is interpreted as effective
mesh number or number of patches with a con-
stant patch size when the corresponding patch type
is subdivided into S patches, where S is the value of
splitting index. The formula to calculate the SPLIT
metric is as foolows:

SPLIT ¼ A2

Xa
j¼1

a2i j

ð8Þ

where aij is area (m
2) of developed areas and A denotes

total landscape area (m2).
LSI metric provides a standardized measure of total

edge or edge density that adjusts for the size of the
landscape. The metric approaches 1 when landscape
shape of a particular type is almost square. LSI increases
without limit as landscape shape becomes more irregu-
lar and/or as the length of edge within the landscape
increases. This metric mirrors the similarity between the
actual shape of particular patch type versus its simulated
shape. The formula for calculating LSI metric is as
follows:

LSI ¼ ei
minei

ð9Þ

where ei denotes the perimeter of the developed land
category and min ei means minimum perimeter of this
class (Mc Garigal and Marks 1995).

Results and discussion

The SMCE process was implemented to weight, stan-
dardize, and integrate several environmental parameters
that are deemed to have considerable influence on ur-
banization suitability in our study location. As Table 1
shows, ecological criteria gained higher levels of rela-
tive importance. This is attributed to the fact that natural
hazards and geomorphologic factors are the first priority
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in terms of legal restrictions in the study area. After
years of unplanned urban expansion, city authorities
strictly prevent any further establishment of new urban
centers without detailed studies of environmental sus-
tainability. On the other hand, factors including aspect
and proximity to power lines received the lowest
weight.

The northern part of the study area is totally unsuit-
able for urban construction, which is consistent with
historical urban growth in the area. Current urban
boundaries are greatly associated with agricultural fields
in the periphery of the developed lands. These locations
possess suitable slope, high accessibility and are less
influenced by natural hazards and therefore have more
potential for urbanization. Visual interpretation of urban
patches distribution reveals that there are some urban
centers in the eastern part, which are located in totally
unsuitable lands (with proximity to active faults).
Generally, the southern and eastern parts are more
suitable for urbanization, while linear and scattered
urban development was the dominant growth form in
these directions. Since proximity to urban edges was
scored as the second important factor in our study,
dispersed urban patches with small physical size and
less accessibility to the transportation network also
regulated local distribution of suitability values in
southern and eastern directions.

Detailed and quantitative measures of model perfor-
mance in terms of agreement between spatial arrange-
ments of simulated and reference maps are provided in
Table 3 and Fig. 5. There are some interesting results.
NP, ED, LPI, ENN_MN, CA, SPLIT, and LSI have
successfully reflected the level of simulation success in
capturing spatial pattern of the developed lands.

The NP metric depicted considerable difference be-
tween simulation and ground truth layers and where the
landscape becomes more complex with increasing num-
bers of patches, the model tends to simulate less accu-
rately (with RE values of 59, 82, and 82 % for 2000,
2006, and 2011, respectively). In fact, there is a tenden-
cy to underestimate the NP metric with the highest
difference recorded for the year 2011. Visual interpreta-
tion of the simulation outputs implies that spatial ar-
rangement of small and scattered patches of developed
lands were less successfully simulated. On the other
hand, referring to the ability of the model in regenerating
the real pattern of the biggest patch of the developed
land, there was a high level of similarity between CA
metrics derived from reference and the simulated layers T
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Fig. 5 Calculated metrics for reference and simulated maps of the
years 2000, 2006, and 2011. Number of patches (NP) (a), total
class area (CA, hectare) (b), edge density (ED, meters per hectare)

(c), landscape shape index (LSI) (d), splitting index (SPLIT) (e),
mean Euclidean nearest neighbor distance (ENN_MN, meter) (f),
and largest patch index (LPI, percent) (g)
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(with RE values of 2, 1, and 0 % for 2000, 2006, and
2011, respectively). This explains that as the landscape
becomes more compact and less complex in shape, the
model records a convincing level of agreement between
actual and simulation maps for the CAmetric. Similarly,
the model’s outputs for the LPI metric are close to those
of derived from their corresponding actual layers but
accuracy of the model tends to decrease more dramati-
cally (especially for the year 2011 with RE values of 4,
5, and 11 %). This behavior for the LPI metric indicates
that accuracy of the model for simulating main urban
core in the area tends to decrease through time. The ED
metric demonstrates noticeable differences between the
real data and the modeling effort (with RE values of 19,
48, and 53 %). In this case, as the number of the
developed patches increased and the landscape became
more fragmented, the ability of the model to simulate
correctly more edge densities decreased. This may be
attributed to the fact that landscapes with more small
and dispersed patches produce more complicated
edges, which is difficult to model. Referring to the
SPLIT metric, model performance was best for the
year 2000 and worst for 2011 (with RE values of 6
and 18 %, respectively). This metric indicates that as
the focal patch type is increasingly reduced in area
and subdivided into smaller patches, the model’s
ability significantly decreased in capturing the real
landscape pattern of the developed lands. Regarding
the EMM_MN metric, there is also considerable RE
values for years 2000 (33 %) and 2006 (40 %) but
the performance of the model increases for the year
2011 (2 %). This is because the model tends to
create more values for NP and CA over time that
can improve performance of the model for this met-
ric. Finally, the LSI metric shows an increasing trend
in difference between the simulated and the reference
maps (with RE values of 18, 47, and 53 %). This
process mirrors the fact that as the landscape becomes
more fragmented in structure and more complex in
shape, the simulation success decreases and the outputs
tend to be more compact and simpler.

Taking the total set of landscape metrics into account,
the GEOMODmodel tends to produce more compacted
landscape and simplistic simulation results. Although
there is a convincing level of similarity between simu-
lation and the ground truth layers in terms of CA, LPI,
and SPLIT metrics, NP, ENN_MN, LSI, and ED dem-
onstrated considerable differences. This may clarify that
quantity-based agreement between modeled outputs and

the real datasets does not guarantee the high accuracy
for spatial pattern indices.

As shown in Fig. 3, southern and eastern directions of
the study area retain larger areas with higher urbaniza-
tion suitability values. To some extent, the SMCE-
derived urbanization suitability layer can explain the
historical growth profile of Karaj city. Pixels with
highest suitability values are considerably located in
the periphery of existing developed lands. This is con-
sistent with the GEOMOD simulation behavior in our
study site. In this case, main urban core of Karaj city
with highest area is better simulated for different met-
rics; while on the other hand, the model is not very
successful in replicating the growth patterns of those
patches located in areas with less urbanization suitability
values and more distance frommain urban center. In this
study, factors including distance to faults, proximity to
urban edges, and slope gained greater relative impor-
tance in terms of weighting score (0.430, 0.150, and
0.127, respectively). Therefore, distribution of urbani-
zation suitability values is more correlated with distri-
bution of their corresponding cells in factor layers with
higher fuzzified scores. This matter provides some im-
portant implications for a more robust modeling effort.
In this case, for realistic simulations, the modeler needs
to include a combination of socioeconomic and ecolog-
ical parameters that inform the model with information
on human decisions (actors) and environmental ele-
ments (factors). In addition, locations with better urban
land-use planning and sustainable development strategy
can be better modeled and simulated. This means that by
guiding urban growth directions in a more sustainable
trajectory, the model can detect a pattern which is con-
sistent with environmental capability and human needs.
Since historical growth of Karaj city depicted a scattered
and unplanned pattern of urban development, a large
number of urban patches with small physical size have
appeared with no connection neither to each other nor
the main urban core. Therefore, the model faced a very
complex growth pattern, which resulted in the model’s
underestimation for the number of patches and com-
plexity of the landscape. Accordingly, future predictions
of the LUCC in this area would be either highly uncer-
tain or very data-demanding and time-consuming.

Spatially explicit predictive models require perfor-
mance evaluation in terms of spatial dimensions of the
land-use and land-cover arrangements. The processes
and functions of a landscape are altered by evolving its
structure, composition, and configuration (Forman and
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Godron 1986; Farina 2006; Turner et al. 2001;
Botequila et al. 2006; Asgarian et al. 2014; Hasani
Sangani et al. 2014). In this study, a procedure was
implemented for spatially explicit performance evalua-
tion of the GEOMOD land-use change model based on
landscape pattern analysis. The method described here
is of potential for examining agreement between simu-
lated and ground truth layers considering spatial ar-
rangement of land-use categories. In this process, the
number of patches, edge density, and shape of the
patches as well as their isolation are considered which
provide the modeler with valuable information on the
model’s behavior. Similar studies conducted by Herold
et al. (2005), Wu et al. (2009), Mas et al. (2010) Guan
et al. (2011), and Jafarnezhad et al. (2015) confirm the
utility of the methodology explained in this paper. As
Fig. 4 illustrates, the GEOMOD model tends to under-
estimate the complexity of the landscape by simulating
more aggregated landscape with fewer number of
patches of developed lands (referring to NP, ENN_MN,
ED, and LSI metrics). In contrast, based on visual
interpretation of the results, the general structure of the
landscape is well-simulated as is reflected in the value of
CA, LPI, and SPLIT metrics.

Referring to urbanization suitability map of the study
area, where some of urban patches are located in totally
unsuitable lands, model inability in realistic simulation
of number of patches and urban edge densities could be
explained. Since the GEOMODmodel can dynamically
adopts itself to new conditions in terms of the neighbor-
hood effect rule, this characteristic of the model could
lightly compensate for static influence of urbanization
suitability map.

The GEOMOD model takes advantage of three de-
cision rules including neighborhood effect, persistence
of change direction, and suitability values. There are
other rules such as regional stratification and land price
that could be embedded in the model formulation when
more location-based accuracy of model performance is
desired. Specifically, when urban patches are located on
unsuitable lands, as shown in this study, incorporation of
other dynamic or static transition rules is of more
importance.

Referring to sensitivity of the landscape metrics to
classification accuracy and classification approach
(pixel-based classification or segmentation), it is
necessary that reference maps retain high spatial
accuracy. Accordingly, an accurate process (e.g., hybrid
classification method) and careful attention (e.g., visual

control) should be undertaken to produce high quality
land-use and land-cover maps as they are input data to
land change simulation models. This might ensure ac-
curacy and consistency of data preparation, and there-
fore, validity of metrics.

Conclusions

Simulation models of LUCC transformations as inno-
vative planning tools are of noticeable interest for mon-
itoring, modeling, and analyzing landscape change. Ac-
cordingly, assessing the spatial performance of such
models requires including basic elements of the land-
scape structure, which provides additional level of
knowledge on simulation success of LUCC change
model. Numerous landscape metrics have been de-
signed and implemented in various locations during
the last decades; however, a few number of researches
have employed landscape indices as spatial indicators of
model performance. The present document embraced a
different approach to measure the simulation success of
the GEOMODmodel, which is reflected in RE values of
metric calculations. According to the results, this meth-
od has potential to evaluate model performance by
considering morphological and structural features of
LUCC patches such as size, number, distance, shape,
and complexity. In addition, this practice has potential to
simultaneously quantify simulation success at three
levels including a specific patch, class, and landscape,
which merits further research. Therefore, the LUCC
modelers and practitioners can compare different
models in a spatially explicit manner and decide on
best-performing simulation method in terms of replicat-
ing a landscape structure. This property would be inter-
esting for ecologists that tend to measure the effects of
structural changes on a specific landscape function (e.g.,
carbon sequestration, nutrient cycling).

There is no universally accepted method for selecting
the best-performing landscape metrics for a specific
study. In this matter, the relevancy between research
questions and metric types can guide the modeler to
decide the best indices. The employed metrics in this
study were selected based on their potential in measur-
ing the simulation success of a LUCC change model.
Therefore, other spatial simulation models in different
study areas would require different set of the metrics to
prevent information on missing or exaggerated results.
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