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Abstract A predictive model for streamflow has prac-
tical implications for understanding the drought hydrolo-
gy, environmental monitoring and agriculture, ecosystems
and resource management. In this study, the state-or-art
extreme learning machine (ELM) model was utilized to
simulate the mean streamflow water level (QWL) for three
hydrological sites in eastern Queensland (Gowrie Creek,
Albert, and Mary River). The performance of the ELM
model was benchmarkedwith the artificial neural network
(ANN) model. The ELMmodel was a fast computational
method using single-layer feedforward neural networks
and randomly determined hidden neurons that learns the
historical patterns embedded in the input variables. A set
of nine predictors with the month (to consider the season-
ality ofQWL); rainfall; Southern Oscillation Index; Pacific
Decadal Oscillation Index; ENSO Modoki Index; Indian
Ocean Dipole Index; and Nino 3.0, Nino 3.4, and Nino
4.0 sea surface temperatures (SSTs) were utilized. A
selection of variables was performed using cross correla-
tion withQWL, yielding the best inputs defined by (month;
P; Nino 3.0 SST; Nino 4.0 SST; Southern Oscillation
Index (SOI); ENSO Modoki Index (EMI)) for Gowrie

Creek, (month; P; SOI; Pacific Decadal Oscillation
(PDO); Indian Ocean Dipole (IOD); EMI) for Albert
River, and by (month; P; Nino 3.4 SST; Nino 4.0 SST;
SOI; EMI) for Mary River site. A three-layer neuronal
structure trialed with activation equations defined by sig-
moid, logarithmic, tangent sigmoid, sine, hardlim, trian-
gular, and radial basis was utilized, resulting in optimum
ELM model with hard-limit function and architecture
6-106-1 (Gowrie Creek), 6-74-1 (Albert River), and
6-146-1 (Mary River). The alternative ELM and ANN
models with two inputs (month and rainfall) and the ELM
model with all nine inputs were also developed. The
performance was evaluated using the mean absolute error
(MAE), coefficient of determination (r2), Willmott’s
Index (d), peak deviation (Pdv), and Nash–Sutcliffe
coefficient (ENS). The results verified that the ELMmodel
as more accurate than the ANN model. Inputting the best
input variables improved the performance of both models
where optimum ELM yielded R2≈ (0.964, 0.957, and
0.997), d≈ (0.968, 0.982, and 0.986), and MAE≈ (0.053,
0.023, and 0.079) for Gowrie Creek, Albert River, and
Mary River, respectively, and optimum ANN model
yielded smaller R2 and d and larger simulation errors.
When all inputs were utilized, simulations were consis-
tently worse with R2 (0.732, 0.859, and 0.932 (Gowrie
Creek), d (0.802, 0.876, and 0.903 (Albert River), and
MAE (0.144, 0.049, and 0.222 (Mary River) although
they were relatively better than using the month and
rainfall as inputs. Also, with the best input combinations,
the frequency of simulation errors fell in the smallest error
bracket. Therefore, it can be ascertained that the ELM
model offered an efficient approach for the streamflow
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simulation and, therefore, can be explored for its practical-
ity in hydrological modeling.

Keywords Extreme learningmachine . Streamflow
prediction . Hydrological modeling

Abbreviations
ANNs Artificial neural networks
BOM Bureau of Meteorology
DERM Department of Environment
D Willmott’s Index of Agreement
E Nash–Sutcliffe coefficient
EMI ENSO Modoki Index
ELM Extreme learning machine
Gtan sig Tangent sigmoid function
Gsin Sine activation function
Ghard-lim Hard-limit activation function
Grad bas Radial basis activation function
Gtri bas Triangular basis function
Glog sig Logarithmic sigmoid activation

function
IOD Indian Ocean Dipole
JISAO Joint Institute of the Study of the

Atmosphere and Ocean
P Precipitation (or rainfall)
PE Prediction error
PDO Pacific Decadal Oscillation
QWL pred Simulated streamflow water level
QWL obs Observed streamflow water level
MAE Mean absolute error
R2 Coefficient of determination
SLFN Single-layer feedforward neural

network
SOI Southern Oscillation Index
SST Sea surface temperature

Introduction

Aversatile simulation model for streamflow water level
can assist with the dissemination of lead time informa-
tion on temporal evolution of local catchment hydrology
and, therefore, is of paramount importance to water
management, environmental monitoring, agriculture,
ecosystems, and resource management (Ni et al.
2010). In Australia, streamflow has decreased since
1970 (IPCC 2001). As such, meteorological (rainfall-
related) and hydrological (streamflow-related) drought

and its impact on water security are a significant cross-
cutting issue. The Murray-Darling Basin, Australia’s
largest and economically sensitive river system that
accounts for 70 % of irrigated crops and pastures, is
likely experiencing decline in streamflow by 10–25 %
by 2050 and 16–48% by 2100, and little is known about
future impacts on groundwater (Hennessy et al. 2007).
Therefore, a prior knowledge of streamflow as a first-
order integrator of rainfall conditions in a local catch-
ment is appealing to the end users particularly for in-
formed decision-making process (Chiew et al. 1998).

In Australia, the primary indicators of streamflow
water level (e.g., rainfall or evaporation regime) are
highly variable (Verdon et al. 2004) and respond rapidly
to radiative perturbations (Deo et al. 2009; McAlpine
et al. 2007; McAlpine et al. 2009). With a naturally
variable climate influenced by El Nino Southern
Oscillation, positive and negative aberrations in
streamflow have pronounced impact on meteorological
and hydrological disasters (Deo et al. 2009; Nicholls
et al. 1997). However, streamflow is impacted by inter-
annual variability of river flows (McMahon et al. 1992),
which culminates added challenges in managing risks
with irrigations, ecosystems, and marine life (Chiew
et al. 1998). Although flood and drought are linked
mainly to ENSO (Kiem and Franks 2004; Kiem et al.
2003), application of teleconnections driven by climate
indices and sea surface temperatures (SSTs) for fore-
casting streamflow is an evolving area of interest.

The modeling of streamflow water levels should con-
sider rainfall as an input as the variability of streamflow is
influenced by surplus or deficit of rain water as a primary
source of environmental flow. Therefore, the causal
relationships between the current and the antecedent
rainfall, river flow, and climate indices that affect these
parameters should be employed for simulation of
streamflow (Chiew and McMahon 2002; Chiew et al.
1998; Dettinger and Diaz 2000; Dettinger et al. 2000;
Ouyang et al. 2014; Piechota et al. 2001; Simpson et al.
1993). Often, lagged relationship of streamflow with
rainfall and climate indices such as Southern Oscillation
Index, Indian Ocean Dipole, ENSO Modoki Index, and
Pacific Decadal Oscillation Index is used (Zubair and
Chandimala 2006). Hydrological droughts that are
reflected by aberrations in streamflow are intrinsically
linked to oceanic–atmospheric processes (Drosdowsky
1993; Kiem and Franks 2001; McBride and Nicholls
1983) and so are the Pacific Decadal Oscillation (PDO)
(Power et al. 1999; Risbey et al. 2009) and Indian Ocean
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Dipole (IOD) indices (Saji et al. 1999; Saji and Yamagata
2003). Also importantly, ENSO hydroclimatic links is
known to foster below-normal streamflow discharge
during El Niño and above normal during La Niña events.
For example, a study found that sea surface temperatures
(SSTs) can play a pivotal role in the prediction of
January–March and April–June streamflow levels
(Chiew and McMahon 2002). Therefore, the pivotal,
yet crucial role of the inter-related inputs must be consid-
ered carefully for development of accurate and reliable
streamflow models.

In general, data-driven models of streamflow that iden-
tify patterns and trends in historical observations use three
primary approaches. First, historical changes in
streamflow partitioned into training and testing datasets
are utilized for predictivemodeling as streamflow displays
high degree of serial correlation (or persistence) arising
from soil and groundwater storage and recharge that acts
to delay the response of rainfall–runoff processes. This
provides streamflow a memory of several months, which
can represent the initial catchment hydrology to act as a
source of prediction (Chiew et al. 1998). Second, concur-
rent or lagged correlations between rainfall and climate
indices (McBride and Nicholls 1983) and streamflow
(Chiew et al. 1998) can be utilized in a purely statistical
sense. Third, probabilistic predictions are made, for ex-
ample, by the Bureau of Meteorology with Bayesian joint
probability where antecedent streamflow, rainfall, and
climate indices are used as predictors to forecast
streamflow (Robertson and Wang 2008; Wang and
Robertson 2011; Wang et al. 2009). Recently, physically
based approaches were also applied for monthly and
seasonal forecasting of streamflow using rainfall–runoff
models and historical dataset (Wang et al. 2011;
Chowdhury et al. 2010).

The aforementioned methods have adopted statistical
tools where artificial intelligence (AI) algorithms were
used to extract predictive features embedded in histori-
cal input data. AI is a popular tool that is able to capture
linear as well as non-linear relationships between
streamflow and rainfall, climate indices, and related
inputs (Asefa et al. 2006; Chang et al. 2002; Holland
1975; Koza 1992; Patterson 1998). It analyzes complex
relationships between predictors and objective variable
(Deo and Şahin 2015a; Deo et al. 2015; Salcedo-Sanz
et al. 2015). Artificial neural network (ANN) is a pop-
ular model for simulation of hydroclimatic variables
(Abbot and Marohasy 2012; Abbot and Marohasy
2014; Deo and Şahin 2015a; Masinde 2013; Nastos

et al. 2014; Ortiz-García et al. 2014; Ortiz-García et al.
2012; Shukla et al. 2011; Tran et al. 2011). Despite its
widespread use, a bottleneck of the ANN is the iterative
tuning of model parameters, slow response of gradient-
based learning algorithm utilized by hidden neurons and
low accuracy compared to more advanced algorithms
(Acharya et al. 2013; Şahin et al. 2014). Alternative
models based on relevance vector machine and multi-
variate adaptive regression spline model have also been
developed (Deo et al. 2015).

In this study, we applied the extreme learning machine
(ELM) model for the simulation of streamflow in eastern
Queensland. While its application for streamflow simula-
tion is rarely found in literature for this particular region,
the ELM model has successfully been applied elsewhere,
for example in drought (Deo and Şahin 2015b) and evap-
orative loss (Deo et al. 2015) simulation, downscaling
global climate model (Acharya et al. 2013), and solar
and wind prediction (Şahin et al. 2014; Salcedo-Sanz
et al. 2014). Despite its advantages over conventional
data-driven model (e.g., ANN) and successful application
in context of drought and evaporative modeling (Deo and
Şahin 2015a; b; Deo et al. 2015; Samui and Dixon 2012),
to our best knowledge, no study has tested the ELM for
streamflow simulation in our region although the impor-
tance of streamflow as an environmental parameter (e.g.,
creek hydrology and ecosystems health) has been
overstated (Chowdhury et al. 2010). As such, the adoption
of ELM as an improved class of models in eastern
Queensland is an original contribution of this research.

The novelty of our research is to develop and validate
the utility of an ELM model for simulation of monthly
streamflowwater levels (QWL) using predictors from set
of nine variables for three hydrological catchments
(Gowrie Creek: 18.44° S, 145.85° E; Mary River
25.95° E, 152.49° E, and Albert River 28.05° S.
153.05° E). The objective was to demonstrate the ability
of the ELM for simulation of QWL using hydrometeo-
rological data, climate indices (Southern Oscillation
Index (SOI), IOD, PDO, and ENSO Modoki Index
(EMI)), and SSTs (Nino 3.0; Nino 3.4, and Nino 4.0).
A selection of inputs was performed using cross corre-
lation analysis, and the sensitivity of developed ELM
model for simulation of QWL based on single inputs
(rainfall and periodicity) and all nine inputs was per-
formed. In order to provide a benchmark, an ANN
model with optimum input variables was also developed
to elucidate the predictive accuracy of ELM model for
simulation of QWL.
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Theory of machine learning model

Extreme learning machine

The extreme learning machine (ELM) algorithm was
developed by Huang et al. (2006)). It is a state-of-art
AI algorithm developed under single-layer feedforward
neural network (SLFN) (Fig. 1) and since has widely
been used in prediction problems (Acharya et al. 2013;
Belayneh and Adamowski 2012; Deo and Şahin 2015b;
Şahin et al. 2014). As the ELM is easy to use with no
requirement for parameters to be tuned except the
predefined network architecture, the algorithm avoids
complications faced by the gradient-based algorithms
(e.g., ANN) in terms of their relatively slow learning,
difficulty with learning epochs, and the problems en-
countered by the local minima within the predictive
data. Importantly, ELM learning process is faster com-
pared to other conventional learning algorithms such as
ANN or support vector machine (SVM) (Deo and Şahin
2015b; Rajesh and Prakash 2011).

In the ELMmodel, the training of input data is accom-
plished in time span of seconds and minutes, even for
large dataset and even complex applications, which are
not achievable using conventional techniques. Besides,

ELM model has good generalization performance com-
pared to the ANN, SVM, and the singular value decom-
position (SVD) algorithms in various classification and
regression problems (Acharya et al. 2013; Deo and Şahin
2015b; Huang et al. 2015; Sánchez-Monedero et al.
2014). Consequently, the ELM is used as an ideal algo-
rithm for forecasting atmospheric variables such as solar
energy, air temperatures, and rainfall (Deo and Şahin
2015b; Leu and Adi 2011; Şahin 2012; Şahin et al.
2013; Şahin et al. 2014; Sánchez-Monedero et al. 2014;
Wu and Chau 2010

In Fig. 1a, the schematic structure of ELM is exempli-
fied. Consider a set of N distinct samples (xi,yi)∈Rn×Rm,
n, m are the domains and i=1, 2… N. The SLFNs with L
hidden neurons and activation function, G (ai, bi, x) is
described viz (Huang et al. 2006; Şahin et al. 2014):

f L xð Þ ¼
XL

i¼l

βihi xð Þ ð1Þ

where β=[β1, β2,…, βL]
T is the output weight matrix

between hidden layer of L nodes to the m>1 output
nodes, and h(x) = [h1(x), h2(x), …, hL(x)] is the non-
linear mapping space, which comprised the output row
vector with respect to input x. Note that hi(x) is the output
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ELM algorithm with input space,
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objective variable (y). Hidden
neurons have different type of
computational nodes (Huang and
Chen 2007). b A sample plot of
activation functions, G (a, b, x),
tried in this study
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of the ith hidden node output. In optimization space, ELM
model analyses input data to Blearn^ the natural patterns
or trends present in the time series in order to simulate the
objective variable, which is intrinsically related to the
input space. According to Huang and Chen (2007)), the
output function of hidden nodes may not be unique and
different functions are used with various neuron arrange-
ments to finalize the optimum model.

In this study, a number of hi(x) (Eqs. (7–12)) were
tried in terms of the following:

hi xð Þ ¼ G ai:bi:xð Þ; ai∈RN ; bi∈R; i

¼ 1; 2; …; L½ � ð2Þ
where G (a, b, x) is the activation function for ELM

model with hidden parameters (a, b). The G (a, b, x) is a
non-linear piecewise continuous function that satisfies
the ELM universal approximation capability theorem
(Huang and Chen 2007; Huang et al. 2006), and there-
fore, it may be optimized for the best unsupervised
learning outcome. In the ELM model, the hidden node
parameters (a, b) are randomly generated without any
interference from the predictor data and may be deduced
by continuous probability distribution instead of being
explicitly trained. This leads to remarkable computation-
al efficiency compared to traditional neural network (e.g.,
SVM or ANN) (Huang et al. 2006; Huang et al. 2015).

The optimum ELM model was deduced by trailing
activation functions with several model runs. Figure 1b
shows a sample of the plots for G (a, b, x). In this study,
the activation functions were defined by sine (Gsin),
hard-limit (Ghard-lim), logarithmic sigmoid (Glog sig), tan-
gent sigmoid (Gtan sig), radial basis (Grad bias), and trian-
gular basis (Gtri basis) equations viz

Gsin a; b; xð Þ ¼ sin axþ bð Þ ð7Þ

Ghard‐lim a; b; xð Þ ¼ 1; if axþ b < 0

0; otherwise

�
ð8Þ

Glogsig a; b; xð Þ ¼ 1

1þ exp − axþ bð Þð Þ ð9Þ

Gtansig a; b; xð Þ ¼ 2

1þ exp −2 axþ bð Þð Þ−1 ð10Þ

Grad bias a; b; xð Þ ¼ exp − axþ bð Þ2
� �

ð11Þ

Gtribasis a; b; xð Þ ¼ 1− axþ bj ; if −1≤ axþ bð Þ≤1j
0 ; otherwise

�
ð12Þ

The trialing of the activation functions was necessary
to develop a robust model that considers the best equa-
tion(s) for extracting features within the input data to
simulate QWL. Upon selecting the suitable G (a, b, x)
and deducing weights for hidden and output layer (β),
simulation of QWL was performed by minimizing the
approximation error

min
β∈RL

Hβ−Tk k2 ð13Þ

where ||.|| denotes the Frobenius norm and H is the
hidden layer (randomized) matrix produced by the acti-
vation function, mathematically defined viz

H ¼
h xL1
� �
⋮

h xLN
� �

2
4

3
5 ¼

h1 x1ð Þ⋯⋯hL x1ð Þ
⋮

h1 xNð Þ⋯⋯hL xNð Þ

2
4

3
5 ð14Þ

Note that T is the target output matrix that in our case
represents the simulated variable, y (≡ QWL):

T ¼
tL1

⋮
tLm

2
4

3
5 ¼

t11⋯⋯t1m
�

⋮
tN1⋯⋯tLm

�
2
64

3
75 ð15Þ

Finally, the optimal solution to Eq. (13) is given by

β* ¼ HþT ð16Þ
where H+ is the Moore–Penrose generalized inverse

of the hidden layer matrix H.

Artificial neural network

In order to benchmark the performance of the ELMmodel,
an artificial neural network (ANN) model was also devel-
oped. The ANN model is a computational paradigm
composed of non-linear elements (neurons) operating in
parallel and massively connected by networks character-
ized by different weights. A single neuron computes the
sum of its inputs, adds a bias term, and drives the simula-
tion results through a generally non-linear activation
function to produce a single output termed as the activation
level of the neuron. ANNmodels are specified by network
topology, neuron characteristics, and training or learning
rules (Lippman 1987) with inputs, output, and hidden
layers with interconnections. The fundamental processing
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unit is a neuron, which computes a weighted sum of its
input signals, xi, for i=0, 1, 2. . . N, hidden layers, wij, and
then applies a non-linear activation function to produce an
output signal uj (Deo and Şahin 2015a; Şahin 2012).

A neuronal model consists of an externally applied
bias, bk, which has the effect of increasing or decreasing
the net input of activation function depending on wheth-
er it is positive or negative. Mathematically, it is de-
scribed by

yk ¼ Φ uk þ bkð Þ; where Uk ¼
Xm
j¼1

WkX j ð17Þ

where x1, x2, . . ., xm are the inputs signals;wk1,wk2, . .
., wkm are the synaptic weights of neuron k; uk is the
linear combiner output due to input signals; bk is the
bias; Φ(.) is the activation function; and yk is the output
signal of the neuron. Bias bk has the effect of applying
an affine transformation to the output uk of the linear
combiner viz

vk ¼ uk þ bk ð18Þ
In particular, depending on whether the bk is positive

or negative, the relationship between the induced local
field or activation potential vk of neuron k and linear
combiner output uk can be modified. Note that as a
result of this affine transformation, the graph of vk
versus uk no longer passes through the origin. The bias
bk is an external parameter of artificial neuron k (Deo
and Şahin 2015a; Şahin 2012).

Equivalently, combinations of Eqs. (17) and (18)
may be formulated as follows (Haykin 2010)

vk ¼
Xm
j¼0

wk jx j ð19Þ

yk ¼ Φ vkð Þ ð20Þ
The tangent sigmoid, ϕ(x), logarithmic sigmoid,

ψ(x), and linear, χ(x), transfer function are described
as follows (Vogl et al. 1988)

φ xð Þ ¼ 2

1þ e−2x
−1 ð21Þ

ψ xð Þ ¼ 1

1þ e−x
ð22Þ

χ xð Þ ¼ linear xð Þ ¼ x ð23Þ

Thus, Eqs. (21–23) were trialed in order to determine
the best ANN model.

In this study, we have also optimized the ANN-based
simulation models by utilizing a number of learning
algorithms including the quasi-Newton, resilient, scaled
conjugate gradient, Levenberg–Marquardt, conjugate
gradient with Powell–Beale restarts, conjugate gradient
with Fletcher–Reeves updates, conjugate gradient with
Polak-Ribiére updates, one-step secant and the gradient
descent with momentum and adaptive learning rate,
following earlier studies (Deo and Şahin 2015a; Şahin
2012). Therefore, based on the lowest mean square
error, the optimum ANN model with most appropriate
transfer function and the best machine learning algorithm
was adopted for the final simulation of the monthlyQWL.

Materials and method

Study area and model dataset

In order to develop a simulation model based on the
ELM algorithm, this study has utilized eight predictor
time series (plus the month as additional indicator of
periodicity) where the rainfall (P) was the primary me-
teorological input and streamflow water level (QWL)
was the objective (or simulated) output. Figure 2 plots
a geographic map of the present study site, namely
Gowrie Creek (Abergowrie), Mary River (Miva Road),
and Albert River (Lumeah number 2). Table 1 lists
characteristics of the hydrological stations used for sim-
ulation of QWL. Shown also are the closest meteorolog-
ical stations that provided the matching P data for sim-
ulation of QWL.

The monthly values of QWL data were acquired from
theWater Monitoring Data Portal (Dept of Environment
& Resource Management), http://watermonitoring.
dnrm.qld.gov.au/host.htm (DNRM 2014). Since reliable
monthly P time series were not available for the
streamflow sites, measurements of rainfall from the
closest meteorological site (Macknade Sugar Mill, 44.
96 km from Gowrie Creek; Cowal 0.99 km from Mary
River; Harrisville 45.89 km from Albert River) were
extracted from Bureau of Meteorology website (http://
www.bom.gov.au/climate/data-services/) (Haylock and
Nicholls 2000). Also, despite the availability of theQWL

data from 1953 for Gowrie Creek and Albert River and
from 1910 for Mary River, a number of quality control
indicators had showed that the earlier period has
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Fig. 2 The hydrological sites
from the Queensland Water
Monitoring Portal (red circles)
and the Australian Bureau of
Meteorology's high-quality
rainfall sites (blue asterisks). The
approximate distance between the
hydrological and meteorological
stations is shown in Table 1

Table 1 The characteristics of hydrological (streamflow) and meteorological (rainfall) stations for study sites in eastern Queensland

Description Gowrie Creek
(Abergowrie)

Mary River (Miva Road) Albert River
(Lumeah number 2)

Hydrological stations: streamflow water level, QWL

QWM Portal Number 116008B 138001A 145101D

Latitude/longitude 18.44° S/145.85° E 25.95° S/152.49° E 28.05° S/153.05° E

Site commence 10 Jan 1953 1 Jan 1910 10 Jan 1953

Zero gauge 33.308 16.866 79.934

Control Sand gravel Gravel Control weir

Maximum gauged level 2.68 17.3 7.84

Maximum gauge date 3 Oct 1983 27 Apr 1989 26 Jan 1974

Distance from stream mouth 6.9 km 126 km 75.5 km

Catchment area 124 km2 4755 km2 169 km2

Gauging 195 gauging between 543 gauging between 318 gauging between

11 Aug 1954 and 10 Dec
2013

30 Apr 1909 and 19 Mar
2014

16 Mar 1954 and 01 Nov
2013

Description Macknade Sugar Mill Cowal Harrisville Post Office

Meteorological stations: rainfall, P

BOM station ID 32032 40013 40094

Latitude/longitude 18.58° S/146.25° E 25.95° S/152.50° E 27.81° S/152.67° E

Site commence 01 May 1890 01 Sept 1894 01 Jan 1896

Site ceased No No No

Elevation 124 m 61 m 55 m

Corresponding distance from the hydrological
station

44.96 km 0.99 km 45.89 km
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significantly fragmented time series and, therefore, was
considered unreliable.

Consequently, the monthly P data for the period
1960–2012 were used as the predictor variables for both
the ELM and the ANNmodels. Anymissing P andQWL

in this period were recovered from calendar averaged
values within the monthly hydrological period.
Figure 3a–c compares the monthly pattern of QWL for
Gowrie Creek, Mary River, and Albert River and the
corresponding P for Macknade Sugar Mill, Cowal, and
Harrisville. For all hydrological stations, there was good
correspondence with their monthly cycle of rainfall. The
overall trends showed generally high streamflow (and
also rainfall) values from the month of January–April
and lower from August–November. Also, since the P
data were acquired some distance away from actual
hydrological site and that the hydrological peaks can
be slightly delayed compared to the rainfall cycle
(Brodie et al. 2008), there was a subtle but notable lag
between the peak value ofQWL and the corresponding P
time series as the recharge component of rainfall may
not be returned as streamflow water immediately.

In addition to the monthly P data used as the primary
variable for simulation of the mean monthly QWL, train-
ing datasets utilized the monthly variation in the climate
mode indices (SOI, PDO, EMI, and IOD) and SSTs
(Nino 3.0 5° N–5° S, 150° W–90° W; Nino 3.4 5° N–
5° S, 170° W–120° W; Nino 4.0 5° N–5° S, 160° W–
150°W) (Table 2). The SOI and IOD data were acquired
from Australian Bureau of Meteorology (Trenberth
1984), and the PDO index was acquired from the Joint

Institute of the Study of Atmosphere and Ocean
(Mantua et al. 1997; Zhang et al. 1997). In its original
form, the SOI was calculated by the Troup’s method
using the differences inmean sea-level pressure between
Tahiti and Darwin, while the PDO index was created
using the UKMOHistorical SST dataset for 1900–1981,
Reynolds Optimally Interpolated SST (Morid et al.
2007) for January 1982–Dec 2001, and OI.v2 SST
fields from January 2002 onward.

In this study, we employed the monthly EMI as a
predictor variable, which represented the first two dom-
inant modes of variation in the EOF analysis of SST
anomalies area-averaged over (165° E–140° W, 10° S–
10° N), (110° W–70° W, 15° S–5° N), and (125° E–
145° E, 10° S–20° N), respectively. Data were acquired
from Japanese Agency for Marine-Earth Science and
Technology (https://www.jamstec.go.jp/frcgc/research/
d1/iod/e/index.html). It is imperative to note that the
EMI reflects coupled ocean–atmosphere interactions in
the Pacific Ocean (Ashok et al. 2003, 2007; Weng
et al. 2007). Several studies have shown that the EMI
is prominent for identifying teleconnection pattern
arising from tropical Pacific (Cai and Cowan 2009;
Taschetto 2009). Therefore, considering the impacts of
large-scale climate drivers and SSTs on rainfall (and
streamflow) variability in Australia, the climate mode
indices used in the ELM and ANN model development
were considered appropriate, as they have also been
employed in previous models (Abbot and Marohasy
2012; Abbot and Marohasy 2014; Deo and Şahin
2015a, b; Mekanik et al. 2013; Morid et al. 2007

(a) 

(b) 

(c) 

Fig. 3 The pattern of monthly
cycle of streamflow, QWL (m),
and precipitation, P (mm), for the
period 1960–2012. Note that the
P data are from nearest
meteorological station specified
in Table 1
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Development of predictive model and performance
assessment

All experiments were performed under MATLAB pro-
gramming platform on a Pentium 4, 2.93GHz CPU.
Table 3 details the ELM and its comparative (ANN)
model used for simulation of QWL. As a first step, the
53 years of data (1960–2012) were partitioned in two
segments: one for training phase (1960–2005) where
monthly rainfall, climate indices, and SSTs were used
as predictor variables and the other set had testing phase
(2006–2012) where the simulated QWL was validated
with site-specific measurements. The training dataset
was used to develop the appropriate ELM and ANN
models. After training the networks, a weight matrix
was obtained for each parameter in consideration and
applied to the independent input parameters in Btest^
set. The simulations were compared with the observed
streamflow.

Crucial for any robust predictive model is the con-
sideration of the pertinent factors such as the proper
selection of input variables, training of these inputs
while ensuring minimum level of over-fitting, selecting
the best training algorithm and activation function, en-
suring smallest generalization error, and using the best
performance metrics (Maier and Dandy 2000; Maier
et al. 2010; Tiwari and Adamowski 2013). Unlike pre-
vious studies that have utilized a prescribed set of pre-
dictor variables (e.g., rainfall, temperature, climate in-
dex, etc.) without a prior selection process (Deo and
Şahin 2015a, b; Salcedo-Sanz et al. 2015), in this study,
we have deduced the input signal(s) by the correlation
with QWL in order to develop a robust model.

As there is no Brule of thumb^ to determine signifi-
cant inputs (Adamowski 2008; Tiwari and Adamowski

2013), the input signal patterns were analyzed by corre-
lation statistics using a cross correlation function
(Adamowski et al. 2012). The cross correlation function
measured the statistical similarity between inputs (x) and
shifted (lagged) copies ofQWL as a function of lag. For a
discrete signal, correlation of time series, xi = (x1, x2…
xM − 1) and y= (y1, y2… yN − 1), is

φxy;k ¼
Xmin M−1þk;N−1ð Þ

j¼max 0;kð Þ
x j−k ; k ¼ − M þ 1ð Þ;…; 0;…; N−1ð Þ ð24Þ

and the normalized correlation coefficient, rcross, is
defined as

rcross tð Þ ¼
φxy tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

φxx 0ð Þ φyy 0ð Þ
q ð25Þ

such that the quantity rcross(t) will vary between −1
and 1. A value rcross(t) = 1 indicates that at alignment t,
the two time series have the same exact shape (although
amplitudes may be different) while −1 indicates the
same shape with opposite sign. However, when
rcross(t) = 0, the two signals are uncorrelated but if
rcross(t) ≥0.70, a good match is evident between x
(inputs) and y (QWL).

Subsequently, a set of input combinations were de-
duced by analyzing rcross of each variable with QWL.
Figure 4 plots correlogram of QWL with inputs (i.e.,
rainfall, SSTs, and climate indices). In this plot, the
statistically significant rcross at 95 % confidence levels
is located outside the blue lines. Evidently, the level of
correlation of the P data with QWL acquired the highest
magnitude for all stations at zero lag (rcross≈0.306–
0.718) which was also statistically significant (Table 2)
(note that the cross correlation of streamflowwith inputs

Table 2 The cross correlation coefficients (rcross) computed for input (x) and objective variable (y≡QWL) at zero lag

All predictor (input) variables Gowrie Creek Albert River Mary River

Rainfall: P 0.648 0.306 0.718

Nino 3.0 SST (5° N–5° S,150° W–90° W): Nino 3.0 SST 0.341 0.046 0.044

Nino 3.4 SST (5° N–5°S,170° W–120° W): Nino 3.4 SST 0.151 −0.099 −0.201
Nino 4.0 SST (5° N–5° S, 160° E–150° W): Nino 4.0 SST −0.318 −0.099 −0.367
Southern Oscillation Index (SOI) 0.215 0.141 0.277

Pacific Decadal Oscillation Index (PDO) −0.015 0.174 −0.105
Indian Ocean Dipole Index (IOD) 0.025 0.134 0.049

ENSO Modoki Index (EMI) −0.314 −0.237 −0.328

The statistically significant rcross at 95 % confidence interval is shown in italics
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was also significant at various other lags; however, in
this study, only the zero lag has been used as the rcross
attained the highest magnitude). Except for the EMI and
SOI which had statistically significant rcross from
(−0.237) to (−0.328) and (0.241 to 0.277), respectively,
for all three stations, cross correlation of QWL with the
other input variables varied quite significantly. That is,
for Gowrie Creek, a statistically significant value of
rcross ≈ 0.341 was obtained for QWL with Nino 3.0
SST, but a very low statistically insignificant value
was obtained for Albert and Mary River. Furthermore,
Nino 3.4 SST correlated well with QWL for Mary River
(rcross ≈ −0.201), but it was poorly correlated with

streamflow measurements for Gowrie Creek and
Albert River. For the PDO and IOD indices, the corre-
lation with QWL was statistically significant only for
Albert Creek station (rcross≈0.134–0.174) (Table 2).

Taken together, discernible differences in cross cor-
relations of streamflow with prescribed inputs showed

Table 3 The ELM and ANN models with best input combinations as per Table 2

Station Input combinations, x ELM model ANN model

Gowrie Creek x= [month, P, Nino 3.0 SST,
Nino 4.0 SST, SOI, EMI]

Number of layers: 3 Number of layers: 3

Input neurons: 6 Input neurons: 6

Hidden neurons: {2 . . . 150} Hidden neurons: {2, 4 … 50}

Output neuron: 1 (QWL) Output neuron: 1 (QWL)

Activation functions: sig; sin;
hardlim; tribas; radbas;
logsig; tansig

Transfer function: tansig, logsig

Learning rule: ELM for SLFN Learning algorithm: trainbfg,
trainrp, trainscg, trainlm,
traincgb, traincgf, traincgp,
trainoss, traingdx

Architecture: 6-106-1 Architecture: 6-28-1

Albert River x= [month, P, SOI, PDO,
IOD, EMI]

Number of layers: 3 input neurons:
6 hidden neurons: {2 . . . 150}

Output neuron: 1 (QWL)
Activation functions: sig; sin;
hardlim; tribas; radbas; logsig;
tansig

Learning rule: ELM for SLFN
Architecture: 6-74-1

Number of layers: 3
Input neurons: 6
Hidden neurons: {2, 4 … 50}
Output neuron: 1 (QWL)
Transfer function: tansig, logsig
Learning algorithm: trainbfg,
trainrp, trainscg, trainlm,
traincgb, traincgf, traincgp,
trainoss, traingdx

Architecture: 6-18-1

Mary River x= [month, P, Nino 3.4 SST,
Nino 4.0 SST, SOI, EMI]

Number of layers: 3
Input neurons: 6
Hidden neurons: {2 . . . 150}
Output neuron: 1 (QWL)
Activation functions: sig; sin;
hardlim; tribas; radbas;
logsig; tansig

Learning rule: ELM for SLFN
Architecture: 6-146-1

Number of layers: 3
Input neurons: 6
Hidden neurons: {2, 4 … 50}
Output neuron: 1 (QWL)
Transfer function: tansig, logsig
Learning algorithm: trainbfg, trainrp,
trainscg, trainlm, traincgb, traincgf,
traincgp, trainoss, traingdx

Architecture: 6-20-1

Acronyms for the ELM model functions are hardlim hard limit, tribas triangular basis, radbas radial basis, logsig log-sigmoid, tansig
hyperbolic tangent sigmoid. Acronyms for the ANN model functions are trainbfg BFGS quasi-Newton, trainrp resilient, trainscg scaled
conjugate gradient, trainlm Levenberg–Marquardt, traincgb conjugate gradient BP with Powell–Beale restarts, traincgf conjugate gradient
BP with Fletcher–Reeves update, trainoss one-step secant, trainbr Bayesian regulation, traingdx gradient descent with momentum and
adaptive learning. The optimum (best) functions used in the ELM and ANN models are in italics

�Fig. 4 A set of correlogram of streamflow water levels (QWL)
and its predictor variable as the rainfall (P), sea surface
temperatures (Nino 3.0 SST, Nino 3.4 SST; Nino 4.0 SST),
Southern Oscillation Index (SOI), Pacific Decadal Oscillation
Index (PDO), Indian Ocean Dipole (IOD), and ENSO Modoki
Index (EMI). a Albert River, b Gowrie Creek, and c Mary River.
Statistically significant cross correlation coefficients (rcross) at
95 % confidence level are outside the blue lines
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the significance of selecting input combinations rather
than using all variables. Consequently, in this study,
three sets of ELM models were developed: (1) an opti-
mum model with unique combinations of inputs (x)
where x= [month, P, Nino 3.0 SST, Nino 4.0 SST,
SOI, EMI] for Gowrie Creek station, x= [month, P,
SOI, PDO, IOD, EMI] for Albert River station, and
x= [month, P, Nino 3.4 SST, Nino 4.0 SST, SOI, EMI]
for Mary River station, (2) trial ELM model 1 with the
month and rainfall as inputs, and (3) trial ELM model 2
nine input variables. The latter were utilized to check the
response of ELM algorithm for simulating streamflow
when no feature selection process was incorporated. It is
also imperative to note that a follow-up study could
incorporate appropriate lagged signals with statistically
significant cross correlations.

A three-layer neuron arrangement with input space
(where input variables were fed in), learning space
(where activation or transfer functions were applied to
formulate the best neuronal arrangements with lowest
mean square error), and output space (where streamflow
was simulated as objective variable) was designed.
Table 3 provides details of the ELM and ANN models.
For both cases, the maximum number of input neurons
(x) was 9 (denoted as x1, x2, x3…, x9), where one neuron
was assigned for month (to account for periodicity), one
neuron for meteorological inputs (rainfall), four neurons
for climate indices (SOI, IOD, EMI, and PDO), and
remainder three neurons for sea surface temperatures
(Nino SSTs). In the learning space, the activation func-
tions defined by Eqs.(7–12) were applied to simulate the
QWL based on the sine, log-sigmoid, hyperbolic tangent
sigmoid, radial bias, triangular bias, hyperbolic tangent
sigmoid, and the hard-limit equations.

In each trial, the number of nodes in hidden layer was
increased gradually by an interval of five with different
activation functions tried (Eq. (7–12)) and subsequent
adjustments of the model’s parameters were performed
to deduce the optimum ELM architecture (Table 3).
Then, the nearly optimal node determined by lowest
mean square error, which was intrinsically disparate
for each site, was adopted. For ANN model, two sets
of simulations were performed: (1) with optimum com-
bination of predictor variables and (2) with the month
and rainfall as the prescribed inputs. The simulations
were compared with an equivalent ELM model. The
tuning of hidden layer for the ANN model was per-
formed using 5 to 50 neurons with different machine
learning algorithms. Table 3 shows the architecture of

ELM and ANN models used for simulation of monthly
streamflow.

Based on simulated and observed QWL, model per-
formance was assessed using mean absolute error
(MAE), coefficient of determination (R2) (Paulescu
et al. 2011; Ulgen and Hepbasli 2002), Willmott’s
Index (d) (Acharya et al. 2013; Willmott 1981;
Willmott 1982), and the Nash–Sutcliffe coefficient (E)
(Krause et al. 2005; Nash and Sutcliffe 1970) viz the
following mathematical equations:

MAE ¼ 1

N

Xn

i¼1

QWLpredi
−QWLobsi

� �
t

��� ��� ð26Þ

R2 ¼

Xn

i¼1
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−QWLobs

� �
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−QWLpred

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
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−QWLobs

� �2

vuut
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
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d ¼ 1−
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QWLobs;i
−QWLpred;i
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Q
0
WLpred;i

−QWLobs

��� ���− Q
0
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E ¼ 1−

XN
i¼1

QWLobs;i
−QWLpred;i

� �2

XN
i¼1

QWLobs;i
−QWLobs

� �2

2
666664

3
777775
; 0≤E≤1 ð29Þ

whereQWLpi
andQWLoi

were the ith monthly value of

simulated and observedQWL in the test period t, respec-
tively, i is the month of the test data, �Q WLobs

and �Q WLp

are the overall mean parameters, and N (=84) is the
length (number of samples in the test set) for period t
(2006 to 2012).

Results and discussion

The relationship between simulation and observed
streamflow water levels obtained from the ELM and
ANN models with optimum input combinations
(Fig. 4; Tables 2 and 3) is shown in Fig. 5a. Also shown
are the simulation results for trial ELM model using
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month and rainfall as the predictor dataset (Fig. 5b).
Undoubtedly, the predictive ability of the ELM and the
ANN models varied greatly between the different sta-
tions and the input combinations used to simulate the
monthly QWL. In fact, for all three stations considered,
the ELM model appeared to be accurate than the ANN
model since its level of scatter was the lowest. However,
when optimum input combinations for each station
(Table 3) were used, the degree of scatter was lower
for both the ELM and ANN models compared to the
simulations when only rainfall and corresponding
month were inputted into the model.

Among the three stations tested, the simulation for
Mary River for both input cases was the best whereas
simulations for Gowrie Creek were the least accurate.
Interestingly, when only the rainfall and the month were
considered as inputs for Albert River site (Fig. 5b), the
scatterplot appeared to be consistently shifted to higher
simulated QWL for ELM model. Although the actual

cause of this is currently unclear, the lesser scatter for
the ELM model showed its better performance even
with less number of predictor datum points.

In order to check the performance of the ELM model
with nine input variables, Fig. 6 shows the simulated
and observed mean streamflow water levels for the trial
ELM model. The square of the correlation coefficient
(R2) and the best-fit equations are shown for each sta-
tion. Also, Table 4 lists the statistical metrics of regres-
sion analysis performed between predicted streamflow
(QWL pred) and observed streamflow (QWL obs) by ELM
and ANN models, assessed by a simple regression
equation, QWL pred=mQWL obs+C. Note that regression
coefficient (r) and maximum deviation (maxDev) of
simulations from observed index with gradient (m) of
linear regression plot, regression coefficient (r), and the
y-intercept (C) are included.

Comparing Fig. 6 with Fig. 5, it was noticeable that
the inclusion of irrelevant input variables seems to
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Fig. 5 A scatter plot of simulated and observed streamflow (QWL)
in test period (2006–2012) with best fit line of the form
Qpred =mQobs +C. a Optimum ELM model with best input

combinations specified in Table 3. b Trial ELM model with
rainfall (P) and corresponding month as input variables
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deteriorate the performance of the ELM model. For
example, for the case of Gowrie Creek, the gradient and
correlation coefficients were 0.969 and 0.964, respective-
ly, for the optimum model with six inputs, but with the
inclusion of nine inputs in the trial ELMmodel, there was
a reduction in m and r by about 19.3 and 24.1 %, respec-
tively. Likewise, the y-intercept (whose ideal zero value
is expected to show the best fit of observed and simulated
water levels) increased from 0.003 to 0.203 when all nine
inputs were incorporated into the trial ELM model.
Likewise, the maximum deviation increased from 0.188
to 0.523. However, it was imperative to note that the trial
ELM model with only rainfall and the corresponding
month yielded better results compared to the trial ELM
model with all nine input variables.

According to the results of Fig. 6 and Table 4, the
inclusion of irrelevant inputs into the ELM model inad-
vertently deteriorated the accuracy of the simulated

QWL. Also, based on the scatterplot, it was evident that
the optimum ELM model simulations for Mary River
yielded the best results (with m≈0.979 and r≈0.990).
However, simulations by the optimum ANN model
provided the best results for Albert River (m≈0.936,
r≈0.830) followed byMary River (m≈0.917, r≈0.892)
and the worst for Gowrie Creek (m≈0.729, r≈0.732).
Notwithstanding this, the performance indicators
remained smaller in magnitude compared those of the
optimum ELM model (Table 4), thus demonstrating the
superiority of the ELM over ANN model for monthly
streamflow simulation.

In addition to inspecting the visual agreement be-
tween simulated and observed QWL, it was important
to assess the actual model prediction error (PE) for each
month where the quantity PE=QWL pred−QWL obs was
calculated over the test period. Figure 7 shows the
absolute value of PE for the optimum ELM model. For
comparison, the results of the optimum ANN model
were also included. There was unambiguous evidence
that the simulated value of QWL was in much better
agreement with the observed values of QWL for the
optimum ELM model, as this model yielded much
smaller error values compared to the optimum ANN
model. For all three stations, the performance of the
ELM model outweighed the performance of the ANN,
as it resulted in significantly large values of PE.

In Table 5, we assess the overall model PE, standard
deviation (σ), and the number of datum points within the
± (0–1)σ, ± (1–2)σ, ± (2–3)σ, and >±3.0σ for the opti-
mum ELM and ANN models. Indeed, the metrics
showed that for all stations considered, the optimum
ELM model was more accurate with |PE|≈ 0.0278–
0.0793 compared to the optimum ANN model with
|PE|≈0.0489–0.2493. It was also noteworthy that the
range of standard deviations for the ELM model simu-
lations was smaller (σ≈0.0218–0.0725) relative to the
larger range of 0.0407–0.2381 (for the ANN model).
This suggested that the optimum ELM model was not
only more accurate but also stable and, therefore, exhib-
ited lower fluctuations in the simulated value of QWL.
Another interesting observation can be made by
checking the number of error values within the ± (0–
1), ± (1–2), ± (2–3), and ± (>) 3 standard deviations.
When the PE was considered within ± (>) 3σ, a maxi-
mum of 1 datum point was located within this error
range for the ELM model whereas for the ANN model,
up to 3 data points within the test period had model
errors located within ± (>) 3σ. Consequently, this also
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Fig. 6 A scatter plot of simulated and observed mean streamflow
(QWL) for the trial ELMmodel with all nine inputs, x= [month; P;
Nino 3.0 SST; Nino 3.4 SST; Nino 4.0 SST; SOI; PDO; IOD;
EMI] in test period (2006–2012). For each station, the square of
correlation coefficient (R2) and best-fit equation have been shown
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Table 4 Statistical metrics of regression analysis for simulated (QWL pred) and observed streamflow (QWL obs) based on regression equation:
QWL pred =mQWL obs +C

Regression parameter Optimum ELM model (selected input combinations) Optimum ANN

Gowrie Creek Albert River Mary River Gowrie Creek Albert River Mary River

m 0.969 0.979 0.979 0.728 0.936 0.917

R2 0.964 0.957 0.990 0.732 0.830 0.892

maxDev 0.188 0.101 0.377 0.523 0.180 1.170

C 0.003 0.022 0.055 0.208 0.048 0.207

Trial ELM (with inputs, x= [month, P]) Trial ANN (with inputs, x= [month, P])

m 0.761 0.761 0.916 0.674 0.725 0.823

R2 0.781 0.685 0.910 0.723 0.571 0.823

maxDev 0.385 0.219 1.010 0.415 0.236 1.32

C 0.193 0.226 0.156 0.315 0.019 0.261

Trial ELM (with nine inputs, no prior selection)

m 0.782 0.922 0.945

R2 0.732 0.928 0.859

maxDev 0.523 0.821 0.181

C 0.208 0.140 0.015

The regression coefficient (R) and maximum deviation (maxDev) of simulations are shown. m is the gradient of linear regression plot; R is
the regression coefficient; maxDev is the maximum deviation of simulated QWL obs from observed variable; C is the y-intercept
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Fig. 7 The prediction error (PE=QWL pred–QWL obs) using optimum ELMmodel shown as the difference between observed (QWL obs) and
simulated streamflow (QWL pred) for a Gowrie Creek, b Albert River, and c Mary River in test period (2006–2012)
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concurs with the deduction that the optimum ELM
model was highly accurate compared to the optimum
ANN model.

In Table 6, we show the model performance metrics
defined by Eqs. (17–20) computed within the test period
(2006–2012). Note that performance metrics for the
optimum ELM model with six best input combinations,
trial ELM models with only rainfall and month as input
variable, and the trial ELM model with all nine inputs
have been shown. For comparison purposes, the opti-
mum ANN (best inputs) and trial ANN model (all nine
inputs) results have also been tabulated. In interpreting
these performance metrics, one must be mindful that the
magnitude of MAE for the best model is expected to be

as small as possible in order to demonstrate that the
simulated streamflow exhibits the lowest deviation from
the observed values. As MAE is considered to be less
sensitive to extreme values in the simulated data than the
root mean square error (Fox 1981), we have ignored the
latter metric in our analysis. Also, for best model with
most reliable simulations, the magnitude of R2 which
was determined from a scatter plot of observed and
simulated QWL is expected to be close to unity, and d
and E should be unity for a perfect fit (Krause et al.
2005). In model assessment, a disadvantage of the R2

and ENS arises from the fact that the differences of
observed and predicted streamflow parameters use the
squared values. Consequently, large errors in time series

Table 5 An assessment of model
prediction error, |PE|, standard
deviation, σ, and number of da-
tum points in ± (0–1)σ, ± (1–2)σ,
± (2–3)σ, and >±3.0σ for opti-
mum models

All units are in meters (m)

Station Mean error,
|PE| (m)

Standard
deviation, σ

Number of points

± (0–1)σ ± (1–2)σ ± (2–3) σ >±3σ

Optimum ELM model

Gowrie Creek 0.0528 0.0369 62 19 3 0

Albert River 0.0278 0.0218 66 14 3 1

Mary River 0.0793 0.0725 69 11 3 1

Optimum ANN model

Gowrie Creek 0.1437 0.1137 62 19 1 2

Albert River 0.0489 0.0407 58 22 3 1

Mary River 0.2493 0.2381 68 12 1 3

Table 6 The model performance based on coefficient of determination (R2), Willmott’s Index (d), Nash–Sutcliffe coefficient (ENS), peak
percentage deviation (Pdv), and mean absolute error (MAE) in the test period (2006–2012)

Station ELM ANN

R2 d ENS Pdv (%) MAE (m) R2 d ENS Pdv (%) MAE (m)

Optimum model

Gowrie Creek 0.964 0.968 0.963 1.993 0.053 0.732 0.802 0.698 18.080 0.144

Albert River 0.957 0.962 0.955 −0.091 0.023 0.830 0.863 0.816 −5.527 0.049

Mary River 0.990 0.986 0.989 0.372 0.079 0.892 0.855 0.891 −0.254 0.249

Trial model with only rainfall and month as inputs

Gowrie Creek 0.781 0.802 0.691 4.918 0.128 0.723 0.773 0.656 18.389 0.149

Albert River 0.685 0.537 0.617 −3.503 0.072 0.571 0.588 −0.312 7.500 0.145

Mary River 0.910 0.870 0.909 0.016 0.227 0.823 0.776 0.800 1.555 0.312

Trial model all nine inputs (no prior selection)

Gowrie Creek 0.732 0.809 0.698 18.080 0.144
Albert River 0.859 0.876 0.812 2.358 0.049

Mary River 0.928 0.903 0.926 4.178 0.222

The optimum model was selected based on input combinations (x) and compared with an equivalent ANN model
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can be overestimated whereas small values can be
neglected (Legates and McCabe 1999). This insensitiv-
ity was overcome using Willmott’s Index, d (Willmott
1981). where the ratio of mean square error and poten-
tial error was considered for ELM model assessment
instead of the squared differences between simulated
and observed parameters (Willmott 1984).

The statistical metrics (Table 6) provided undisputed
evidence that the optimum ELM was highly accurate
compared to the optimum ANN model. In comparison
with the ANN model, the ELM model yielded correla-
tion statistics that were very high (R2≈0.957–0.994)
and so were the magnitudes of Willmott’s Index and
Nash–Sutcliffe efficiency (d ≈ 0.968–0.986 and
ENS≈0.955–0.989). Importantly, the peak percentage
deviation for the ELM model was also quite low
(Pdv ≈ −0.091–1.993) compared to Pdv ≈ −0.254–
18.080 for the ANN model. This showed that the
ELM model generated much reliable results compared
to the ANN, which also concurred emphatically with
relatively lower magnitudes of the MAE for the former
model.

In terms of the simulation of QWL from the trial
models with only rainfall and month as inputs, the
ELM yielded better results than the ANN, albeit its
overall performance was worse compared to the opti-
mum ELM with selected inputs. For example, simula-
tions for the trial ELMmodel with rainfall and month as
input yielded R2 that was lower by 18.98 % (Gowrie
Creek), 28.42 % (Albert River), and 8.08 % (Mary
River), and the magnitudes of d were by 17.15, 44.18,
and 11.77 %, respectively. Likewise, the peak percent-
age deviation andMAE values were significantly higher
when trial ELM model was simulated with only rainfall
and month as the input variable. Similar observations
were made when the ELM model was executed with all
nine inputs rather than the selected optimum input
combinations.

It was noteworthy that for all models tested, the
overall simulation accuracy over the test period repre-
sented by Eqs. (18–20) had better performance for Mary
River compared to the other two stations, although PE
represented by Eq. (17) was higher. That is, for Mary
River, the r2, d, and ENS registered approximately 0.990,
0.986, and 0.989, respectively, but the MAE was
0.079 m (optimum ELM) compared to 0.964, 0.968,
and 0.963 (Gowrie Creek) and 0.957, 0.962, and 0.955
(Albert River). This was also confirmed by simulations
obtained from the optimum ANN as well as the trial

ELM and ANN models. As confirmed later (Figs. 8 and
9), the distribution of simulated QWL was closer to the
observed and the magnitude of statistically significant
cross correlation coefficients was larger for Mary River
(Table 2; Fig. 4). Taken together, it is conclusive that
among the other stations, simulations for Mary River
were more accurate than Gowrie Creek and Albert
River. This was perhaps attributable to the closer dis-
tance (which was <0.99 km) of rainfall station (Cowal)
to the (hydrological) station (Mary River) where simu-
lations were performed. By contrast, rainfall stations
used for Gowrie Creek and Albert River were inadver-
tently 45 km away (Table 1) and, therefore, were unre-
sponsive to changes in hydrological flow. It was perhaps
this reason, and others, that the simulations for Mary
River yielded the best agreement with observed QWL.

A boxplot with the distribution of simulated and
observed streamflow in the prescribed test period is
shown in Fig. 8. Note that the whiskers in boxplot were
used to show the extremities of predicted and observed
streamflow properties using their respective quartile
values where the lower end of each boxplot was at the
lower quartile, p25 (25th percentile), and upper end for
the upper quartile, p75 (75th percentile), and the second
quartile, p50 (50th percentile), was the median. Two
horizontal whiskers were extended from the top and
bottom of the box, where the bottom whisker extends
from p25 to the smallest non-outlier in the dataset,
whereas the other one goes from p75 to the largest non-
outlier. Table 6 summarizes the statistical properties for
simulated and observed streamflow.

According to Fig. 8, the distribution of simulated
streamflowwas close to the observed values for all three
stations when the optimum ELM model was utilized.
This confirmed that the ELM model was more accurate
in simulating the monthly QWL. However, when the
optimum ANN model was used, there was a very sig-
nificant discrepancy between the distribution of QWL

pred and QWL obs especially for Gowrie Creek. Quite
clearly, the extreme values of streamflow were poorly
represented in the ANN simulation model for this site.
In fact , the simulated QWL pred was highly
underpredicted as most of the simulated values were
lower than the observed. For the case of Albert River,
the optimum ANN model was more responsive and,
therefore, yielded more accurate simulations despite
the presence of a notable outlier in QWL pred. The most
accurate streamflow simulations were obtained forMary
River both by optimum ELM and ANN models.
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In order to inspect the model simulation skill more
closely, the differences in distribution of error statistics
in terms of maximum, minimum, lower quartile (Q25),
median (Q50), upper quartile (Q75), range, skewness,
and flatness of streamflow for the optimum ELM and
the optimum ANN models are shown in Table 7. Also
shown are the error statistics of the trial ELM and trial
ANN models with month and rainfall as the input var-
iables. Again, these statistics confirmed more accurate
simulations for the ELM compared to the ANN model
for both the optimum and the dual input (rainfall and
month) case. In terms of the maximum simulated and
observed streamflow, the optimum ELM model yielded
a value of 0.16mwhereas the optimumANNmodel had
0.57 m for Gowrie Creek. Likewise, for Albert River,
the optimum ELM model generated a difference of

0.07 m whereas the ANN model had 0.18 m, and for
Mary River, it was 0.39 versus 1.13 m. Similar deduc-
tion was made when the minimum, lower quartile, me-
dian, upper quartile, and the range of simulated and
observed QWL were analyzed for the optimum ELM
and ANN models, as well as the trial ELM and ANN
models. This demonstrated the efficacy of the ELM
model for reliable simulation of extreme values of
streamflow compared to the ANN model.

Figure 9 shows a histogram of the relative frequency
of prediction error (PE) in various error brackets for the
optimum ELM compared to the trial ELM model with
only month and rainfall (P) as the inputs. Also shown
are numbers on each bar representing the actual percent-
age values for the particular error bin. When the results
for the optimum ELM model (left) were considered,

(a) 

(b) 

(c) 

Fig. 8 Boxplot of distributions of
predicted (Qobs) and simulation
streamflow (Qpred) for a Gowrie
Creek, bAlbert River, and cMary
River. Whiskers are used to show
extremities of predicted and
observed flow properties
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almost 44 % of simulations were in ±0.05-m bin width
(Gowrie Creek) whereas that for Albert River was 71 %
and Mary River was 37 %. This confirmed that the
optimum ELM model yielded the most simulation of

streamflow for Albert River, which was also consistent
with earlier results (Figs. 5 and 6). It was also noticeable
that the next error bin (± (0.05–0.10)m) was only 12 %
and (± (0.10–0.15)m) was only 1 % compared to about

(a) 

(b) 

(c) 

Optimum ELM Model           Trial ELM Model with inputs, x = [month, P]   Fig. 9 A histogram of relative
frequency of absolute prediction
error (PE) (m) in error bracket for
the optimum ELM model
compared with the trial ELM
model with month and rainfall (P)
as inputs for a Gowrie Creek, b
Albert River, and c, dMary River.
The numbers on each bar show
the actual count of months in test
period

Table 7 Difference in distribution of error statistics in terms of maximum, minimum, lower quartile (Q25), median (Q50), upper quartile
(Q75), range, skewness, and flatness of streamflow in the test period

Error statistic Optimum ELM model Optimum ANN model

Gowrie Creek Albert River Mary River Gowrie Creek Albert River Mary River

Maximum 0.16 0.07 0.39 0.57 0.18 1.13

Minimum −0.14 −0.11 −0.29 −0.47 −0.14 −1.04
p25 −0.03 −0.02 −0.06 −0.06 −0.04 −0.20
p50 0.02 0.00 −0.02 0.06 −0.01 0.02

p75 0.05 0.01 0.05 0.17 0.04 0.16

Range 0.30 0.18 0.69 1.04 0.32 2.17

Skewness −0.22 −0.13 0.74 −0.03 0.40 0.32

Flatness −0.21 1.14 2.43 1.20 0.33 1.90

Trial ELM model (inputs, x= [month, P] Trial ANN model (inputs, x= [month, P]

Maximum 0.67 0.12 1.12 0.72 0.36 1.85

Minimum −0.17 −0.30 −0.90 −0.38 −0.12 −0.85
p25 0.00 −0.10 −0.16 −0.05 0.05 −0.05
p50 0.07 −0.03 0.03 0.10 0.15 0.12

p75 0.17 0.02 0.21 0.18 0.20 0.30

Range 0.84 0.42 2.02 1.09 0.47 2.70

Skewness 1.48 −0.42 0.50 0.61 −0.21 1.33

Flatness 3.15 0.04 2.42 1.90 −0.17 4.44

All units are in meters (m)
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28 and 11 % (Gowrie Creek) and 24 and 11 % (Mary
River), respectively.

Based on this analysis, it is axiomatic to conclude
that ELM model simulations for Albert River generated
the smaller PE when compared with the other two
stations. In fact, a closer assessment showed that for
the case of Mary River, the optimum ELM model
yielded relatively small yet notable error values in larger
error bins (cumulative frequency was approximately
5.0 % for error of ± (0.2–0.4)m)), which concurred with
earlier the results (Fig. 7c). It is therefore conclusive that
the trial ELMmodel with only the month and rainfall as
input variables was more inaccurate compared to the
optimum ELM model (Figs. 8 and 9, right).

For all stations considered, the frequency distribution
of model simulation errors for trial models (with unse-
lected inputs and with only rainfall and month as input)
was inherently located in larger error bins compared to
the optimum ELMmodel where errors were concentrat-
ed in smaller bin. This was also the true for the compar-
ative trial ANN model with nine inputs (not shown
here). Therefore, an ostensible deduction is made: that
streamflow modeling requires selection of the most
relevant input variables by a careful and robust assess-
ment of statistical dependence of input(s) and target
(objective) variable (Table 2; Fig. 4). This is necessary
for accurate modeling since relationship between inputs
and outputs needs to be better identified and irrelevant
variables whose features are not useful for the simula-
tion of the objective variable are eliminated (Tiwari and
Adamowski 2013). Consequently, proper selection of
variables tends to achieve better simulation accuracy
compared to models with no selection of variables, as
was evident for the case of trial ELM and ANN models
developed in this study.

Summary and conclusion

In the twenty-first century where environmental chal-
lenges are exacerbated by the underlying consequences
of climate shift, the appraisal of streamflow using efficient
models as a useful stratagem for applications in envi-
ronmental monitoring, adaptive water resources planning,
sustainable agriculture, and ecosystem management.
In this study, we exemplified the utility of ELMmodel
for simulating streamflow in eastern Queensland and
results were validated with the ANN model. In order
to develop the ELM model, hydrological data were

utilized for Gowrie Creek (18.44° S; 145.85° E),
Albert (28.05° S; 153.05° E), and Mary River (25.95°
S; 152.49° E) for the period 1960–2012. The rainfall
data were acquired from weather stations, namely
Macknade Sugar Mill (18.58° S; 146.25° E),
Harrisville Post Office (27.81° S; 152.67° E), and
Cowal (25.95° S; 152.50° E) with climate indices
(SOI, PDO, IOD, EMI), and SST (Nino 3.4 SST, Nino
3.4 SST, and Nino 4.0 SST). In order to determine
significant inputs, cross correlation of streamflow with
input series was performed.

Based on the statistically significant correlations
(rcross), three sets of models were developed that includ-
ed a trial ELM model with month (to consider period-
icity) and eight input variables, a trial ELM model with
only month and rainfall as input, and an optimum ELM
model with selection of best inputs for each station. All
predictive models were trained using data for the period
1960–2005, tested over 2006–2012, and the model’s
performance was assessed using statistical measures to
verify its ability to simulate the streamflow. The findings
are enumerated as follows.

& A cross correlation analysis of observed streamflow
with each of the eight inputs revealed a statistically
significant dependence on rainfall (rcross≈0.306–
0.718), SOI (rcross ≈ 0.141–0.215), and EMI
(rcross ≈ −0.237 to −0.314) for all stations.
However, cross correlation of streamflow with time
series of PDO, EMI, IOD, and SSTs was different
for different hydrological stations.

& For ELM model, trial and error experiments were
performed using activation functions (sigmoid, sine,
hard-limit, triangular basis, radial basis, logarithmic
sigmoid, and tangent sigmoid functions) and ran-
domly assigned weights and incrementally varying
hidden neurons (2 to 150). Therefore, the optimum
ELM was designed with hard-limit activation equa-
tion and neuronal architecture of 6-106-1 (Gowrie
Creek), 6-74-1 (Albert River), and 6-146-1 (Mary
River) corresponding to its input–hidden–output
arrangements.

& The comparative ANN model was trialed using
tangent and logarithmic sigmoid transfer functions
with several learning algorithms. This resulted in
best ANN model with Levenberg–Marquardt algo-
rithm and a neuronal architecture of 6-28-1 (Gowrie
Creek), 6-18-1 (Albert River), and 6-20-1 (Mary
River).
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& For all stations considered for simulation of mean
monthly s t reamflow, the opt imum ELM
outperformed the ANN model. For Gowrie Creek,
performance metrics yielded a value of R2≈0.964,
d ≈ 0.968, and ENS ≈ 0.963 (ELM) compared to
0.732, 0.802, and 0.698 (ANN), while for Albert
River, a value of R2 ≈ 0.957, d ≈ 0.962, and
ENS ≈ 0.955 (ELM) was obtained compared to
0.830, 0.863, and 0.816 (ANN). Similarly, a value
of R2≈ 0.990, d≈ 0.986, and ENS≈ 0.989 (ELM)
was obtained compared to 0.892, 0.855, and 0.891
(ANN).

& Given correlation of streamflow with rainfall for all
stations, trial models using rainfall and month as
inputs yielded good performance for the ELM com-
pared to the ANN model. However, simulation ac-
curacy of both models was worse compared to the
optimum models with selected input. When all nine
inputs were incorporated into the trial ELM model
without selection of variables, the performance de-
teriorated quite significantly.

& An analysis of the relative frequency of simulation
errors in different error brackets showed that the trial
ELM with month and rainfall as inputs resulted in a
higher frequency for the wider error brackets
(>±0.10 m)) compared to the optimum ELM model
that produced the highest frequency of all errors in
the larger ± (0–0.05)m bracket.

Based on our findings, it is ascertained that the ELM
model with selected input variables has a good ability to
simulate streamflow water level and its performance is
comparatively better than the ANNmodel. It is therefore
advocated that the ELM algorithm is a useful utility for
environmental monitoring where predictive modeling of
parameters (e.g., streamflow) is required. Finally, the
ELM-based streamflow model can be employed to im-
plicate or analyze trends in hydrological parameters
(e.g., rainfall), assessing the viability of irrigation sys-
tems, river flows, or lakes as well as sustainable use of
water for agriculture and developing flood and drought
response strategies.
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