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Abstract Spatial correlations and soil nutrient variations
are important for soil nutrient management. They help to
reduce the negative impacts of agricultural nonpoint
source pollution. Based on the sampled available nitrogen
(AN), available phosphorus (AP), and available potassium
(AK), soil nutrient data from 2010, the spatial correlation,
was analyzed, and the probabilities of the nutrient’s abun-
dance or deficiency were discussed. This paper presents a
statistical approach to spatial analysis, the spatial correla-
tion analysis (SCA), which was originally developed for
describing heterogeneity in the presence of correlated
variation and based on ordinary kriging (OK) results.
Indicator kriging (IK) was used to assess the susceptibility
of excess of soil nutrients based on crop needs. The kriged
results showed there was a distinct spatial variability in the
concentration of all three soil nutrients. High concentra-
tions of these three soil nutrients were found near Anzhou.
As the distance from the center of town increased, the
concentration of the soil nutrients gradually decreased.
Spatially, the relationship between AN and AP was neg-
ative, and the relationship between AP and AK was not
clear. The IK results showed that there were few areas
with a risk of AN and AP overabundance. However,
almost the entire study region was at risk of AK over-
abundance. Based on the soil nutrient distribution results,
it is clear that the spatial variability of the soil nutrients

differed throughout the study region. This spatial soil
nutrient variability might be caused by different fertilizer
types and different fertilizing practices.
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Introduction

As society continues to develop, water quality has become
a topic of increasing worldwide environmental concerns
(Diaz and Rosenberg 2008; Chen et al. 2009; Giri et al.
2012; Chen et al. 2012a). Generally, two types of pollu-
tion sources are defined: point source (PS) and nonpoint
source (NPS) (Ritter and Shirmohammadi 2001; Liu et al.
2009). NPS pollution contributors include forestry, urban
runoff, mining/construction, and agriculture. The largest
contributor to NPS is agriculture. Recently, the loss of
nitrogen (N) and phosphorus (P) from agricultural land via
runoff has increased rapidly in comparison to that from
industrial and residential lands (De Wit et al. 2000;
Reungsang et al. 2005; Chen et al. 2012b). In the US, as
much as 60 % of river pollution results from agriculture
(Environmental Protection 2008). Pollution prevention
requires a clear understanding of the impact of nutrient
sources on water quality at a watershed level (Lam et al.
2010; Liu et al. 2014b).

To reduce the negative impacts of agricultural NPS
pollution, Best Management Practices (BMPs) have been
developed by the USA since the 1960s (Logan 1993).
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Many studies have shown that BMPs effectively reduce
the NPS pollutant loads from agricultural areas
(Maringanti et al. 2011; Panagopoulos et al. 2011; Liu et
al. 2013). BMPs include structures, such as rain barrels or
shoreline buffers, and nonstructural management practices,
such as changes in land use and fertilizer application
management (Lam et al. 2011; Liu et al. 2013). Unlike
structural BMPs, most nonstructural BMPs are cost-
effective and flexible. Therefore, land management can
be applied as an effective strategy for controlling agricul-
tural NPS pollution in many regions (Cook et al. 1996;
Monaghan et al. 2007; Lee et al. 2010; McDowell et al.
2011; Thorburn and Wilkinson 2013).

Soil nutrient management is one land management
strategy (Liu et al. 2013). Scientific approaches to soil
nutrient management are based on the spatial variability
of soil nutrients, which is obtained by analyzing soil
nutrient samples. Scientific information on the spatial var-
iability and distribution of soil properties is critical for
understanding ecosystem processes and making sustain-
able soil, crop, and environmental management decisions
(Fu et al. 2010; Tesfahunegn et al. 2011). In recent years, a
mountain of work has been conducted regarding arable
soils. These studies have focused on the spatial variability
of soil properties, in the context of water quality protection
and food security (Castrignanò et al. 2000; Tavares et al.
2008; Chaplot et al. 2010; Kerry et al. 2012).

Characterizing the spatial variability and distribution of
soil properties, as well as information about soil properties,
is needed at unsampled sites (Lark and Ferguson 2004). In
practice, ordinary kriging is the interpolator to estimating
the soil variables at unsampled sites using data at adjacent
sample points. However, the spatial prediction of soil
nutrients typically involves uncertainties, which must be
considered when decisions regarding future management
are made (Goovaerts 2001). Such management decisions
are often based on the threshold values of a soil property.
When a landmanager interprets a kriged soil property map
with respect to (a) critical threshold value(s), the uncertain-
ty of these estimations becomes important (Lark and
Ferguson 2004). Indicator kriging (IK) is used to estimate
the probability of values that fall within specific class
intervals by incorporating the uncertainty of the values of
the variables at unsampled locations (Meirvenne and
Goovaerts 2001; Triantafilis et al. 2004; Lee et al. 2007;
Arslan 2012).

Correlation is a term that refers to the strength of a
relationship between two variables. A large correlation
coefficient between variables may imply that these

variables come from the same pollution source
(Tukura et al. 2011). However, most multivariate corre-
lation analysis studies have focused on conventional
correlation, which does not consider spatial variability
(Allen et al. 2009). The results of such analyses may
lead to mismanagement when the correlation varies in
different areas. A new method should be developed to
analyze the multivariate spatial relationship.

Based on the sampled soil nutrient data of available
nitrogen (AN), available phosphorus (AP), and avail-
able potassium (AK) in a crop field near Baiyangdian
Lake in 2010, the key objectives of this work were to (1)
develop a method of spatial correlation analysis (SCA),
(2) calculate the spatial correlation coefficient using
SCA, and (3) analyze the probability of abundance
using geostatistics.

Material and methods

Study region

The study region covers an area of 15.33 km2 near
Baiyangdian Lake, which is located in the middle of
the North China Plain (Fig. 1). The center coordinates of
the study region are 115.85 E, 38.88 N. The region’s
climate is characterized by continental monsoons, and
the average annual precipitation is 556 mm. There is a
distinct seasonality in the annual rainfall pattern, with
approximately 80% (445 mm) occurring from June to
September. The mean annual air temperature is approx-
imately 7.5 °C. The soil is calcareous cinnamon soil,
which is formed by alluvial flood. The typical cropping
system in the region is rotational winter wheat and
summer maize cultivation (Liu et al. 2014a).

In this area, long-term human activities have led to
changes in the quality and soil fertility status of cultivated
land. In recent decades, the aquatic environment has
changed drastically, and one of the major pollution sources
is NPS (Chen et al. 2008; Zhao et al. 2010). Most studies
have focused on water eutrophication, heavy metals, and
organic contaminants (Dou and Zhao 1998; Zhao et al.
2011; Gao et al. 2013). Few studies have examined the
impacts of soil nutrients on eutrophication.

Sample collection and analysis

A total of 105 samples were taken from the topsoil (0–
200 mm) of the study region in May 2010 based on a
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systematic grid (Fig. 1). The distance between each grid
point is approximately 500m. A 10m×10m square field
was designed to sample topsoil at each grid point. A
single 5-cm-diameter core was collected at four corners
and the center of each square field. Then, the five samples
at each square field were mixed as the sample of the grid
point. The sampling site geo-positions (latitude and lon-
gitude) in each square center were determined using GPS
equipment (Garmin GPSMAP 78 s, precision: 3 m).

All soil samples were air-dried and ground to pass
through a 2-mm sieve, which is necessary for avail-
able nitrogen (AN), available phosphorus (AP), and
available potassium (AK) analyses. The AN was
measured using the Kjeldahl method. The AP
(Olsen-P) was extracted using 0.5 mol L−1 NaHCO3

(pH=8.5) and was determined using the molybde-
num blue method. The AK was extracted using
1.0 mol L−1 NH4OAc (pH= 7) and was measured
using flame emission spectrometry. Sampling and
chemical analyses were conducted based on standard
methodologies (Lu 2000). Strict quality control was
operated in the experiment. Quality assurance and
quality control were assessed using duplicates, meth-
od blanks, and standard reference materials.

Methods

Distribution maps of the element concentrations of all
species were determined by ordinary kriging (OK)

interpolation. OK provides estimation at an unobserved
location of a soil variable, z, based on the weighted
average of adjacent observed sites within a given area
(Webster and Oliver 2001; Triantafilis et al. 2004). OK
has been widely used in the fields of mining, ecology,
and environment science (Matheron 1965; Lloyd and
Atkinson 2001; Rufino et al. 2005; Daya 2012).

Ordinary kriging is estimated by a linear combination
of the observed values with weights:

Z* x0ð Þ ¼
Xn

i¼1

λiZ xið Þ ð1Þ

where Z*(x0) is the estimated value of Z at the point x0,
Z(xi) is the sampled value at the point xi and λi is the
weight placed on Z(xi).

The weights of OK are derived from kriging equa-
tions using a semivariance function. An unbiased esti-
mator of the semivariance function is equal to half the
average squared difference between paired data values:

γ hð Þ ¼
XN hð Þ

i¼1

z xið Þ−z xi þ hð Þ½ �2=2N hð Þ ð2Þ

where γ(h) is the semivariance value at distance interval
h;N(h) is the number of sample pairs within the distance
interval h; and z(xi+h) and z(xi) are sample values at two
points separated by the distance interval h.

The spatial correlation analysis (SCA) method is
similar to the conventional correlation analysis, but
the variables of SCA are raster data rather than

Fig. 1 Study area and sample
sites
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sample data. If X and Y are raster data, the spatial
relationship analysis coefficient is calculated by:

r ¼ Cov X ; Yð Þ
D Xð Þ � D Yð Þ ð3Þ

where r is the correlation coefficient raster; D(Y)
and D(Y) are the variances of data X and Y; and
Cov(X, Y) is the covariance of data X and Y. A
3 × 3 neighborhood is set in the process of the
calculations. X and Y are the OK interpolation
results in this study.

Indicator kriging (IK) was used to identify areas
where nutrient concentrations were higher than a thresh-
old value, ZK. IK is a kriging analysis performed on a
binary-transformed sample population (Marinoni 2003),
which involves an initial reclassification of each vari-
able, Z(u), to produce binary variables (Goovaerts
1997), as follows:

I u; ZKð Þ ¼ 1; if Z uð Þ≤ZK ; K ¼ 1; 2;…;m
0; otherwise

�
ð4Þ

At an unsampled location, u0, the indicator kriging
estimator is written as:

I* u0; ZKð Þ ¼
Xn

j¼1

λ jI u j; ZK

� � ð5Þ

where I(uj;ZK) represents the values of the indicator at
sampled locations, uj, j=1,2,3,…,n, and λj is the weight
assigned to I(uj;ZK) in the estimation of I*(u0;ZK).

Nutrition criteria

Crops, like all other living things, require food for
growth and development. Proper nutrition is essential
for satisfactory crop growth and production. Many ag-
ricultural experts have researched the impacts of differ-
ent nutrient levels on the growth and production of
crops, to evaluate the richness or scarcity of nutrients
in relation to crop needs. Some studies have led to the
establishment of nutrition criteria (Silva and Uchida
2000; Gulser 2005). Based on previous studies (Yang
and Sun 2008; Zhang 2011) near our study region, the
nutrition criteria of different nutrient levels in the region
are listed in Table 1.

Results and discussion

Basic statistical analysis

The average AN and AP contents were 75.36 and
10.45 mg/kg, respectively, indicating that AN and AP
were sufficient for crop needs without considering the
spatial variability (Table 2). The average AK content
was 208.75 mg/kg, which is more than crop needs in the
study area, without accounting for the spatial variability.
The skewnesses of all the nutrients were less than 1.
Therefore, all the nutrients could be regarded as normal
distribution.

The basic correlation analysis results showed that
there was a clear relationship between these three nutri-
ents based on the sample data (Table 3).

Spatial variability and correlation analysis

The exploratory spatial data analysis (ESDA) was
a prerequisite for carrying out the spatial analysis
of nutrients by use of geostatistical analyst exten-
s ion of ArcGIS. On examining empir ical
semivariogram, data showed spatial dependence
(Fig. 2). Then the experimental variograms of
these three nutrients were fitted by spherical
models, and the prediction results and prediction
errors were calculated. In general, the spatial dis-
tribution of soil nutrients was heterogeneity. The
prediction errors were very low in the whole re-
gion. Compared with the prediction results and the
prediction errors, higher values of predicted con-
centration were always companied with higher
values of prediction errors.

To spatially specify whether the soil nutrients were
sufficient for crop growth and production in the study
region, the nutrient levels were evaluated based on the
nutrition criteria and OK interpolation results (Fig. 3).

In general, the AN concentration was sufficient for
crop growth and production. Level 3 AN covered more

Table 1 Evaluation criteria of soil nutrients (mg/kg)

Level 1 Level 2 Level 3 Level 4 Level 5

AN 0–30 30–70 70–90 90–120 >120

AP 0–5 5–10 10–20 20–60 >60

AK 0–40 40–80 80–100 100–150 >150

For crop Very low Low Sufficient High Too high
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than 60.00 % of the area and was mainly distributed in
the eastern and western portions of the study region. The
majority of the area was categorized as level 2 AP,
which was also mainly distributed in the eastern and
western portions of the study region, with a proportion
of 54.24 %. The majority of the region was categorized
as level 5 AK, which encompassed 89.62 % of the area.

The high-concentration patterns of these three
soil nutrients were mainly found near Anzhou.
As the distance from the town increased, the soil
nutrient concentrations gradually decreased. The
high soil nutrient concentrations near Anzhou
may be related to the higher incomes of farmers
who live in the town, compared to farmers who
live in villages. Expecting to obtain higher crop
output, the higher-income farmers are willing to
pay more money to buy additional fertilizer. The
high concentration patterns of AN in the eastern
study area may be due to the fertilizing habits of
nearby farmers. Other researchers have also found
that tillage and fertilizer conditions, cropping sys-
tems, and soil conservation practices can act as
partial sources of spatial soil nutrient variability
(Tesfahunegn et al. 2011).

Based on the OK results, the spatial correlation re-
sults of these three soil nutrients showed that the rela-
tionship between AN and AK was still positive. How-
ever, the relationship between AN and AP was negative,
and the relationship between AP and AK was not clear
when the spatial characteristics were considered (Table
4). The results differed from the basic results in Table 3
because the basic correlation coefficient cannot reflect
spatial variations.

In addition, the spatial distributions varied (Fig. 4).
The positive relationships were mainly distributed in the
eastern and western portions of the study area (Fig. 4). A
positive relationship means that the main fertilizer used
in that region may be compound fertilizer, which con-
tains multiple nutrients in each individual granule.
These results would be helpful for site-specific soil
nutrient management.

Probability analysis of abundance or deficiency

The spatial distributions of the conditional probability
that the concentration of soil nutrients exceeded the
upper threshold showed that the spatial distributions of
the probability of overabundance were similar to the OK
results (Fig. 5). A comparison of the quantiles of upper
limits of level 3 in the measured nutrient concentrations
frequency distributions showed that there were few
areas with an overabundance of AN and AP. However,
almost the entire study region exhibited an overabun-
dance of AK.

Site-specific soil management

From the results of the soil nutrient distribution, it
is clear that the spatial variability of the soil nu-
trients differed throughout the study region. High-
concentration patterns of these three soil nutrients
were mainly found near Anzhou. The spatial vari-
ety of the soil nutrients involves uncertainties,
which must be considered when decisions for fu-
ture management are made.

Fertilizer management was the key in the soil man-
agement. Most fertilizer was added to the soil to supply
plant nutrients every year in the study region. Conser-
vative estimates report that 30 to 50 % of crop yields are
attributable to natural or synthetic commercial fertilizers
(Aulakh and Pasricha 1998; Gallichand et al. 2003;
Stewart et al. 2005; Bandyopadhyay et al. 2010; Ma et
al. 2012). Therefore, fertilizer management should be
cared in the study region.

Table 2 Descriptive statistics of soil nutrients

Soil nutrients Min(mg/kg) Max(mg/kg) Mean(mg/kg) Std. dev(mg/kg) Skewness

AN 45.24 115.27 75.36 14.04 0.38

AP 2.54 45.10 10.45 6.94 0.85

AK 76.62 713.42 208.75 90.42 0.71

Table 3 Conventional correlation coefficients of soil nutrients

Soil nutrients AN AP AK

AN 1

AP 0.266 1

AK 0.416 0.394 1

S0.01 = 0.25
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In the regional geochemical field, correlation analysis
is generally used to identify different sources based on
the correlation coefficient of sampled data (Dou and
Zhao 1998). In this study, the positive relationship in
eastern and western part of the study area means that the
soil nutrient in these regions might come from same
fertilizer, which contains multiple nutrients in each in-
dividual granule. Identification of fertilizer was the pre-
requisite for site-specific soil nutrient management.
However, canonical correlation analysis was not appro-
priate here because it did not consider the spatial
distribution.

Furthermore, the existing fertilizer application in the
study region is identical in all fields, based on manage-
ment systems, which does not consider the spatial var-
iability of soil properties. This has resulted in under-
application in areas with low nutrient levels and over-

application in areas with high nutrient levels. Thus, site-
specific soil nutrient management, based on spatial var-
iability, is considered to be the most viable approach to
addressing this problem and to achieving sustainable
agriculture (Fu et al. 2010; Jiang et al. 2011;
Tesfahunegn et al. 2011).

Conclusion

The average contents of AN, AP, and AK were 75.36,
10.45, and 208.75mg/kg, respectively. AN andAPwere
sufficient for the needs of crops and AK exceeded that
need without considering the spatial variety.

In general, the spatial distribution of soil nutrients
was heterogeneity and was mainly found near Anzhou.
This heterogeneity of soil nutrients caused the same

(a) Experimental variograms

(b) Prediction results

(c) Prediction errors

AN

AN

AN

AP

AP

AP

AK

AK

AK

Fig. 2 a Experimental variograms, b prediction maps, and c prediction errors of soil nutrients
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spatial variation of evaluation and conditional probabil-
ity that the concentration of soil nutrients exceeded the
upper threshold. The prediction errors were very low in
the whole region. Higher values of predicted concentra-
tion were always companied with higher values of pre-
diction errors. The spatial variety of the soil nutrients
involves uncertainties, which must be considered when
decisions for future management are made.

Fig. 3 Spatial distribution and evaluation patterns of soil nutrient:
available nitrogen (AN), available phosphorus (AP), and available
potassium (AK)

Table 4 Statistic results of spatial correlation coefficients

Soil nutrients AN AP AK

AN 1

AP −0.472 1

AK 0.446 −0.042 1

S0.01 = 0.25

Fig. 4 Spatial distribution of correlation coefficients among avail-
able nitrogen (AN), available phosphorus (AP), and available
potassium (AK)
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There was a clear positive relationship between these
three nutrients based on the sample data. However, the
spatial relationship between AN and AP was negative
and the spatial relationship between AP and AKwas not
clear when the spatial characteristics were considered.
The spatial correlation analysis could be helpful for site-
specific soil nutrient management. However, canonical

correlation analysis was not appropriate here because it
did not consider the spatial distribution.
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