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Abstract Hyperspectral estimation of soil organic matter
(SOM) in coal mining regions is an important tool for
enhancing fertilization in soil restoration programs. The
correlation—partial least squares regression (PLSR) meth-
od effectively solves the information loss problem of cor-
relation—multiple linear stepwise regression, but results of
the correlation analysis must be optimized to improve
precision. This study considers the relationship between
spectral reflectance and SOMbased on spectral reflectance
curves of soil samples collected from coal mining regions.
Based on the major absorption troughs in the 400–
1006 nm spectral range, PLSR analysis was performed
using 289 independent bands of the second derivative
(SDR) with three levels and measured SOM values. A

wavelet-correlation-PLSR (W-C-PLSR) model was then
constructed. By amplifying useful information that was
previously obscured by noise, the W-C-PLSR model was
optimal for estimating SOM content, with smaller predic-
tion errors in both calibration (R2=0.970, rootmean square
error (RMSEC)=3.10, and mean relative error (MREC)
= 8.75) and val ida t ion (RMSEV = 5.85 and
MREV=14.32) analyses, as compared with other models.
Results indicate that W-C-PLSR has great potential to
estimate SOM in coal mining regions.
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Introduction

Soil organic matter (SOM) is an important indicator of
soil quality in coal mining regions. SOM estimation
methods for land reclamation and ecological restoration
plans have therefore been receiving a great deal of atten-
tion (Demirel et al. 2011a, b). A rapid and inexpensive
method for determining SOM content is essential for
evaluating and managing soil resources (Chang et al.
2001). However, most approaches are based on tradition-
al methods, which tend to be time consuming, expensive,
and laborious (Sebag et al. 2006; Seely et al. 2010).
Therefore, the development of fast, inexpensive, accurate,
and real-time tools for measuring SOM content has be-
come a priority task for scholars.
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Hyperspectral remote sensing techniques have the
potential for monitoring SOM content in coal mining
regions because of an abundance of spectral information
(Doetterl et al. 2013; Gomez et al. 2013). Compared
with traditional laboratory methods, hyperspectral tech-
nique is quicker, cheaper, and can eliminate sample prep-
aration and chemical reagents (Chang and Laird 2002;
Demattê et al. 2004). Therefore, there have been many
studies of SOMmonitoringmodels (Croft et al. 2012). For
example, using a regression treemethod and hyperspectral
technology, Gmur et al. (2012) quantified several soil
properties, including SOM. Steffens et al. (2014) applied
Vis-NIR imaging spectroscopy to map SOM quality in
visually homogeneous organic surface layers. Yang
and Li (2013) quantified SOM content through a
combination of soil spectroscopy and multivariate step-
wise linear regression. Nevertheless, there has been
limited research into hyperspectral monitoring of
SOM in coal mining regions, where serious soil deg-
radation is typical.

Among the most efficient methods in constructing
reliable models in the hyperspectral remote sensing field,
partial least squares regression (PLSR) has been the most
frequently used for estimating SOM content. Nocita et al.
(2011) quantified that content via a combination of soil
spectroscopy and PLSR. Vohland et al. (2011) integrated
field visible near infrared spectroscopy and PLSR to
predict SOM. Many scholars have indicated that the
PLSR method can mitigate effects of the multicollinearity
problem and may solve information losses introduced by
multiple stepwise regression (which are attributable to
characteristic band screening) (Janik et al. 2009;
Vohland and Emmerling 2011). However, PLSR analysis
and processing is severely affected by having too many
variables. Still worse, the accuracy of SOM estimates can
be seriously affected by noise (Groenigen et al. 2003). To
alleviate these disadvantages of PLSR, some researchers
have combined it with canonical correlation analysis
(Chen et al. 2013; Kim et al. 2014). However, it is
doubtful that this combined method can be applied to coal
mining regions, because they are unique geographical and
industrial areas with geospatial, social, and environmental
factors that are widespread, comprehensive, dynamic, and
complicated (Demirel et al. 2011a, b; Erener 2011).
Furthermore, some useful information may not be corre-
lated because of noise in the soil spectrum. Methods that
reduce noise while retaining as much useful information
as possible have become an urgent requirement for mac-
roscopic SOM monitoring in coal mining regions.

In the present study, wavelet and correlation analyses
were used to amplify useful information that was previous-
ly obscured by noise. Then, a satisfactory model for SOM
prediction based on soil samples in coal mining
regions was developed by combination with the
PLSR method.

Experiments

Study area

The ecological environment of coal mining regions in
Datong, China, has been seriously damaged, because it is
one of the main coal-producing areas of Shanxi Province,
and the damage is ongoing. The Jinghuagong National
and Xinzhouyao mines are typical coal mining regions of
Datong. They are composed of temperate hill zones, with
widespread salinized chestnut soils. Forty-six samples of
these soils were randomly selected from those collected
from Jinghuagong National Mining Park (40°7′N, 113°7′
E) and a coal mining subsidence region of Xinzhouyao
mine (40°4′N, 113°5′E), at 0–20 cm depths (Fig. 1). All
samples were air dried, crushed to pass through a 2-mm
sieve, and then pulverized by grinding. The samples were
split into two sets, one for chemical analysis and the other
for hyperspectral measurements. SOM contents of the
samples were determined using the potassium dichro-
mate, oxidation-ferrous sulfate titrimetric method (Devi
et al. 2011; Ramesh et al. 2012).

Measurement and data processing

AnASD FieldSpec 3 spectroradiometer fromAnalytical
Spectral DevicesTM was used to obtain the soil reflec-
tance spectrum over the 350–1000 nm and 1000–
2500 nm bands, with increments of 1.4 and 2 nm, re-
spectively. The spectral resolution at 700 nm was 3 nm,
and at 1400 and 2100 nm, it was 10 nm. Each soil
sample filled a container (10-cm diameter and 2-cm
depth) and was illuminated from above with a halogen
lamp. After adjusting the zenith angle and distance
between the light source and soil surface, 10 scans were
made of each sample, and a white reading with a white
panel was taken as calibration. All these operations were
performed in a dark room to avoid the effect of stray
light (Farifteh et al. 2008). Spectral data for each sample
were determined using the mean of the 10 scans.
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Fig. 1 Soil samples collected from a Jinghuagong National Mining Park and b coal mining subsidence region of Xinzhouyao mine

Fig. 2 Flowchart for wavelet-
correlation-partial least squares
regression
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Spectral filtering and transformations

Derivate processing reduces the influence of
low-frequency noise (Ghiyamat et al. 2013; Liaghat
et al. 2014). In the inverse log mode, spectral dif-
ferences in the visible region can be highlighted, and
the influence of illumination variation is minimized
(Wang et al. 2009). In the present work, each orig-
inal spectral reflectance (REF) was transformed into
a first derivative (FDR), second derivative (SDR),
first derivative of the reciprocal logarithm (log(1/
R))', and second derivative of the reciprocal loga-
rithm (log(1/R))".

Gomez et al. (2008) and Lin et al. (2014) found
obvious characteristic absorption troughs using the con-
tinuum removal method, so they could more easily
distinguish absorption bands and build better
PLSR models. The main spectral response areas
of SOM content can be evaluated according to
previous studies and the results of continuum re-
moval processing. Therefore, we used continuum
removal to enhance and standardize spectral ab-
sorption features (Kokaly and Clark 1999).

Wavelets-correlations-partial least squares regression
method

PLSR is a mainstream, linear multiple regression
method that compresses spectral data by reducing
measured collinear spectral variables to a few
non-correlated latent variables or factors (Geladi
and Kowalski 1986; Feret et al. 2011; Singh et al.
2013). The basic aim of PLSR is to build a linear
model:

Y ¼ Xbþ E ð1Þ

where Y is a mean-centered matrix that contains the re-
sponse variables, X is a mean-centered matrix that contains
the predictor variables, b is a matrix that contains the
regression coefficients, and E is a matrix of residuals
(Cho et al. 2007). Wavelet-correlation-PLSR
(W-C-PLSR) is closely related to PLSR, but uses wavelet
and correlation analyses instead of using transformed spec-
tra directly. The original soil spectra have obvious burrs,
revealing a large number of noisy data in the spectral
reflectance curves. This noise is also present in the trans-
formed spectra. Therefore, the transformed data were

Fig. 3 Original reflectance curves (a) and spectral continuum-removed curves (b) of soil samples with differing SOM contents
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decomposed using a wavelet de-noising method based on
the Sym8 matrix function (Liu et al. 2011). Liu et al.
(2011) noted that a three-level decomposition with the
threshold de-noising method based on wavelet analysis
provides an appropriate balance between curve smoothing
and retention of spectral features. To select the optimal
decomposition level, each spectral curve was decomposed
into five layers. After the wavelet analysis, correlation
between the SOM content and transformed spectra was
calculated. The correlation coefficient equations are

r ¼
X N

i¼1
Ri λ j

� �
−R λ j

� �� �
Si−S

� �
X N

i¼1
Ri λ j

� �
−R λ j

� �� �2X N

i¼1
Si−S

� �2
� �0:5 ð6Þ

where N is the number of soil samples, Ri(λj) is trans-
formed spectral reflectance at wavelength j, Si is the

corresponding measured SOM value, R λ j

� �
denotes

the sample mean of {Ri(λj)}i=1
N , and S is the sample

mean of {Si}i=1
N .

Based on the main spectral response areas of SOM
content obtained through previous studies and

continuum removal, sensitive bands with significant
correlation coefficients (P<0.01) were selected for fur-
ther analysis. Lastly, PLSR analysis was performed
using the selected bands and measured SOM values.
The W-C-PLSR flowchart is shown in Fig. 2.

By carefully combining wavelet analysis, correlation
analysis, and PLSR, the W-C-PLSR method can high-
light subtle information that was obscured by noisy data,
so as to take full advantage of useful spectral informa-
tion and enhance accuracy.

Establishment and verification of the model

Thirty soil samples were randomly selected to construct
the model. The remaining 16 samples were used for
verification. Stabilities and accuracies of all the models
were determined by the coefficient of determination
(R2), root mean square error of calibration (RMSEC),
and mean relative error of calibration (MREC).
Predictive capabilities were evaluated by root mean
square error of validation (RMSEV) and mean relative
error of validation (MREV). An effective model should

Fig. 4 De-noised first-derivative spectral reflectance curve (FDR) under different wavelet decomposition scales (b–f), compared with the
initial FDR (a)
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have high R2, low RMSE (RMSEC and RMSEV), and
small MRE (MREC and MREV).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X N

i¼1
Si−Si

� �2
r

ð2Þ

MRE ¼ 1

N

X N

i¼1

Si−Si
			 			

Si
ð3Þ

where Si is the measured value, Si is the predicted value,
and N is the number of validation samples.

Results and discussion

Interpretation of soil spectral reflectance

Differences of spectral reflectance between spectra and
samples with varying SOM content (11.45, 8.07, 8.78,
and 6.92 mg/kg) are shown in Fig. 3a. This figure
indicates that soil reflectance generally decreases with
increasing SOM content. The SOM of 11.45 showed
lower reflectance values than the others, probably

because of its greater SOM content. Spectral
continuum-removed curves (Fig. 3b) show seven major
absorption troughs at 400–592, 609–685, 707–813,
826–1006, 1365–1531, 1850–2056, and 2146–
2241 nm. Additionally, there were three remarkable
water absorption peaks at 1413, 1918, and 2211 nm.
Because of apparent differences of spectral characteris-
tics caused by SOM, spectral region fitting for SOM can
be predicted by hyperspectral models. Many studies
have indicated that the 400–1000 nm spectral range is
the main SOM spectral response area. Additionally,
some investigators have found that the highest correla-
tion between SOM and reflectance value was ∼600 nm
(Krishnan et al. 1980; Nocita et al. 2011). According to
analysis and results of prior studies and the soil spectral
continuum-removed curves in Fig. 3b, 400–1006 nm
was determined as the main SOM spectral response area
in our study.

Wavelet analysis

Each REF was transformed into FDR, SDR, (log(1/R))',
and (log(1/R))". To retain as much useful information as

Fig. 5 Correlation analysis of SOM contents with FDR (a–d) and SDR (e–h) (initial and decomposed)
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possible, each transformed spectra was decomposed
using five levels of approximation. Noise was re-
duced using the Sym8 matrix function of the wave-
let. Figure 4 compares the initial FDR and
decomposed results of the wavelet analysis at vari-
ous levels (data of SDR, log(1/R) and (log(1/R))' not
shown). It is clear that the de-noised results were not
satisfactory using one level (Fig. 4b) as compared
with the initial FDR (Fig. 4a). The smoothness of
the spectral curve clearly improved using two levels
(Fig. 4c), but there some noise remained. Using
three levels (Fig. 4d), the method dramatically re-
duced the noise while preserving spectral character-
istics, especially in the 400–1006 nm spectral range.
At the same time, the maximum value was achieved
near 600 nm, and the response characteristics were
obvious. However, using four and five levels
(Fig. 4e–f) produced curves that were too smooth,
so that extreme points were not clear and useful
information was lost.

Correlation analysis

Correlation coefficients for the measured SOM contents
were calculated and compared with both the initial
transformed spectra and decomposed spectral reflec-
tance (one, two, and three levels) in the range 400–
2300 nm. The transforms, including FDR, SDR, (log
(1/R))', and (log(1/R))", are shown in Figs. 5 and 6.
These figures demonstrate that the Sym8 wavelet de-
composition remarkably improved correlations between
SOM content and spectrum transformations in the range
400–1006 nm, especially for SDR and (log(1/R))".
There was stronger correlation between SOM and
SDR using three levels, with maximum correlation co-
efficient −0.9044 (at 658 nm). For 400–1006 nm, max-
ima of all correlation coefficients and the number of
sensitive bands (P<0.01) are given in Table 1. Table
and Fig. 5 demonstrate that the wavelet analysis ampli-
fied useful information that was previously obscured by
noise. The decomposed SDR with three levels was the

Fig. 6 Correlation analysis of SOM contents with (log(1/R))' (a–d) and (log(1/R))" (e–h) (initial and decomposed)
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most significant. The initial FDR performed better than
the other initial spectrum. According to these correlation
results, the SDR with three levels after continuum re-
moval was used to build the W-C-PLSR models.

Applicability of W-C-PLSR method

The decomposed SDR with three levels maximized
correlations between SOM contents and the major spec-
tral response areas (400–1006 nm). Based on the main
spectral response areas of SOM content obtained in
other studies and continuum removal, 289 sensitive
bands were selected for further analysis, whose correla-
tion coefficients were significant (P < 0.01). Then,
PLSR analysis was done using 289 independent bands

andmeasured SOMvalues. The C-MLSRmethod based
on correlations and multiple linear stepwise regression
(MLSR) often guarantees very accurate evaluation re-
sults and has great potential (Chang et al. 2001). Thus,
for comparison, using wavelet, correlation, and MLSR
methods, we constructed the W-C-MLSR model based
on the 289 sensitive bands of the SDR, with three levels.
There was information loss upon screening the bands
duringMLSR, and the initial FDR performed better than
the other initial spectrum. Accordingly, results of a
correlation-partial least squares regression (C-PLSR)
model based on the 338 sensitive bands (P<0.01) of
the initial FDR were also compared (Pu 2012).

Table 2 shows results of the W-C-PLSR,
W-C-MLSR, and C-PLSR models.

Table 1 Correlation analysis be-
tween SOM and mathematically
transformed spectra (initial and
decomposed) in the range 400–
1006 nm

TSP types of spectral parameters,
L level,MPCBmaximum positive
correlation band, CC correlation
coefficient, MNCB minimum
negative correlation band, NSB
number of sensitive bands

**At the 0.01 significance level

Table 2 Test results of W-C-PLSR (SDR at level 3), C-PLSR (FDR), and W-C-MLSR (SDR at level 3) models of SOM content

Models NIB Calibration (n= 30) Validation (n= 16)

R2 RMSEC MREC (%) RMSEV MREV (%)

C-PLSR(FDR) 338 0.945 4.92 18.04 7.74 24.83

W-C-PLSR(SDR(L = 3)) 289 0.970 3.10 8.75 5.85 14.32

W-C-MLSR(SDR(L = 3)) 289 0.869 7.48 36.41 / /

L level, NIB number of independent bands
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TSP MPCB
(nm)

CC MNCB
(nm)

CC NSB
(**)

FDR 867 0.7968 776 −0.8299 338

FDR (L = 1) 851 0.8108 776 −0.8359 356

FDR (L = 2) 847 0.8519 787 −0.8556 439

FDR (L = 3) 845 0.8513 466 −0.8593 533

SDR 652 0.7356 652 −0.7356 131

SDR (L = 1) 828 0.6835 535 −0.7570 127

SDR (L = 2) 962 0.6842 659 −0.8703 190

SDR (L = 3) 720 0 .7791 658 −0.9044 289

(Log(1/R))′ 947 0.7811 732 −0.7754 252

(Log(1/R))′(L = 1) 512 0.7767 851 −0.8001 264

(Log(1/R))′(L = 2) 962 0.7644 848 −0.7988 301

(Log(1/R))′(L = 3) 466 0.7868 847 −0.7881 312

(Log(1/R))″ 652 0.6594 402 −0.6728 159

(Log(1/R))″
(L = 1)

535 0.7569 571 −0.7365 160

(Log(1/R))″
(L = 2)

659 0.8137 479 −0.6884 190

(Log(1/R))″
(L = 3)

657 0.8488 518 −0.7746 272



The W-C-MLSR model had small prediction errors in
calibration analysis (R2 = 0.869, RMSEC = 7.48,
MREV=36.41%), indicating that theW-C-MLSRmeth-
od is unreliable. The reason is clearly because of the
complicated spectra of poor-quality soils in coal mining
regions and information loss caused by band screening.
Fortunately, the C-PLSR model gave satisfactory results
in predict ing SOM content (RMSEV = 7.74,
MREV=24.83 %; Table 2), but the W-C-PLSR model
produced smaller errors for both calibration (R2=0.970,
RMSEC = 3.10, MREC = 8.75 %) and validation
(RMSEV= 5.85, MREV= 14.32 %). As shown in
Fig. 7a, W-C-PLSR samples were almost all near the
1:1 line, a much better performance than the C-PLSR
model (Fig. 7b). In summary, it was demonstrated that in
an environment such as the coal mining region of Datong,
W-C-PLSR generated less error in the prediction of SOM
content, showing that the W-C-PLSR method can aug-
ment useful information that was previously obscured by
noise and greatly improve the accuracy of SOM
estimates.

Conclusions

To establish satisfactory SOM estimation models, the
issue of how to reduce noise while retaining as much
useful information as possible was investigated herein.
By carefully applying wavelet, correlation, and PLSR
techniques, the potential of the W-C-PLSR method for
rapid SOM quantification was studied. According to the
analysis, results of previous studies and the soil spectral
continuum-removed curves in Fig. 3b, 400–1006 nm

was determined as the main SOM spectral response
region. Based on the 289 sensitive bands of SDR with
three levels, whose correlation coefficients were signif-
icant (P<0.01), the W-C-PLSR model was obtained.
For comparison, we built the W-C-MLSR model based
on 289 sensitive bands of the SDR with three levels and
C-PLSR model based on 338 sensitive bands of the
initial FDR. The results indicate that the W-C-MLSR
method was very unreliable. The C-PLSR model pro-
duced favorable predictions of SOM content. However,
the W-C-PLSR model performed the best, giving small-
er prediction errors than C-PLSR. In conclusion, the
W-C-PLSR method has great potential to monitor
SOM in coal mining restoration regions.
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