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Abstract A new method for the optimal design of
groundwater quality monitoring networks is introduced
in this paper. Various indicator parameters were consid-
ered simultaneously and tested for the Irapuato-Valle
aquifer in Mexico. The steps followed in the design
were (1) establishment of the monitoring network ob-
jectives, (2) definition of a groundwater quality concep-
tual model for the study area, (3) selection of the param-
eters to be sampled, and (4) selection of a monitoring
network by choosing the well positions that minimize

the estimate error variance of the selected indicator
parameters. Equal weight for each parameter was given
to most of the aquifer positions and a higher weight to
priority zones. The objective for the monitoring network
in the specific application was to obtain a general recon-
naissance of the water quality, including water types,
water origin, and first indications of contamination.
Water quality indicator parameters were chosen in ac-
cordance with this objective, and for the selection of the
optimal monitoring sites, it was sought to obtain a low-
uncertainty estimate of these parameters for the entire
aquifer and with more certainty in priority zones. The
optimal monitoring network was selected using a com-
bination of geostatistical methods, a Kalman filter and a
heuristic optimization method. Results show that when
monitoring the 69 locations with higher priority order
(the optimal monitoring network), the joint average
standard error in the study area for all the groundwater
quality parameters was approximately 90 % of the ob-
tained with the 140 available sampling locations (the set
of pilot wells). This demonstrates that an optimal design
can help to reduce monitoring costs, by avoiding redun-
dancy in data acquisition.

Keywords Optimalmonitoring network .Geostatistics .

Kalman filter . Groundwater quality . Priority zones

Introduction

In this paper, we introduce a Kalman filter (KF) meth-
odology for the optimal design of groundwater quality
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monitoring networks, in which various indicator param-
eters and priority zones are considered simultaneously.
We test it in the design of a sampling network for the
Irapuato-Valle aquifer in Mexico.

Background

Groundwater monitoring network design consists in
choosing observation well positions and whenever it is
possible also the monitoring frequencies to achieve
predetermined monitoring objectives. When an optimal
design is required, optimization criteria are established
and an optimization method is used to choose sampling
well positions and/or sampling frequencies that mini-
mize or maximize it. A spatial design is shown in this
paper by selecting only sampling positions.

In general, monitoring objectives involve estimating
parameters at unobserved positions or times, and there-
fore, interpolation or estimation methods are frequently
used in the design.

Optimal groundwater monitoring network design

There are several published papers for the optimal de-
sign of groundwater quality or groundwater quantity
monitoring networks. Early research focused on
methods to locate new monitoring wells. Afterward,
methods were developed to identify sampling plans to
minimize the spatial and/or temporal redundancy in
existing monitoring networks (ASCE 2003).

Herrera and Pinder (2005) defined three main ap-
proaches for the design of groundwater monitoring net-
works (selection of positions and its monitoring pro-
gram) as (1) hydrological, based on site hydrological
conditions only; (2) statistical, based on inferences ob-
tained from statistical analysis of data; and (3) modeling,
based on results of groundwater flow and/or transport
models.

The literature review shown below focuses on the
statistical framework because the methodology present-
ed in this paper is of the same kind. Methods for the
design of monitoring networks for groundwater quality
and quantity, relevant for our research, are included.

In the selection of positions and frequencies, most
research use methods that optimize a function of the
estimate error variance for a specific area. Within the
statistical approach, most research are based on
geostatistical techniques that consider spatial correla-
tions between groundwater data. Some recent examples

for water quality monitoring designs are Chadalavada et
al. (2011), Li et al. (2011), and Hergt (2009). On the
other hand, some examples for groundwater quantity
monitoring designs are Kumar et al. (2005) and Zaidi
et al. (2007). All these papers focus on the optimal
design of monitoring networks for a single variable
(e.g., the concentration of a solute in groundwater or
the water level) in a spatial context where only positions
were selected. Lin and Rouhani (2001) designed differ-
ent groundwater quality monitoring networks for the
two analyzed contaminants, trichloroethylene and
tetrachloroethylene.

Only a few reported research have tried to incorpo-
rate various water quality parameters during optimiza-
tion of a single monitoring network design. Masoumi
and Kerachian (2010) claimed that the transinformation-
based methodology they presented has the ability to
consider various variables at the same time, but it was
not demonstrated in the paper. Dutta et al. (1998)
employed various water quality parameters to suggest
different monitoring alternatives, but in the optimization
process, only the parameter with larger variance was
considered. Preziosi et al. (2012) applied map algebra
and ranking score in a geographic information system
(GIS) procedure to integrate aquifer vulnerability and
levels of groundwater pollution in a monitoring network
design, considering various water quality parameters.

Yeh et al. (2006) developed a methodology that is
relevant for the problem we address. They employed a
multivariate analysis to design a spatial monitoring net-
work for nine water quality parameters. Variables were
standardized before the analysis. A coregionalization
matrix of the groundwater quality parameters was cal-
culated using the direct and cross variograms that incor-
porate two structures to consider short and long spatial
scale variations. The eigenvalues and the variance pro-
portion for regionalized factors were calculated through
the principal component analysis (PCA) and factorial
analysis of the coregionalization matrix. An optimiza-
tion problem that has three key characteristics was
posed, which makes it different from the methods pre-
viously reviewed. First, the objective function seeks to
minimize the estimate error variance of regionalized
factors (obtained using factorial kriging) instead of
using the estimate error variance of original variables.
Second, the optimal monitoring network design can be
carried out by considering different combinations of
regionalized factors regardless of spatial scales. Third,
the weighting for each regionalized factor (RF) during
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the optimization is assigned according to the variance
proportion that represents. This differs from the kriging
and cokriging-based methods, which use a subjective
weight of regional variables. A genetic algorithm is used
to get the optimal design.

Themethodology introduced in this paper is based on
the method of Herrera (1998) that was modified for its
use in the design of an optimal monitoring network
(OMN) for various water quality parameters. A function
of the estimate error variance was employed as the
criterion to choose the sampling wells of a monitoring
network. Unlike Herrera (1998) that derives the ele-
ments of a covariance matrix for the considered water
quality parameter from a numerical transport model, a
covariance matrix was calculated for each water quality
parameter from a geostatistical analysis in this paper.
Furthermore, we consider jointly the spatial correlations
of various groundwater quality parameters and its cor-
responding priority zones (that will be described in the
Materials and methods section) in an automated proce-
dure that uses a heuristic optimization method in com-
bination with a Kalman filter to minimize a joint-
normalized variance of all the parameters. Initial devel-
opments of the methodology introduced in this paper
were presented in Herrera et al. (2004) and Júnez
(2005).

Materials and methods

The steps followed in the OMN design were (1) estab-
lishment of the monitoring network objectives, (2) def-
inition of a groundwater quality conceptual model for
the study area, (3) selection of the parameters to be
sampled, and (4) design of an OMN by choosing the
well positions that minimize the estimate error variance
of the selected indicator parameters. Equal weight was
assigned to all the aquifer area except to priority zones
for which a higher weight was used.

The design of a monitoring network begins by setting
its objectives. These objectives depend on the needs of
the water resource management organizations. The
criteria used in the design of the monitoring network
for the Irapuato-Valle aquifer will be explained later.

Field (geologic and hydrogeologic) and laboratory
evidence were used to identify anthropogenic and
geogenic contamination sources restraining groundwa-
ter quality for drinking purposes. Diffuse contamination
sources from irrigation using raw wastewater increase

nutrients (nitrate and phosphate) and microorganism
concentrations in groundwater. Groundwater interaction
along flow path with geogenic sources represented by
igneous rocks (both felsic and mafic extrusive lava
flows, tuffs, and ignimbrites) produce fluoride, arsenic,
iron, and manganese concentrations above drinking wa-
ter standards. This information was useful to establish
the groundwater quality conceptual model and for the
selection of key parameters to delineate the aquifer
priority zones.

Asmentioned before, the introducedmethod to select
an OMN considers the spatial correlations of various
groundwater quality parameters and its priority zones in
an automated optimization procedure. A Kalman filter
and an optimization method are used to choose the
monitoring positions.

The Kalman filter requires a prior spatial covariance
matrix that is calculated through geostatistics. The opti-
mization method is heuristic and selects the spatial
location that minimizes an objective function one at a
time. In this paper, the optimization procedure seeks to
reduce the estimate error variance over an area of inter-
est (it could consider contaminated areas, highly vulner-
able zones, pollution sources, potable water exploitation
zones, recharge zones, or the entire area that defines an
aquifer). To achieve this, a spatial set of locations is
necessary, for which estimates are needed.

The Kalman filter

The KF is a set of mathematical equations that provide a
minimum-variance unbiased linear estimate for the state of
a system given noisy data (Jazwinski 1970). In this paper,
we apply the static Kalman filter formulas presented for
spatiotemporal monitoring designs in Júnez-Ferreira and
Herrera (2013) in space for each analyzed water quality
indicator parameter (WQIP) because the available infor-
mation for the Irapuato-Valle aquifer was from a sampling
campaign. Some examples of space-time applications can
be found in Herrera (1998), Herrera and Pinder (2005),
and Júnez-Ferreira and Herrera (2013).

The linear measurement equation of the discrete
Kalman filter, which relates the state vector of the var-
iable q in the positions of interest, with sampled data z is

z j ¼ H jqþ v j ð1Þ
where {zj, j=1, 2,…} is a sequence of water quality
measurements for a single parameter. The jth sampling
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matrix, Hj, is a 1×N matrix that is nonzero only at the
position corresponding to the entry of q from where the
jth sample is taken and N is the dimension of the vector
q. q={qi} is the spatial vector with the water quality
parameter in the positions of interest (qi is the water
quality parameter in position xi). The vector {vj,
j=1,2,…} represents measurement errors; they are a
white Gaussian sequence, with zero mean and covari-
ance rj.

The measurement error sequence {vj} and the vector
q are independent. In the case study, the measurement
error variance included in the Kalman filter formulations
was very small because the measurement error was
considered negligible.

The estimate error covariance matrix is

Pn ¼ E q−q̂
n� �

q−q̂
n� �T.

z1; z2;…; zn

� �
ð2Þ

w h e r e q̂n ¼ E q=z1; z2;…; znf g, b e i n g E { • /
z1, z2,…, zn} the expected value of •, given the mea-
surements z1, z2,…, zn.

To implement the filter, prior estimates of q (named

q̂0) and of the error covariance matrix (P0) are required.
Given these prior estimates, the minimum-variance lin-
ear estimate for q can be obtained sequentially through
the following formulas:

q̂
nþ1

¼ q̂
n
þKnþ1 znþ1−Hnþ1q̂

n� �
ð3Þ

Pnþ1 ¼ Pn−Knþ1Hnþ1P
n ð4Þ

Knþ1 ¼ PnHT
nþ1 Hnþ1P

nHT
nþ1 þ rnþ1

� � ð5Þ
There are many ways to estimate q̂0; a particular one

is presented in the example included in this paper. The
prior estimate error covariance matrix P0 for eachWQIP
is obtained through a geostatistical analysis of data
measured from a field campaign, by fitting a spatial
variogram model to the sample variogram. Once the
variogram model is selected, the elements of the spatial
covariance matrix are calculated with Eq. (6).

C hð Þ ¼ C 0ð Þ−γ hð Þ ð6Þ
where C(0) is the variance of the analyzed parameter,
and it is equal to the sill of the variogram, and γ(h) is the

variogram model function. Equation (6) assumes that
the variogram is bounded.

Monitoring network optimization

A groundwater quality monitoring network that con-
siders simultaneously the uncertainty reduction for var-
ious parameters could help avoid spatial redundant in-
formation for all the parameters at once. The optimiza-
tion procedure employed in this paper to consider vari-
ous WQIPs simultaneously is explained below.

Consider the set of all possible monitoring positions
M={xi

M, i=1,…,Nmp}, where Nmp is the number of
possible monitoring positions, and x= (x, y)∈D, where
D is the Euclidean plane. From this set, we want to
choose those points that minimize the sum of the esti-
mate error variance on the points for which estimates are
needed, E={xj

E, j=1,…,Nep}, where Nep is the num-
ber of estimation points.

In the specific application addressed in the paper, the
statistical objective for the monitoring network was to
obtain low-uncertainty estimates of groundwater quality
for the entire aquifer and with more certainty in priority
zones for the most representative parameters. For the
optimization procedure, this objective was Btranslated^
in discrete mathematical terms. Because of this, a pre-
liminary spatial estimation grid with squared elements
of 2 km side length was defined and an auxiliary grid
(composed by squared elements of 1 km side) was
defined for each WQIP that encompasses its priority
zone. The optimization objective is to choose the mon-
itoring positions xi

M∈M that minimize the joint total
(JT) normalized variance of the estimation error, calcu-
lated using the following formula:

σ2
JT ¼

XNWQIP

k¼1

XNP
j¼1

σ2
k; j þ

X
j¼1

NPZ1

σ2
1; j þ

X
j¼1

NPZ2

σ2
2; j

þ…þ
X
j¼1

NPZNWQIP

σ2
NWQIP; j ð7Þ

where σk,j
2 is the normalized variance of the estimation

error ek xEj

� �
¼ qk xEj

� �
−q̂k xEj

� �
, of the parameter k at

the jth estimation location, obtained from the diagonal
of the KF covariance matrix of each parameter; NP is
the number of elements of the preliminary spatial esti-
mation grid; NWQIP is the number of water quality
indicator parameters considered simultaneously in the
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design; and NPZi is the number of elements in the mesh
of the priority zone of the ith WQIP. If we assign σk,j

2 =0
at all the estimation positions of the auxiliary grids
inside priority zones not corresponding to parameter k,
then we can write

σ2
JT ¼

XNWQIP

k¼1

XNep

j¼1

σ2
k; j ð8Þ

where Nep ¼ NPþ ∑
NWQIP

i¼1
NPZi

It can be seen that if the variance of each param-
eter is used in Eqs. (7) and (8), more weight during
the optimization procedure would be given to pa-
rameters with large variance than to parameters with
small variance; therefore, low-variance parameters
would be poorly monitored with the resulting mon-
itoring network. In order to give the same weight to
all the WQIPs in the optimization procedure, we
normalized the covariance matrix obtained from the
geostatistical analysis for each parameter to obtain a
correlation matrix (CM). The normalization of each
covariance matrix is carried out dividing all its ele-
ments by the parameter variance (the sill of its
corresponding variogram model). In this way, each
component of the principal diagonal for each prior
CM is equal to one. This is,

CM0
k ¼

C0
k

C 0ð Þk
ð9Þ

where CMk
0 is the correlation matrix for parameter k,

Ck
0 is the covariance matrix obtained from the

geostatistical analysis for parameter k, and C(0)k is
the sill of the variogram model for parameter k.

The problem is optimized sequentially using a suc-
cessive inclusion method (Samper and Carrera 1990), as
explained below. For n=1,⋯, choose the point Xo,n in
M that minimizes the function

σ2
JT OMN n−1ð Þ; xð Þ ¼

XNWQIP

k¼1

XNep

j¼1

σ2
k; j OMN n−1ð Þ; xð Þ

ð10Þ
where σk,j

2 (OMN(n−1),x) is the element in the diagonal
of the updated correlation matrix of parameter k corre-
sponding to the estimation point (xj

E) obtained from the
KF using the n−1 optimal monitoring network OMN(n
−1)={Xo,1,Xo,2,…,Xo,n − 1} previously chosen and the

spatial point x. It is important to note that OMN (0) is an
empty set. Let Pk,o

n− 1 be the matrix of parameter k ob-
tained after applying Eqs. (4) and (5) of the KF to the set
OMN (n− 1). Then, to find Xo,n, for each possible
monitoring point that has not been chosen, the updated
correlation matrix for each parameter is calculated using
Eqs. (4) and (5) of the KF with the matrix Pk,o

n− 1 and the
possible monitoring point, and then, the point that gives
the minimum σJT

2 (OMN(n−1),x) is selected. This point
is then added to the set of optimal monitoring points,
and the matrix Pk,o

n for each parameter is calculated
again using the KF. The process starts by assigning
Pk,o
0 =CMk

0.
A flowchart of the proposed methodology is shown

i n F i g . 1 . T h e F O R T R A N p r o g r a m
GWQMonitor_Geoestad that applies this algorithm, de-
signed by the authors (Júnez 2005), was used to get the
results.

Samper and Carrera (1990) showed that successive
inclusion is a suboptimal method that provides similar
results to optimal procedures without investing a large
computational effort. Also, Simuta (2012) compared the
successive inclusion method and a genetic algorithm
optimization method in the design of a monitoring net-
work using an objective function similar to the present-
ed in this paper, obtaining similar results with a substan-
tial reduction in the computational effort for the former
method.

The criterion used in this research to determine the
total number of spatial locations to be included in the
OMN is based on the results of the joint total variance
and considering the priority order assigned by the
method.

To define the number of spatial locations of the
monitoring network, we first calculate the square root
mean joint total variance (SRMJT).

SRMJT ¼
ffiffiffiffiffiffiffiffiffi
σ2
JT

Nep

s
ð11Þ

It can be shown that
ffiffiffiffiffiffi
σ2JT
Nep

q
≥ σ JT
Nep for Nep≥ 1 and

σJT
2 ≥0. This means that the SRMJT is an upper bound

for the joint average standard error in the spatial estima-
tion grid, which can help us to consider a conservative
design scenario.

The criterion consists in selecting the spatial loca-
tions where a 90 % of the maximum possible reduction
(MPR) of the SRMJT is achieved.

Environ Monit Assess (2016) 188: 39 Page 5 of 22 39



MPR ¼ Max

ffiffiffiffiffiffiffiffiffi
σ2
JT

Nep

s
−Min

ffiffiffiffiffiffiffiffiffi
σ2
JT

Nep

s
ð12Þ

This way, we guarantee to select a monitoring net-
work that reaches at least the 90 % of the maximum
possible reduction for the joint average standard error of
the WQIP.

Study area

The proposed methodology is demonstrated by apply-
ing it to the design of a low-cost groundwater quality

monitoring network for the Irapuato-Valle aquifer locat-
ed in the southern part of the Mexican state of
Guanajuato. This aquifer represents the main source
of water supply for the population of the zone since
the Lerma River (main surface water source in the study
area) suffered a serious decline in the water quality and
the quantity of its flow rate as a result of anthropogenic,
industrial, and agricultural activities in the region in
recent decades.

The Irapuato-Valle aquifer has an extent of approx-
imately 2500 km2, encompassing the cities of
Irapuato, Salamanca, Valle de Santiago, Pueblo
Nuevo, and Jaral del Progreso. The deepest zones of

Fig. 1 Flowchart of the proposed
methodology
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the aquifer are about 500 m. It is located between
parallels 20° 15′ 00″ and 20° 53′ 00″ N latitude and
between meridians 101° 32′ 00″ and 100° 53′ 17″ W
longitude (Fig. 2). It is part of the Lerma River–
Salamanca watershed, within the Lerma-Santiago-
Pacífico administrative region. The highest elevation
within the study area is the Culiacán Hill, with an
altitude of 2830 m above sea level (asl). The climate
in the area is warm, with summer rains and an average
annual temperature of 18 °C.

The main economic activities in the region are
agriculture and industry. Some pollution problems
in the region have been produced by inadequate
urban wastewater management, abrupt increase in
industrial parks, thermal activity, and agricultural
activities.

Conceptual hydrodynamic model

For the description of the conceptual hydrodynamic
model, information from Water and Sanitation
Commission of the State of Guanajuato (CEASG)
(1998) was used. The uniformity of the superficial
geology suggests a relatively homogenous subterra-
nean geological framework. Igneous and sedimenta-
ry materials constitute a heterogeneous aquifer unit
whose transmissive capacity is mainly associated to
the fractured rocks, meanwhile storage is due to the
enormous volume of high-porosity materials. The
spatial distribution of the lithological units grouped
in porous (first two hydrostratigraphic units) and
fractured (the third and fourth hydrostratigraphic
units) media integrate a heterogeneous unconfined

Fig. 2 Geographic location and pilot monitoring network of the Irapuato-Valle aquifer
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aquifer system that controls the groundwater move-
ment within the study zone.

Three main flow systems have been identified, local,
intermediate, and regional, circulating in four
hydrostratigraphic units which are described as follows:

Hydrostratigraphic unit 1, 0 to 150m thick, consists
of intercalated gravel, sands, argillaceous tuffs, and
small basaltic lava flows.
Hydrostratigraphic unit 2, 150 to 250 m thick,
composed of sand, gravel, and clayed tuff.
Hydrostratigraphic unit 3, 150 to 200 m thick,
integrated mainly of ignimbrite rocks interbedded
with medium to coarse sand.
Hydrostratigraphic unit 4, greater than or equal to
250 m thick, consisting of altered basalts and me-
dium to coarse sand.

The local flow system occurs in the first
hydrostratigraphic unit, the intermediate flow system
circulates within the first, second, and third
hydrostratigraphic units, meanwhile the regional flow
crosses the third and fourth units. The basement is
located below 900 m depth, with non-differentiable
thickness.

The granular media include mainly alluvial deposits,
residual soils, and volcano-sedimentary material, and
the fractured media is constituted mainly of basaltic lava
flows and interbedded pyroclastic materials.

At initial conditions, the main source of recharge to
the Irapuato-Valle aquifer occurred from rainfall infil-
tration on permeable surfaces, through local fractures.
Under these conditions, the groundwater flow moved
horizontally from east to west in the unconsolidated
granular fills and in the fractured medium following
the Lerma River orientation, being this the principal
component of groundwater direction. Below, we de-
scribe the three main flow systems identified in the
aquifer.

Local flow system. According to the available infor-
mation, this system is located between 6 and 10 m
depth; its upper boundary is constituted by porous or
fractured media.

Intermediate flow system. It is recharged mainly
from the top of the Sierra de las Codornices mountain
chain and the Siete Luminarias volcanic front. Almost
all the water abstraction in the valley takes place on this
system. The average groundwater level varies between
25 and 80 m depth.

Regional flow system. Chemical indicators of water
from wells allow inferring that the regional flow system
circulates in the fractured media of the fourth
hydrostratigraphic unit (from top to bottom) as shown
in Fig. 3.

Nowadays, groundwater discharge takes place as
surface runoff of the Lerma River, groundwater flow
to the Pénjamo-Abasolo Valley, and abstraction from
pumping wells. At the southeastern part of the study
area, the most significant groundwater inputs to the
aquifer occur; some infiltration is added from the
Lerma River; and at the east side, there is another
groundwater input coming from the Celaya Valley.

Figure 3 shows a diagram of the conceptual hydro-
dynamic model of the aquifer in a cross section with
northwest-southeast direction, including the defined
four hydrostratigraphic units and flow systems, and the
cities of Irapuato and Salamanca.

Groundwater flow directions and hydraulic head
evolution

Hydraulic head, topography, and recharge and discharge
zones help to interpret the groundwater flow directions.
Water moves from higher to lower hydraulic head areas.
Topographically, the Celaya and Salvatierra Valleys are
located, respectively, 50 and 100 m higher than the
Irapuato Valley producing a natural preferential flow
direction from the northeast, east, and southeast to the
Irapuato-Valle aquifer. The main recharge area occurs at
the southeastern portion in the direction of the Lerma
River. The discharge occurs at the west and southwest of
the valley to the Penjamo-Abasolo aquifer.

In 1979, the hydraulic head was considered more
or less uniform at the center of the valley with a
level of 1700 m asl; on the other hand, the southeast
portion (current recharge zone) presented a hydrau-
lic head of 1715 m asl. The piezometric analysis for
July and December 1998 showed that the hydraulic
gradients at the southeast, north, and northeast por-
tions favor the flow to the valley. Two depression
cones were identified in the cities of Salamanca and
Irapuato (with hydraulic head elevations of 1640
and 1660 m asl, respectively). Equipotential curves
in the rest of the aquifer had an average elevation
between 1670 and 1680 m asl. In June 2003, a set of
depression cones were identified. The most notable
was located from the industrial area to the city of
Irapuato (hydraulic head of 1635 m asl). On the
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other hand, a dome was produced between the cities
of Irapuato and Salamanca with the highest hydrau-
lic head of 1700 m asl.

At the moment of the sampling campaign carried out
in this study, the preferential flow direction was from
north to south starting in San Nicolas Temascatío with a
hydraulic head elevation of 1740 m asl. Several depres-
sion cones were formed at the center of the valley. The
main entrances of groundwater flow to the valley are at
the north with a hydraulic elevation of 1740 m asl, at the
northeast and east from the Celaya Valley starting with
elevations of 1690 m asl, and an additional originated
nearby Valle de Santiago at the southeast with the
highest hydraulic head elevation of 1680 m asl.

Hydrochemistry and groundwater quality

In natural condition previous anthropogenic impact,
groundwater flow systems developed from hydraulic
gradients along time, producing trends in groundwater
chemistry. The typical water chemistry composition in
recharge areas is generally associated with low-salinity
HCO3-Ca-type water, following to HCO3-mix and
HCO3-Na in volcanic terrain. Low-salinity (average
650-mg/l total dissolved solids) HCO3-Ca (9 % of the
total samples) type water was identified close to the

highland areas identified as main recharge zones in the
north and around Irapuato. However, most of the sam-
ples are HCO3-Na (41 %) and HCO3-mix (41 %) type,
representing the geochemical evolution (average 850-
mg/l total dissolved solids) of HCO3-Ca type interacting
with volcanic rocks and basin fill sediments. Thesemain
water types representing up to 90 % of total samples
have a major composition derived mainly for hydroly-
sis, dissolution, and cation exchange reactions with
volcanic rocks. Additional water types such as Cl-Mg,
mix-Ca, mix-Na, and SO4-mix made up to a total 9 % of
the samples; they represent impacted groundwater by
wastewater infiltration. HCO3-Na-type water in the
Irapuato-Salamanca region is derived from groundwater
interaction with felsic volcanic rocks and/or associated
basin fill sediments, whereas HCO3-mix type in the
Valle de Santiago area results from interaction with
mafic volcanic rocks. Most of the high arsenic and
fluoride waters are associated with the HCO3-Na type,
indicating that leaching from volcanic rocks with rhyo-
litic composition is a major control.

An analysis of groundwater quality was conducted
using data obtained from the pilot well (PW) and his-
torical information of the study area. The most impor-
tant results are summarized below; details can be seen in
González et al. (2003).

Fig. 3 Hydrodynamic conceptual model of Irapuato-Valle aquifer (cross section)
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Adverse modifications to the environment due to the
implementation of intensive crops that may be affecting
groundwater quality are related to excessive irrigation
and the improper use of agrochemicals (fertilizers and
pesticides) or manure. The cities of Irapuato and
Salamanca with its large population and industrial con-
centration generate significant quantities of wastewater
from domestic and industrial use. Untreated wastewater
is usually discharged to various tributary streams that
circulate through the region. Additionally, this contam-
inated water is used for irrigation of large landfills, a
practice that contributes to the spread of pollution in the
subsurface through infiltration from irrigation return
flows and unlined channels that carry water. In addition
to the major population centers, some smaller popula-
tions contribute to the generation of liquid waste that
sometimes is handled improperly, especially when there
is no urban drainage and effluents are discharged
through septic tanks.

Results of physical and chemical groundwater anal-
yses were compared with the NOM-127-SSA1-1994.
Taking into account major ions like salinity, chloride,
sulfate, sodium, and total hardness, groundwater
showed no major problems. For example, in 95.5 % of
the wells, salinity concentrations were found to be be-
low the permissible limit. For chloride, only the central
portion of the aquifer was identified with concentrations
exceeding the established limit. For minor elements,
fluoride concentration exceeds the permissible limit in
the northern part of the aquifer, mainly between
Irapuato and Salamanca. The highest concentrations
of fluoride (up to 13 mg/l) were found in deep wells of
Salamanca that supply water to a thermoelectric power
plant. The presence of fluoride in groundwater seems to
be associated with natural sources; in addition, high-
temperature values facilitate the mobilization of fluoride
from rocks to groundwater (high-fluoride values are
correlated with groundwater temperature greater than
30 °C).

When analyzing nitrate concentrations in groundwa-
ter, two points were detected with values above the
permissible limit of 10 mg/l (N-NO3); both are located
nearby Cortazar and Valle de Santiago. Additionally,
when oxidizing conditions prevail in the subsurface,
such as in the Irapuato-Valle aquifer, nitrate is usually
a good indicator of the impact of regional wastewater
management, but concentrations should be compared
with a background value (natural concentration).
Nitrate concentrations larger than the background level

include the area between the cities of Irapuato and
Salamanca; the south of Irapuato; nearby Pueblo
Nuevo, Cortazar, and Valle de Santiago; these results
represent the impact of agricultural activities on ground-
water. These conditions, added to the presence of high
levels of total and fecal coliforms in groundwater in
some areas of the Irapuato-Valle aquifer, should be
taken as an alert condition for groundwater quality.

For the analyzed trace elements, the groundwater
quality presented some limitations for potable use in
certain areas. For example, some arsenic concentrations
above the permissible limit were found in the
Salamanca area and another at the north of Irapuato.
At least two of these wells belong to the Salamanca
Water Supply System (wells 13 CMAPAS and 28
CMAPAS); the others belong to industrial supply wells.
Other wells with high levels of arsenic were identified in
the Hoya del Rincón de Parangueo and Pueblo Nuevo
region. Considering oxidizing conditions prevailing in
most parts of the Irapuato-Valle aquifer, iron values are
generally low, and only in three cases, concentrations
above the established limit (0.3 mg/l) were identified.
Manganese concentrations are low (below 0.05 mg/l) in
the section of the aquifer with dissolved oxygen con-
centrations above 3.5 mg/l; higher concentrations
(above 0.05 mg/l) are associated with lower dissolved
oxygen concentrations, suggesting a natural redox con-
trol. Although the iron and manganese geochemistry are
very similar, the latter is somewhat moremobile than the
first. Therefore, a larger number of wells (11) exceeded
the allowable limit for this parameter (0.15 mg/l). Some
of these wells belong to the water supply system of
Salamanca (2 and 9 CMAPAS), Valle de Santiago (7
SAPAM), and Jaral del Progreso (2 SMAPAJ). For
lead, no high concentration was detected in wells of
potable or agricultural use.

Diffuse contamination affecting groundwater quality
is basically derived from pollutant sources that may be
associated with the following two categories: (i) source
discharging substances as a result of lucrative activities
(mainly crop irrigation using groundwater and waste-
water, pesticide and fertilizer application, and farm
waste) and (ii) increase in natural source discharge due
to accretion in human activity (surface water-
groundwater interaction, natural leaching, etc.).

Historical information was used to understand the
groundwater quality evolution due to natural circulation
and anthropogenic activities. However, when the meth-
odology is applied, only the most recent sampling
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campaign is considered because the objective of the
geostatistical analysis is to represent the current state
of groundwater quality through correlation of the select-
ed indicator parameters. Furthermore, during the opti-
mization of the monitoring network, special emphasis
was given to priority zones where an evident degrada-
tion of groundwater quality was detected in the last
campaign.

Pilot wells

To analyze the aquifer groundwater quality, a set of
wells that enables representative sampling of the flow
systems identified in the subsurface of the study area
was selected (González et al. 2003). It consists of
existing active wells that are representative of the dif-
ferent groundwater zones and allow evaluating diffuse
and natural pollution through indicator parameters. We
call this set of wells, PWs. Most of the wells included in
the PW present a screen that captures water from the
second and the third hydrostratigraphic units. All of
them are representative of the same aquifer system since
these units are hydraulically connected, extracting water
mainly from the intermediate flow system circulating in
the hydrostratigraphic units 1, 2, and 3; nevertheless,
four wells capture water from the regional flow system
(>400 m depth) circulating in hydrostratigraphic units 3
and 4. PW located in the recharge zones identified in the
hydrodynamic model were also selected.

The selection of the PWwas done based on construc-
tive characteristics, water quality historical information,
ease for measuring and sampling field parameters, po-
tential pollution areas, and zones affected by identified
degradation processes. Well depth in the study area
range 20–700 m, since wells for drinking water supply
are 50 to 300 m depth, with an average of 150 m; the
selection of pilot wells considered this along with
known nitrate, microorganism, fluoride, arsenic, iron,
or manganese concentrations identified from previous
reports (unpublished data from Comité Municipal de
Agua Potable y Alcantarillado de Salamanca, Valle de
Santiago and Irapuato, 2001 and 2003). A field survey
to recognize local well conditions, pumping schedule,
and irrigation areas with rawwastewater was very useful
to identify those with the optimal operational conditions
for water sampling.

One field campaign was conducted to gather water
samples from the PW, and the information generated
from these samples was used for the geostatistical

analysis of data necessary in the design of the OMN.
Moreover, a subset of the PW was chosen to form the
OMN.

The sampling sites were chosen among 145 wells
reported in a hydrogeological study conducted by the
extinct Ministry of Agriculture (SARH 1979), 135 wells
from a study of theWater and Sanitation Commission of
the State of Guanajuato (CEASG 1998), and wells that
contain pollutants that exceed the Official Mexican
Standard NOM-127-SSA1-1994 (BEnvironmental
health, water for human use and consumption—and
permissible limits of quality and treatments that must
be applied for water purification^), reported by the
Ministry of Health of the State ofGuanajuato. The wells
of the PW were located geographically with a GPS
(NAD27 datum). The PW was formed by 140 wells
distributed in the study area. Its spatial distribution can
be seen in Fig. 2.

Monitoring network objectives and selected parameters

The objective of the Irapuato-Valle aquifer monitor-
ing network is to obtain a general reconnaissance of
the water quality, including water types, water
origin, and first indications of contamination. To
achieve this objective, Jousma (2008) suggests to
analyze major ions (Ca, Mg, Na, K, NH4, Fe, Mn,
SiO2, HCO3, SO4, Cl, NO3, and PO4) and direct
measurements in the field of pH, EC, and tempera-
ture. Depending on the hydrogeological framework,
Jousma also suggests to sample parameters like As
and F. This objective is reflected in NOM-127-
SSA1-1994, which was also considered in the selec-
tion of the parameters. At each pilot well, water
samples were collected from a sampling campaign
carried out in December 2003, for laboratory mea-
surement of 20 physicochemical parameters (total
dissolved solids, calcium, magnesium, sodium, po-
tassium, bicarbonate, fluoride, sulfate, chloride, ni-
trate, nitrite, arsenic, total hardness, iron, manga-
nese, lead, phosphate, phenols, total, and fecal coli-
forms), and in situ measurements were made of six
field parameters (conductivity, water temperature,
pH, redox potential, dissolved oxygen, and
alkalinity).

For the selection of the optimal monitoring sites, it
was sought to obtain a low-uncertainty estimate of the
selected WQIP for the entire aquifer and with more
certainty in priority zones.
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Priority zones

Impact of diffuse contamination produced by irrigation
with raw wastewater on groundwater has been previ-
ously evaluated using a combination of indicators such
as chloride, sulfate, nitrate, phosphate, and microorgan-
isms in San Luis Potosi, México (Cardona et al. 2008).
Geogenic sources releasing fluoride, arsenic, and urani-
um to groundwater have been also identified in the San
Luis Potosi region (Carrillo-Rivera et al. 2002; Banning
et al. 2012). Several similarities can be recognized be-
tween San Luis Potosi and Irapuato-Valle aquifers, ter-
tiary igneous rocks affected by normal faults, basin fill
sediments, and diffuse contamination from agricultural
practices. The priority zones were delineated for the
Irapuato-Valle aquifer recognizing areas with concen-
trations above natural baseline by indicators for anthro-
pogenic contaminant and geogenic sources.

Those regions of lower salinity at the recharge zones
present nitrate values lower than 10 mg/l, so this value
probably represents the upper limit of concentrations
that can arise naturally in the Irapuato-Valle aquifer,
and therefore, this value can be considered the level of
geochemical background for nitrate. The regions where
nitrate concentrations are higher than the background
level like the area between the cities of Irapuato and
Salamanca; the area at the south of Irapuato City; and
near the towns of Pueblo Nuevo, Valle de Santiago, and
Cortazar represent the impact of agricultural activities
on groundwater. In addition, nitrate concentrations be-
low 250 m have an upper value of about 10 mg/l,
representing groundwater with low anthropogenic im-
pact (Fig. 4).

Results and discussions

Once the monitoring objectives and the groundwater
quality conceptual model were defined, and the sam-
pling campaign of the most representative groundwater
quality parameters in the PW was conducted, the design
of the optimal monitoring network was started.

Geostatistical analysis of selected parameters

In the geostatistical analysis for the monitoring network
design, we used the data collected in 2003 from the 140
PW. The geostatistical analysis was done for arsenic,
chloride, electrical conductivity, fluoride, manganese

nitrate, sodium, temperature, and hardness, because on-
ly these parameters had enough data above the detection
limit. It was necessary to apply a natural logarithmic
transformation to all parameter data in order to accom-
plish the normal distribution hypothesis required in a
geostatistical analysis. The selected variogram models
for each WQIP are shown in Table 1.

A covariance matrix was then calculated for each
parameter except for hardness for which a power model
(unbounded) was adjusted. Therefore, this parameter
was not included in the OMN design.

Estimation grid

As mentioned before, the statistical objective of the
design was to select the locations needed to obtain a
low-uncertainty estimate of the WQIP for the whole
aquifer and with lesser uncertainty in priority zones for
the most representative parameters.

To achieve this, we first defined a preliminary spatial
estimation grid, with squared elements of 2 km side
length, and priority zones for each WQIP in auxiliary
grids composed by squared elements of 1 km side length
to assign them a higher weight in the optimization
process; i.e., the monitoring points selected inside or
nearby priority zones have a higher influence over these
auxiliary grids than monitoring points selected away
from them. This fact provide them additional advantage

Fig. 4 Nitrate concentration versus well depth
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in reducing the joint total variance since more estimation
points are affected during the optimization; therefore,
they have a higher probability to be chosen. As an
example, the preliminary estimation grid for arsenic in
blue circles and the corresponding auxiliary grid in red
triangles are shown in Fig. 5.

The union of the positions of all the auxiliary grids
and the positions of all the preliminary spatial estimation
grids constitute the estimation grid with 1698 nodes
(Fig. 6); the 140 positions of wells of the PW are the
possible monitoring locations.

Applying Eq. 6, the prior spatial covariance matrix
for eachWQIPwas calculated from its variogrammodel
(Table 1). The covariance matrix for each parameter was
constructed for 1698 (estimation points) + 140 (moni-
toring points) = 1838 positions, so its dimension was of
1838 columns by 1838 rows. The elements of the prior
covariance matrix of each WQIP that correspond to the
auxiliary grid are non-zero only if they are within its
priority zones. In this way, the priority zones are con-
sidered in the optimization procedure only for the cor-
responding parameter. Afterward, the correlation matrix
for each parameter was calculated as was explained in
Materials and methods section.

Priority order

When the optimization method explained before is ap-
plied, the order in which the spatial locations are select-
ed represents a priority order because the location that
reduces the most variance (in other words, the location
that gives maximum information) is selected at each
round. In this way, the selection order is an indicator
of how important are the data obtained at those locations

in reducing the joint total variance; the smaller the
selection order, the bigger the priority. It can be seen
clearly in Fig. 7a that the joint total variance is greatly
reduced when choosing the first spatial locations, but as
the number of selected locations increases, the amount
of joint total variance reduction decreases.

Criterion for determining the total number of monitoring
locations

Following the chosen criterion to determine the total
number of monitoring locations in the monitoring net-
work, it can be seen in Fig. 7b that after monitoring the
69 locations with larger priority, 90 % of the MPR is
achieved.

If we apply the optimization procedure for each
WQIP separately, with the 69 monitoring wells with
higher priority, we obtain a 93.90 % of the MPR for
arsenic, 92.22 for chloride, 95.03 for electrical conduc-
tivity, 87.92 for fluoride, 87.29 for manganese, 77.86 for
nitrate, 92.02 for sodium, and 88.15 for temperature. For
each WQIP, 90 % of its MPR will be achieved at 55
sampling locations for arsenic, 62 for chloride, 48 for
electrical conductivity, 75 for fluoride, 77 for manga-
nese, 97 for nitrate, 63 for sodium, and 74 for
temperature.

Even though when 69 positions are monitored, the
MPR values for nitrate, manganese, fluoride, and tem-
perature are lower than 90 %; these values are consid-
ered acceptable. When this value is not accepted for a
certain parameter, additional monitoring positions
should be included in the monitoring network following
the priority order criteria.

Table 1 Variogram models of water quality parameters

Variable Model Nugget Sill Range Akaike criterion

Ln arsenic Spherical 0.3 0.9 25,000 −660.373
Ln chloride Spherical 0.2 0.75 17,000 −848.031
Ln conductivity Spherical 0.05 0.16 30,000 −1289.045
Ln fluoride Spherical 0.19 0.56 13,000 −894.810
Ln manganese Spherical 0.24 0.38 20,000 −567.263
Ln nitrate Spherical 0.35 0.40 26,000 −838.986
Ln sodium Spherical 0.14 0.64 15,500 −939.973
Ln temperature Spherical 0.003 0.0235 9,000 −1630.710
Ln hardness Power 0.0 0.258 0.043 −620.088
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Optimal monitoring network

In this problem and according to what was exposed
before, 69 monitoring points were selected to constitute
the OMN. Figure 8 shows the priority order for the
selected wells to constitute the OMN. The minimum
depth for the monitoring wells is 60 m and the maxi-
mum is 700 m; the average depth is 168 m with a
standard deviation of 108 m. The screen at these wells
usually starts about 20 m below the ground surface, and
it is maintained through all the well depths. Thirty wells
capture water from the hydrostratigraphic unit 1
(≤150 m) while 20 wells from the two upper
hydrostratigraphic units (≤400 m). One well reaches
the hydrostratigraphic unit 3 (525 m depth) and one
the hydrostratigraphic unit 4 (700 m depth). The two
wells with the largest known depth capture water from
both the intermediate and regional flow systems; the
others capture water from the intermediate flow system
only. For 17 wells, the depth is unknown; however,

according to the hydrogeochemical characteristics of
the abstracted water, it is provided from the intermediate
flow system in 16 of these wells; the other wells addi-
tionally capture water from the regional flow system.

Water quality indicator parameter estimation

As mentioned before, the Kalman filter needs prior
estimates of the state vector and the estimate error
covariance matrix. For each parameter, the state vector
was estimated with the average of natural logarithm
transformation of data corresponding to positions with
water quality data measured in the field. After applying
the Kalman filter, estimates were transformed to the
original variable with the formulas presented in
Journel and Huijbregts (1978) for lognormal kriging.

As an illustration of the estimates that would be
obtained using the optimal monitoring network, WQIP
estimates were obtained on the estimation grid with the
available data from December of 2003.

Fig. 5 Preliminary estimation grid (blue circles) and auxiliary estimation grid for arsenic (red triangles)

39 Page 14 of 22 Environ Monit Assess (2016) 188: 39



Fig. 6 Estimation grid

Fig. 7 a Joint total variance versus number of spatial monitoring points and b square root (joint total variance/spatial estimation positions)
versus number of spatial monitoring points
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Figures 9 and 10 show arsenic and temperature esti-
mates obtained with the proposed monitoring network.
Figures 11 and 12 show their respectives estimate error
variances; it can be seen that low values are obtained
inside the priority zones. The variance maps together
with practical criteria can be very useful in choosing
new monitoring locations in the zones with the maxi-
mum variances.

To compare the estimates obtained with the OMN
(69 wells) and the PW (140 wells), some statistics of
differences between estimates and error variances
obtained with the KF for both cases are presented
in Table 2. To have an idea of the estimate error
magnitudes, database mean values of measured

values are also shown. In the column of PW-OMN
estimates, the mean absolute differences are shown.
It can be seen that differences between estimates for
both options are small compared to the database
mean values (range between 0.11 and 5.17 %), ex-
cept for fluoride (64.29 %) and chloride (13.88 %).
The large relative differences in fluoride estimates
for both monitoring options occur probably because
the natural logarithm-transformed data of this pa-
rameter (employed to construct the variogram mod-
el) present the largest coefficient of variation, and
coincidently, some outliers (the two largest values
for this parameter) are not included in the OMN; on
the other hand, differences in chloride estimates are

Fig. 8 Priority order for the wells of the OMN
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due to the contribution of an outlier (largest value
for this parameter) selected by the OMN that is
surrounded by wells with considerable lower values
that are included only in the PW. The square root
mean variance (SRMV) is a measure of the average
uncertainty in the estimation grid when employing
the OMN or the PW. The comparison in Table 2
shows the increase in the average uncertainty when
employing the OMN and the PW; it can be seen that
when using the OMN, a marginal loose of certainty
is obtained compared to the PW.

Excluding travel times, the average cost in 2014 for
sampling and laboratory determination of the analyzed
parameters for each well is 267.25 US dollars; therefore,
the total cost for monitoring the PWwould be 37,415.00
dollars, and for the OMN, would be 18,440.95. In this
sense, adopting the proposed OMN would represent
savings for at least 18,974.05 dollars, by accepting the
loss of information indicated in Table 2.

Discussion

Initial developments of the methodology introduced in
this paper were presented in Herrera et al. 2004 and
Júnez 2005. In those research, the monitoring network
design included two steps. In the first step, a preliminary
sampling network was obtained without considering the
priority zones. To complement this sampling network,
additional wells were selected by inspection in order to
get a maximum increase of 10 % of the estimate stan-
dard error (ESE) within the priority zones, compared to
the ESE using all the pilot wells. The automated proce-
dure presented in this paper has the advantage of includ-
ing the priority zones during the optimization in one
single step, eliminating the need to do the second step by
hand.

Another important difference between the methodol-
ogy presented in Herrera et al. 2004 and Júnez 2005 and
the methodology presented in this paper is that in the

Fig. 9 Arsenic estimate (mg/l)
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former, the size of the sampling network was defined by
a visual approach, meanwhile in the latter, a quantitative
criterion that allows to control the level of expected
estimate uncertainty was used.

Hergt (2009) developed two different monitoring de-
signs, both applying initial developments of the method-
ology introduced in this paper (Herrera et al. 2004; Júnez
2005), calculating for one case the covariance matrices
from a geostatistical analysis of themost significant water
quality parameters resulting from a factor analysis and for
the other, using the covariance matrix of the factor anal-
ysis itself. Similar results were obtained in both cases.

If the optimization procedure presented in this paper
was applied for each WQIP separately, different sets of
monitoring positions would be necessary to satisfy the
same level of uncertainty for all the parameters since
spatial correlation is usually different for each WQIP;
therefore, several redundant monitoring positions could
be obtained for a global monitoring network that

enclosed the different sets; i.e., this type of design could
represent large and/or unnecessary groundwater quality
monitoring costs.

Conclusions and recommendations

The proposed methodology considers various water
quality parameters and priority zones (where certain
parameter values were exceeded for each parameter)
simultaneously in the design of an optimal monitoring
network. It employs the spatial correlation between data
of each parameter using spatial covariance models de-
rived from geostatistical analysis.

An underlying hypothesis of the proposed method-
ology is that the optimal monitoring network will be
useful if aquifer conditions do not change dramatically
(for example, in cases where there are no significant
changes in land use or in groundwater extraction). We

Fig. 10 Temperature estimate (°C)
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recommend performing a large sampling campaign and
redesigning the proposed monitoring network periodi-
cally. This period will depend on groundwater flow
velocities and changes in aquifer conditions.

Since changes in contaminant concentrations depend
partially on flow directions, further work should include
them to propose the sampling network.

For all the analyzed water quality parameters, it was
necessary to apply a natural logarithmic transformation
to data in order to accomplish the normal distribution
hypothesis required in a geostatistical analysis.

The optimal monitoring network resulted in 69 of
the 140 wells of the set of pilot wells. This implies a
50 % of cost reduction with a marginal increase in
uncertainty. Furthermore, a maximum increase of
4.7 % of the SRMV values within all the nodes of
the estimation grid was obtained for the selected OMN
of 69 wells, compared to the SRMV calculated with
the PW of 140 wells.

The estimate error variances were minimized inside the
priority zones for all the parameters during the optimiza-
tion procedure. Positions in or nearby the priority zones
were automatically the first to be included in the optimal
monitoring network. An important advantage of the pro-
posed methodology is that a large set of wells is selected
within the priority zones; therefore, the estimate error
variances are smaller at those zones than in the rest of the
aquifer. A groundwater quality monitoring network design
that considers variousWQIPs simultaneously could reduce
groundwater quality characterization costs substantially.

Areas with large values of total variance after mea-
suring in the monitoring locations indicate that the spa-
tial distribution of that parameter is not represented with
certainty in those areas. This means that new wells
should be added to the optimal monitoring network in
those zones. To propose the locations of the new wells,
potential pollution sources and hydrogeological criteria
should be also considered.

Fig. 11 Estimate error variances and priority zones for arsenic
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An important advantage of the proposed method is
that it can be used to define a water quality preliminary
monitoring network since it requires only data of the

analyzed parameters for a certain sampling campaign
unlike entropy theory-based design methods presented
in literature that require time series. Furthermore, when

Fig. 12 Estimate error variances and priority zones for temperature

Table 2 Comparison of some statistics of the estimates obtained with the Kalman filter for the data from the pilot wells and the optimal
monitoring network

Parameter
(units)

Database
mean
values

Coefficient of
variation of data
with Ln transformation

PW-OMN estimates
(mean absolute
differences)

Percent of mean absolute
differences with respect
to database mean values

SRMV

PW OMN

Arsenic (mg/l) 0.011 0.18 0.00007 0.64 0.011 0.011

Chloride (mg/l) 35.44 0.25 4.92 13.88 29.697 30.513

Electrical conductivity
(μS/cm)

848 0.06 43.88 5.17 249.977 256.138

Fluoride (mg/l) 0.98 1.77 0.63 64.29 0.554 0.571

Manganese (mg/l) 0.042 0.32 0.002 4.76 0.004 0.004

Nitrate (mg/l) 11.51 0.78 0.29 2.52 7.655 7.695

Sodium (mg/l) 74.96 0.19 1.56 2.08 57.987 59.751

Temperature (°C) 26.7 0.06 0.03 0.11 3.143 3.29
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times series data are available, this method can be ex-
tended for a space-time design as the developed by
Júnez-Ferreira and Herrera (2013) for hydraulic head
monitoring network. Moreover, spatial and/or temporal
estimates of various water quality parameters and its
uncertainty could be obtained for the designed monitor-
ing network.

The static Kalman filter introduces a smoothing ef-
fect in the estimates as krigingmethods do. To avoid this
problem, we can introduce a correction in the estimation
method to be applied once the data were collected from
the proposed optimal sampling network. Among other
proposals, Yamamoto (2005) introduces a four-step
method that uses interpolation variances for correcting
the smoothing effect of ordinary kriging estimates. An
alternative may be developing an analogue modification
of the Kalman filter equations to obtain estimates free of
the smoothing effect.

It is well known that boreholes are the proper
sites for sampling groundwater; unfortunately, in
countries like Mexico, it is uncommon to drill bore-
holes for monitoring groundwater heads and quality,
except for specific studies, due to the high costs that
they can represent. Indeed, monitoring campaigns
conducted to date in the Irapuato-Valle aquifer are
largely based on the interpretation of groundwater
samples collected from wells used for irrigation and
drinking purposes. These wells extract water from
variable depths (average close to 175 m) under dif-
ferent flow rates and operation times; in this manner,
the abstracted water represents a mixture of a large
extent of the saturated thickness. In order to define
the vertical distribution of groundwater quality indi-
cator parameters in the aquifer, it is necessary the
drilling and instrumentation of boreholes with spe-
cific characteristics to accomplish this purpose.
Future works could include uncertainty associated
to this kind of samples, specifically in sampling
errors.
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