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Abstract In the present paper, the novel softwareGTest is
introduced, designed for testing the normality of a user-
specified empirical distribution. It has been implemented
with two unusual characteristics; the first is the user option
of selecting four different versions of the normality test,
each of them suited to be applied to a specific dataset or
goal, and the second is the inferential paradigm that in-
forms the output of such tests: it is basically graphical and
intrinsically self-explanatory. The concept of inference-by-
eye is an emerging inferential approach which will find a
successful application in the near future due to the growing
need of widening the audience of users of statistical
methods to people with informal statistical skills. For
instance, the latest European regulation concerning envi-
ronmental issues introduced strict protocols for data han-
dling (data quality assurance, outliers detection, etc.) and
information exchange (areal statistics, trend detection, etc.)
between regional and central environmental agencies.
Therefore, more and more frequently, laboratory and field
technicians will be requested to utilize complex software
applications for subjecting data coming from monitoring,
surveying or laboratory activities to specific statistical
analyses. Unfortunately, inferential statistics, which actual-
ly influence the decisional processes for the correct man-
aging of environmental resources, are often implemented
in a waywhich expresses its outcomes in a numerical form
with brief comments in a strict statistical jargon (degrees of

freedom, level of significance, accepted/rejected H0, etc.).
Therefore, often, the interpretation of such outcomes is
really difficult for people with poor statistical knowledge.
In such framework, the paradigm of the visual inference
can contribute to fill in such gap, providing outcomes in
self-explanatory graphical forms with a brief comment in
the common language. Actually, the difficulties experi-
enced by colleagues and their request for an effective tool
for addressing such difficulties motivated us in adopting
the inference-by-eye paradigm and implementing an easy-
to-use, quick and reliable statistical tool. GTest visualizes
its outcomes as a modified version of the Q-Q plot. The
application has been developed in Visual Basic for
Applications (VBA) within MS Excel 2010, which dem-
onstrated to have all the characteristics of robustness and
reliability needed. GTest provides true graphical normality
tests which are as reliable as any statistical quantitative
approach but much easier to understand. The Q-Q plots
have been integrated with the outlining of an acceptance
region around the representation of the theoretical distri-
bution, defined in accordance with the alpha level of
significance and the data sample size. The test decision
rule is the following: if the empirical scatterplot falls
completely within the acceptance region, then it can be
concluded that the empirical distribution fits the theoretical
one at the given alpha level. A comprehensive case study
has been carried out with simulated and real-world data in
order to check the robustness and reliability of the
software.
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Introduction

Statistical procedures and methods became of common
use in an ever-wider range of sectors. The increasing use
of such methods entailed that an ever-growing number
of practitioners has been involved in their usage.
Unfortunately, as pointed out by Glantz (2005), practi-
tioners often apply such procedures in a biased fashion,
drawing from them sometimes incorrect conclusions
(Sutherland et al. 2013). In particular, one of the most
common mistakes is the lack of checking about the
normality assumption of the working dataset, e.g. for
regression, ANOVA or Kriging (Thode 2002; Diggle
and Ribeiro 2007). Among all application fields, the
environmental sciences have a long tradition of statisti-
cal inference for assessing the actual status of natural
resources (Masciale et al. 2011) and geostatistics for any
pointwise regionalized analysis (Barca and Passarella
2008). Nevertheless, during recent decades, both statis-
tical and geostatistical procedures have been applied
even more intensively, driven by an increased concern
for environmental issues (Ott 1995; Wheater and Cook
2000; Barca and Passarella 2008; Barca et al. 2008).
Nowadays, due to strict environmental regulations, local
authorities need to adapt their policies to high-level
standards and protocols for data analysis. This need
has led people with informal statistical skills to try to
apply and understand a wide range of procedures quite
suddenly. Nevertheless, the risk of uninformed applica-
tion of any, even basic, statistical procedure is that
biased or completely wrong conclusions may be
reached. In this framework, the inference-by-eye or
visual hypothesis testing can play a key role for filling
in the user’s knowledge gap. Actually, inference-by-eye
allows users to read the results of the statistical test by
looking at a simple graphical representation without
decoding complex numerical tables and indices usually
commented by difficult statistical jargon (degree of
freedom, accepting/rejecting H0, level of signifi-
cance, etc.). What was said above motivated us
to adopt the inference-by-eye paradigm and to
implement GTest. It is a quick and reliable soft-
ware tool capable of performing four different
graphical normality tests for a given empirical
distribution function (EDF) in MS Excel 2010
using VBA as code language. In fact, as stated in the
recent scientific literature, Excel has proved to be an
ideal environment to develop such kind of tool (Keeling
and Pavur 2011; Nash 2006).

The graph selected as explanatory output is a modified
version of the quantile-quantile (Q-Q) plot; it is a wide-
spread graphical tool used for testing the level of agree-
ment of an EDF with a known theoretical distribution
(Gnanadesikan and Wilk 1968). The Q-Q plot approach
fundamentally consists in a graphical comparison be-
tween the first quadrant bisector, representing the theo-
retical distribution, and the scatterplot of the EDF
quantiles. The main objective of this work consists in
improving the Q-Q plot by also computing and plotting
the confidence limit band (CLB) of the EDF at a given α
level of significance. This graphical arrangement will
transform the plot in a rigorous by-eye goodness-of-fit
test at the given α level and will remove any subjective
inference regarding the evaluation. Practically, the CLB
works as an acceptance region: only those EDFs whose
scatterplot is completely within the acceptance region
will positively pass the test at the given α level of signif-
icance. The application only requires the dataset to be
loaded in a single sheet and the choice of the α value and
the test method, which can be easily input by means of an
ad hoc dialogue mask. According to the user-selected
method, the application creates a new plot sheet with
the graphical results and a couple of complementary
sheets where all the computations are performed. The
four available methods are the simultaneous, pointwise,
stabilized and correlation coefficient probability plots
based on the Kolmogorov-Smirnov (Hogg and Tanis
1977), binomial distribution (Conover 1980), Michael’s
transformation (Michael 1983; Royston 1993) and
Filliben tests (Filliben 1975), respectively.

Materials and methods

Q-Q plot

The Q-Q plot (BQ^ stands for quantile) is a graphical
method for comparing two probability distributions by
plotting their quantiles against each other. Q-Q plots are
commonly used to compare an EDF to a reference
theoretical model by means of a visual goodness of fit
and to mark suspicious values in the case of hypothesis
rejection. In this work, a Q-Q plot approach is used to
compare a given EDF with the standard normal cumu-
lative distribution function (CDF).

Generally, the X and Yaxes of a Q-Q plot represent the
theoretical and empirical quantiles of the CDF and the
EDF, respectively. Consequently, drawing a Q-Q plot
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requires a method of coupling ordered values of both
distributions. A useful simplification in creating a Q-Q plot
consists in comparing the standardized distributions. This
consists in moving in the reference origin the empirical
distribution central value and in the rescaling of the dataset.
The practical use of standardization is that it allows com-
paring the empirical distribution with a unique theoretical
distribution, namely the Gaussian standard. Such choice
has two direct consequences, the code’s simplification
and the moving of the working domain in an interval
hardly much larger than [−3, +3] (which covers more
than the 99 % of the normal distribution area), approx-
imately. In addition, it sets the geometrical representa-
tion of the Q-Q plot exactly in the first quadrant and, by
moving the central value to the origin, sets the reference
line to the bisector of the first quadrant (standardizing
the output graphical fashion).

After the standardization, the EDF quantiles (e ′ (i))
are sorted in ascending order. The corresponding
abscissas (i.e. CDF quantiles) are evaluated by means
of the following two-step procedure (Hazen 1930):

1. Compute the Bplotting position^ of the EDF ith
quantile:

pi ¼ i−0:5ð Þ=n ð1Þ
where

pi= cumulative probability of the EDF ith
quantile
i=position of the EDF quantile in the ordered
list
n=dataset size

In the second step, the inverted standard
Gaussian CDF is determined as a function of
the previously computed probability:

2. Compute the CDF ith quantile

c0 ið Þ ¼ Φ −1 pið Þ ð2Þ
where

c ′ (i) =CDF ith quantile
i=position of the CDF quantile in the ordered
list
Φ− 1= inverse standard Gaussian CDF

The EDF can be now represented on the Q-
Q plot as a scatterplot of pairs (c ′ (i), e ′ (i)),

while the theoretical distribution is represented
by the first quadrant bisector.

Accepting or rejecting the normal hypothesis by a
visual decision rule commonly consists in evaluating
how much the empirical scatterplot (EDF) departs from
the first quadrant bisector (CDF). Nevertheless, this is
not an easy task and only the analyst’s experience and
knowledge can lead to a reliable decision. In fact, the Q-
Q plot by itself does not provide either quantitative or
objective indices for testing the hypothesis.

Confidence limit bands

A decisive support in comparing EDFs and normal CDFs,
graphically, comes from the confidence limit bands
(CLBs), which bound an acceptance region about the first
quadrant bisector at a given α level of significance.
Practically, those EDFs whose scatterplots lie completely
within the acceptance region can be considered statistically
equivalent to the theoretical reference distribution.
Therefore, drawing the acceptance region actually removes
any subjectivity in the interpretation of the Q-Q plot. The
CLBs are univocally defined as curves representing the
confidence interval (CI) limits of each quantile of the
normal standard CDF. In practical terms, a CI provides
the set of plausible values for a fixed quantile (Beaulieu-
Prevost 2006).

The statistical literature reports several methods for
calculating the CLBs (Conover 1980; Calzada and
Scariano 2002; Michael 1983), which differ from each
other in terms of the expected degree of accuracy. In
fact, different approaches provide slightly different ap-
proximations of the acceptance region boundary prob-
lem. Each method is tied to a specific normality test as
will be shown in the following section.

Proposed Gaussian test methods

In this paper, four methods based on different theoretical
and operative approaches have been applied and com-
pared. Actually, the proposed software allows users to
choose one of the methods, case by case. In the following
sections, a short discussion on the methods’ specific char-
acteristics has been outlined. In general, the technical
literature provides a good number of normality tests char-
acterized by different levels of ease and reliability. The
methods implemented in GTest share some desirable prop-
erties, (i) the possibility of representing test results in the
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form of a CLB-bounded Q-Q plot, (ii) their diffusion and
acceptance within the scientific community and, finally,
(iii) their reliability and power in the statistical sense.

The first two approaches perform a goodness-of-fit test
inversion with or without suitable data transformation,
while the third is based on binomial distribution properties.
The fourth method, based on Filliben’s theory, does not
provide a graphical representation of the acceptance region
directly. Nevertheless, it can be approximately drawn by
applying suitable methods such as resampling or
bootstrapping (Stirling 1982; Calzada and Scariano 2002;
Michael 1983; Filliben 1975). Finally, it must be remarked
that the normality tests often have as a limitation that data
are required to be unaffected by ties (repeated values in the
data series), which cause biased results. In the present
implementation, a suitable procedure is applied in order
to also achieve correct results when the distribution being
checked is not entirely continuous. In the following, a very
short theoretical description of each method is provided,
given that these methods are well documented in the
technical and scientific literature.

Simultaneous methods

The first two methods, namely the Kolmogorov-Smirnov
and stabilized plot methods, are usually referred to as
simultaneous since the corresponding CLBs’ bounds are
univocally described by explicit analytical functions.

Kolmogorov-Smirnov

The Kolmogorov-Smirnov test (K-S test) is a non-
parametric (distribution free) test which quantifies the dis-
tance between the EDF and the CDF (Conover 1980). The
null distribution associated with this statistic is calculated
under the null hypothesis that the EDF coincides with the
CDF. The scientific literature provides a huge amount of
papers related to this test, its technical evolution (Steinskog
et al. 2007; Stirling 1982) and its potential graphical de-

velopment (Calzada and Scariano 2002). Unfortunately,
the test was originally conceived for the common normal-
ity test, where the characteristic parameters (location and
scale) are completely specified a priori and not for its
generalized form where the parameters have to be derived
from data. This is a well-known weak point of K-S test,
because the use of estimated parameters modifies the null
hypothesis, considerably reducing the power of the test and
providing CLBs at (1−α)% level of significance but only
in average, that is to say that the nominal level of signifi-
cance is not respected everywhere in the plot (Stirling
1982; D’Agostino and Stephens 1986; Steinskog et al.
2007); nevertheless, it still remains one of themost popular
statistical tests and, consequently, it was included in this
work.

Equation (3) provides the functions of the CLBs of the
normal Q-Q plot obtained by applying the modified K-S
test inversion approach (Calzada and Scariano 2002):

Φ −1 Fn vð Þ−Dαð Þ < v < Φ −1 Fn vð Þ þ Dαð Þ; ∀v

ð3Þ
with a confidence of 100 ⋅ (1−α)% and where:

v=empirical quantile
n=dataset size
Fn(v) = empirical CDF
Dα= test rejection threshold
Φ − 1 = inverted standard Gaussian CDF

Stabilized variance plot test inversion

Like the K-S test, the stabilized plot test is a simulta-
neous test. It differs substantially from the K-S test for
the analytical form of the CLBs’ functions (Michael
1983). Equation (4) provides the functions of the
CLBs of the normal Q-Q plot obtained by applying the
stabilized variance plot approach:

Φ−1 sin2 arcsin Φ0:5 vð Þ� �
−πD

0
α

� �� �
< v < Φ−1 sin2 arcsin Φ0:5 vð Þ� �þ πD

0
α

� �� �
ð4Þ

with a confidence of 100 ⋅ (1−α)% and where:

v=empirical quantile
Dα
′ = test rejection threshold

Φ− 1= inverted standard Gaussian CDF

Critical values are reported in the tables provid-
ed by Michael (1983) and improved by Royston
(1993). As will be shown in the case study, this
method is well suited for analysing percentage
data.
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Pointwise method

As described previously, after standardizing and sorting
the empirical values, a plotting position p (substantially,
a cumulative probability estimation) is attributed to each
empirical quantile (Eq. (1)). If the discrete nature of the
problem is exploited, it can be proved that, once
estimated the cumulative probability p associated
to any quantiles, the cumulative distribution asso-
ciated to the generic kth quantile can be defined as
follows:

P kð Þ ¼
Xn

j¼k

n
j

� �
pj 1 − pð Þn − j

¼ binomial k; n; pð Þ ð5Þ

As can be viewed, the distribution regulating the
probability P of the quantile statistics is inherently bi-
nomial where the parameters represent:

k=number of successes or quantile index
n=number of successes or quantile index
p= success probability or cumulative empirical
quantile probability estimate

Given such theoretical framework, a confidence in-
terval (CI) for any quantile vp can be estimated. In
practice, once an α level of significance has been given
(e.g. α=5%), the symmetrical two-tailed test can be
carried out first computing the following critical proba-
bilities αU=1− (1−α)/2, and next αL= (1−α)/2 (e.g.
αU=0.975 and αL=0.025). Successively, equating αL

and αU to Eq. (5), the indices kL, kU can be evaluated. In
practice, kL ¼ min

1≤ k ≤n
binomialðk; n; pð Þ ≥αLÞ and kU

¼ max
1≤ k ≤n

binomialðk; n; pð Þ ≤αU Þ. Finally, the values

kL and kU will be used to select the corresponding
theoretical quantiles v kLð Þ and v kUð Þ, which become

the bounds of the CI. A shortcut to find kL and kU
consists in inverting the binomial distribution, achieving
directly the unknown values. p being the cumulative
probability associated to the quantile to be estimated,
the lower and upper limits of the CI can be computed
iteratively for any quantile just changing the corre-
sponding value of k and p. Unfortunately, the method
has a drawback; in fact, in some cases, k could not exist
as an exact integer value such that binomial(k, n, p) =α;
consequently, the user could be forced to use an

approximate value. Applying the binomial approach in
order to estimate the quantile confidence limits is gen-
erally known as the pointwise method (Hollander and
Wolfe 1999).

Filliben’s method

There is abundant scientific literature about plotting posi-
tions’ best mathematical expression. Equation (1) shows
the most used actually in practice, but there are a large
number of different equations. The following one allows
estimating the median empirical and theoretical quantiles:

pi ¼
1− 0:5 1=nð Þ

i− 0:3175ð Þ= nþ 0:365ð Þ
0:5 1=nð Þ

8<
:

i ¼ 1
i ¼ 2; 3; …; n−1
i ¼ n

ð6Þ
and

c0 ið Þ ¼ Φ −1 pið Þ ð7Þ
Filliben provided a quantitative statistics for testing the

normal hypothesis. He simply used the linear correlation
coefficient between the CDF and EDF quantiles. This
parameter, usually called Filliben’s correlation coefficient
or probability plot correlation coefficient (PPCC), just
arises from the concept of the Q-Q plot and overcomes
the visual inspection providing a single numerical value
able to quantify the goodness of fit. Filliben suggested that
the advantage of the PPCC rests in its conceptual simplic-
ity; the joint use of the Q-Q plot and correlation coefficient,
which measures the linear agreement of an EDF with a
CDF, is the best suited to accomplish the task of comparing
quantitatively the theoretical CDF with the EDF.
Regarding the nature of Filliben’s test, since perfect nor-
mality implies perfect correlation (i.e. a correlation value of
1), we are only interested in rejecting normality for corre-
lation values that are too low. That is, this is a lower one-
tailed test. The computed PPCC is finally compared with
the critical value uniquely individuated by n and α of the
table provided by Filliben (1975) for testing its signifi-
cance. The table of critical values was improved succes-
sively by Looney and Gulledge (1985) and Devaney
(1997); the table provided byDevaney is that actually used
in the present work.

What is said above entails that Filliben’s method does
not allow one to define directly the CLB lines.
Nevertheless, they can be drawn approximately by suitable
methods such as resampling or bootstrapping (Rochowicz
2010). Among several available bootstrapping techniques,
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the non-parametrical technique has been applied in this
work because of its straightforward implementation in MS
Excel.

Final remarks

A problem can rise in representing graphically a normality
test; in fact, when the dataset size n overcomes a certain
threshold, the cumulative probability of some quantiles
located at the extreme of the two tails of the EDF becomes
too low or too high. Consequently, the computation of the
lower or the upper CI limit of an extreme quantile can
result undetermined. As an example, for the K-S case, the
basic test relationship is the following:

1−α ≈ P Fn vð Þ−Dα nð Þ≤Φ vð Þ≤ Fn vð Þ þ Dα nð Þ; ∀v½ � ð8Þ
When the Fn(v), corresponding to the cumulative prob-

ability of an extreme left tail empirical quantile, is too close
to zero, the value Fn(v)−Dα(n) can be negative. In such
case, theCI lower limit should be equated to−∞ (or, better,

to − |A| with A an arbitrarily large value), since lim
x→0

Φ−1 xð Þ
→−∞. Analogously, at the opposite tail, when Fn(v)+
Dα(n) is greater than one, the CI upper limit should be
equated to + ∞ (or, better, to |A| with A an arbitrarily large

value), since lim
x→1

Φ−1 xð Þ →þ ∞. In practice, since the Q-

Q plot needs finite values to be drawn, consequently, the
points with CIs partially unbounded will not be represent-
ed. Notwithstanding that, such points will be accounted for
in the output computational sheets. Finally, GTest is de-
signed for managing the presence of BN/A^ (or −999.00)
occurrences in the dataset.

GTest validation

The four methods provided by the proposed software
have been validated at the 5 % significance level using
400 simulated Gaussian and non-Gaussian datasets in
order to verify whether and how they provide the ex-
pected results. Table 1 summarizes the validation results
expressed as a percentage ratio of test successes.

TEST1 runs the software with 200 Gaussian series
(null hypothesis true), so we would expect the software
to almost always accept the null hypothesis in accor-
dance with the given level of significance. On the other
hand, TEST2 runs it with 200 non-Gaussian series (null

hypothesis false), so the software should be able to reject
the null hypothesis a considerable number of times.

Finally, a TEST3 has been performed on real-world
data. The selected test dataset is of particular interest
since the data are expressed as percentage values, a kind
of data often misused by practitioners.

Running of GTest

GTest is an MS Excel workbook, in .xlsm format, con-
taining the VBA macro, and three service worksheets
containing tables for computing critical values for each
allowed test. These sheets are for internal software use
only and they must not be deleted or modified.

Executing a GTest run is actually easy and consists in
the following few, trivial steps:

1. Open GTest workbook.
2. Create a new worksheet.
3. Paste or type the dataset values in the active

worksheet.
4. Run the macro.

At step 3, some rules need to be respected:

1. Even though GTest performs only univariate tests,
multivariate datasets can be provided at this step.

2. The dataset needs to be organized as a case (rows)
by variable (columns) table.

3. The maximum dataset size is constrained only by
the spreadsheet limits.

4. Theminimum allowed number of variable cases is six.
5. Variables (columns) do not need to have the same

number of cases.
6. The first row of the dataset must contain variable

headers.
7. Only quantitative variables are allowed.
8. Cases are not allowed for empty data.

Table 1 Simulated data
results Positive trials

Test 1 Test 2

Method 1−α (%) 1−β (%)

K-S 100 30.5

Binom 97 74.5

Stabplot 96.5 78

Filliben 94 99
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Once the macro starts (step 4), a dialogue mask
appears (Fig. 1), where the variable to be tested, the test
method and the α level of significance can be input and
the procedure started.

The test procedure consists in the following two com-
putational modules. The first one standardizes the EDF
values (e ′ (i)) and computes the CDF quantiles (c ′ (i)), while
the second calculates the CLBs’ ordinates at each CDF
quantile. The results of these computational modules are
saved in two separate spreadsheets, respectively.

Finally, a third module of GTest is dedicated to plotting
the computed results (Fig. 2). As Fig. 2 clearly shows,
GTest creates a new plot sheet showing the theoretical
distribution (standardized Gaussian) as the bisector of the
first quadrant, the standardized empirical quantiles as a
scatterplot, and the related lower and upper CLBs.

The easy visual decision rule for accepting or
rejecting the Gaussian hypothesis consists in evaluating
whether the EDF scatterplot is completely within the
acceptance region or whether even a single point falls
outside the CLBs. In the first case, the EDF is consid-
ered statistically equivalent to the Gaussian distribution
at the given level of significance.

Case study

GTest has been validated using 400 simulated Gaussian
and exponentially distributed datasets. GTest validation

consisted in assessing the rate of success in recognizing
the actual distribution. Afterward, a real case application
was performed. The dataset used for testing the software
consists of soil data: seven data series of soil parameters
were used: content of clay (%), silt (%), sand (%) and
organic matter (OM) (%), field capacity (FC) (%), per-
manent wilting point (PWP) (%) and pH (−). Soil data
(2144 values in total) were obtained from the soil-
parameter database of Apulia Region (southeastern
Italy) and other datasets produced in various public
research projects (Castrignanò et al. 2010). In particular,
the dataset refers to a plain area of about 1979 km2

called Capitanata (Fig. 3), which is the main agricultural
area in the region. The processed data belong to the B
soil horizon. The initial depth of the considered horizon
ranges from 15 to 70 cm and the final depth from 38 to
110 cm. The objective of the real-world test is to com-
pare the behaviour of the implemented methods against
the specificity of soil data.

Results

TEST1 results

Table 1 shows the results of TEST1 in the second
column. As already mentioned above, all the 200 data
series of this test are Gaussian by construction, so it is
now possible to estimate the probability of a type I error

Fig. 1 GTest input mask
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α (i.e. the probability of rejecting the null hypothesis
when it is true) or rather its complementary prob-
ability (of accepting the null hypothesis when it is
true) and to compare it with the assigned level of
significance.

As Table 1 clearly shows, the K-Smethod accepts the
null hypothesis for all the tested series, while for the
binomial, stabilized Plot and Filliben methods, it is
accepted in 97, 96.5 and 99 % of cases, respectively.
Therefore, in general, the software is effectively capable
of assessing the Gaussian behaviour of a given dataset,
given that the percentage of positive trials is always
high, independently of the method.

These last three methods seem to perform better than
the K-S method, as the related positive trials are almost
equal in percentage terms to the test level of significance
(95 %). In contrast, the K-S method behaves as a con-
servative method. However, this is a well-known char-
acteristic of this specific method, as reported in the
technical literature (Steinskog et al. 2007).

In conclusion, we can say that the proposed software
passed TEST1 while also correctly highlighting the
specific characteristics of any of the methods applied.

TEST2 results

Column III of Table 1 shows the results of TEST2. This
time all the data series are non-Gaussian (exponen-
tial with parameter λ= 1) by construction, so it is
now possible to assess the probability of the type
II error β (the probability of accepting the null
hypothesis when it is false), or rather its comple-
mentary probability (of rejecting the null hypothe-
sis when it is false), which is useful for evaluating
the power of any test (Greene 2000). Obviously,
we now expect the number of positive trials, in
percentage terms (1−β), to be high.

In this case, the Filliben method seems to perform
better than the others, given the high value of
positive trials (99 %). The binomial and stabilized
plot methods also perform well, producing, respec-
tively, positive trials in 74.5 and 78 % of cases.
Finally, the K-S method exhibits less power than
the other methods, producing positive trials in only
30.5 % of cases, as expected (Razali and Wah
2011). Consequently, in this case too, we consider
TEST2 passed.

Fig. 2 Normal Q-Q plot
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TEST3 results

We did not have a priori knowledge of the related EDFs.
Nevertheless, we expected an almost normal behaviour of
most of the distributions. In fact, according to Table 2, all
variables except pH show values of skewness and kurtosis
near zero and very similar values of the mean and median
(in this case including Ph), suggesting an approximately
symmetrical behaviour of the EDFs. From Table 3, it is
possible to summarize some characteristics of the four
methods implemented. Let us premise that the number of
tests is too low to make statistically meaningful inferences,
but from a purely descriptive standpoint, it is evident that
the stabilized plot method behaves differently from all of
the othermethods. In fact, the stabilized plotmethod shows
the normality of the analysed datasets inmore than 85%of

the cases. On the contrary, the remaining methods show
the normality in only 43 % of the cases, even though the
departure from the reference distribution is, in most of the
cases, very slight. The different behaviour of the stabilized
plot method depends jointly on the kind of processed data
(percentage data) and the functional data transformation
used by the method itself. As shown by Reinard (2006),
percentage data cannot vary freely because they range
from 0 to 100 %, so an arcsine-square root transformation
will convert percentages into scores that are less skewed
than the original data, equalizing the local variance of data.
The example used showed that there are methods for
testing normality that are more suited to the task at hand
than others depending on the data to be processed: the
sample size, degree of uncertainty contained in the mea-
surements, and kind of data itself. Let us now summarize

Fig. 3 Study area—Capitanata
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the results of all the tests. First of all, it is evident that the
tests carried out show the different behaviours of the four
methods. However, it is not surprising that different
methods based on different theories produce different re-
sults, that is, different acceptance regions. Concerning the
K-Smethod, a strong tendency of thismethod to accept the
null hypothesis is evident, even when it is false (high value
of positive trials for TEST1 and low value for TEST2).
However, the theory explains that this method strongly
requires accurate knowledge of the parameters of the
reference distribution (mean and standard deviation in the
case of a normal distribution), which is seldom available in
practical applications, when parameters are obviously es-
timated from samples. In this case, the K-S method tends
to be conservative (i.e. the actual level of significance is
greater than that given, and thus, the null hypothesis is
rejected less often than would theoretically be correct); this
may be a reasonable explanation for the greater propensity
of the K-S method to accept the null hypothesis of nor-
mality compared with the other methods for both simulat-
ed and true data. The binomial method and, in particular,
the stabilized plot method definitely behave better than the
first one, although they are probably sensitive to the length

of the data series (number of cases). The Filliben method
deserves a separate mention, because it appears to be more
restrictive than the other methods when acting on true data.
With regard to the power of respective tests, it is known
that a test with a power greater than 0.8 (or β≤0.2) is
considered statistically robust (Mazen et al. 1985).
Therefore, on comparing the results with information
known from the literature, particularly Michael (1983)
and Filliben (1975), it is possible to see that the methods
implemented actually perform well, with the exception of
the K-S method (D’Agostino and Stephens 1986), which
was, however, chosen for its widespread use, as mentioned
earlier. In Fig. 4 one can appreciate the magnified detail of
the overlap of all four acceptance regions provided by the
implemented methods for the clay variable. A wider or
tighter acceptance region characterizes more or less con-
servative methods in accordance with their theoretical
features. Table 4 summarizes the more appropriate use of
the four methods according to the user’s objective or the
kind of dataset to be tested.

Finally, the results from the tests show that the soft-
ware presented:

& Has a strong capacity to provide robust information
about the normal behaviour of a given distribution

& Produces a close correspondence of the results of
methods implemented with their theoretical
description

& Provides a clear graphical representation in addition
to an extremely easy-to-use interface

This leads us to conclude that the software presented
in this paper can be considered a solid, reliable tool for
assessing the normality of a given distribution.

Table 2 Report of the main descriptive statistics regarding the seven data series of soil parameters

Statistics Sand (%) Silt (%) Clay (%) OM (%) pH (−) FC (%) PWP (%)

Mean 25.80 32.15 42.04 1.82 8.03 40.86 24.22

Std error 0.84 0.78 0.82 0.04 0.03 0.34 0.34

Median 24.00 34.00 42.00 1.72 8.08 41.09 24.49

Std deviation 14.95 13.94 14.70 0.80 0.39 6.08 5.93

Kurtosis 0.64 −0.75 −0.35 0.63 5.21 −0.38 −0.40
Skewness 0.76 −0.18 0.06 0.40 −1.10 −0.24 −0.38
Range 85.00 64.00 76.00 5.21 3.02 30.91 27.03

Minimum 0.00 1.00 7.00 0.20 6.09 22.92 7.10

Maximum 85.00 65.00 83.00 5.41 9.11 53.83 34.13

Count 320 320 320 373 180 312 312

Table 3 Results of all methods applied to the seven data series of
soil properties are reported

Sand Silt Clay OM Ph FC PWP

K-S NG NG G G NG G NG

Binom NG NG G G NG G NG

Stabplot G NG G G G G G

Filliben NG NG G G NG G NG

G Gaussian, NG not Gaussian

138 Page 10 of 12 Environ Monit Assess (2016) 188: 138



Conclusions

This paper presents software for testing the assumption
of the normality of a given empirical distribution func-
tion (EDF) in graphical form. The software has been
developed in VBA for MS Excel© and provides results
in the form of normal Q-Q plots with the related confi-
dence limit bands (CLBs), which are assessed by means
of four different algorithms. The acceptance region
bounded by the CLBs makes the understanding of the
test straightforward and objective. The four algorithms
come from different approaches and offer different
levels of accuracy. The first is based on the binomial

distribution and the second on theKolmogorov-Smirnov
test, while the last one represents the so-called stabilized
plot based on a suitable data transformation. A fourth
method is also provided, based on Filliben’s probability
plot correlation coefficient where the Q-Q plot is asso-
ciated with a bootstrapped acceptance region. The soft-
ware GTest runs with a simple graphical interface which
allows the user to select one of the four available
methods, define the α level of significance and perform
calculations using the powerful statistical tools available
in MS Excel©. The possibility of comparing results
from different tests should allow the user to be confident
of accepting the right hypothesis. Furthermore, given
that real data can be affected by different degrees of
error and uncertainty, the user can decide to apply con-
servative or restrictive methods on a case-by-case basis
with regard to the supposed level of uncertainty.

This paper also presents comprehensive software
testing based on 400 runs of simulated data series whose
distributions were respectively normal and exponential
by construction. The tests show the software to be
particularly affordable and reliable while providing re-
sults as expected. The four graphical methods behaved

Fig. 4 Comparison of methods’ acceptance regions

Table 4 Suggestions for the application of the proper test to a
given dataset or objective

Method Objective

K-S Find an approximate normal dataset

Binom Multipurpose

Stabplot Test a percentage dataset

Filliben Find a strict normal dataset
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as described in the scientific literature. Specifically, the
binomial and stabilized plot methods perform very well,
while the K-S method behaves conservatively, as ex-
pected. Finally, the implementation of Filliben’s method
seems to behave substantially well. A practical applica-
tion of the proposed software on a dataset of seven soil
properties shows good results according to the expected
behaviour of the soil variables. In particular, the stabi-
lized plot was shown to be very suitable for application
to percentage soil data, showing the usefulness of hav-
ing different tools to tackle the same problem. In the
light of the reported results, the authors consider the
software to be extremely reliable as well as easy to
use. Nevertheless, further studies are now underway in
order to improve the software’s computational power,
user interface and graphical appearance.
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