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Abstract Riparian forests are critically endangeredmany
anthropogenic pressures and natural hazards. The impor-
tance of riparian zones has been acknowledged by
European Directives, involving multi-scale monitoring.
The use of this very-high-resolution and hyperspatial im-
agery in a multi-temporal approach is an emerging topic.
The trend is reinforced by the recent and rapid growth of
the use of the unmanned aerial system (UAS), which has
prompted the development of innovative methodology.
Our study proposes a methodological framework to ex-
plore how a set of multi-temporal images acquired during
a vegetative period can differentiate some of the decidu-
ous riparian forest species and their health conditions.
More specifically, the developed approach intends to
identify, through a process of variable selection, which
variables derived from UAS imagery and which scale of
image analysis are the most relevant to our objectives.

The methodological framework is applied to two
study sites to describe the riparian forest through two
fundamental characteristics: the species composition
and the health condition. These characteristics were

selected not only because of their use as proxies for
the riparian zone ecological integrity but also because
of their use for river management.

The comparison of various scales of image analysis
identified the smallest object-based image analysis
(OBIA) objects (ca. 1 m2) as the most relevant scale.
Variables derived from spectral information (bands ra-
tios) were identified as the most appropriate, followed
by variables related to the vertical structure of the forest.
Classification results show good overall accuracies for
the species composition of the riparian forest (five clas-
ses, 79.5 and 84.1 % for site 1 and site 2). The classifi-
cation scenario regarding the health condition of the
black alders of the site 1 performed the best (90.6 %).

The quality of the classification models developed
with a UAS-based, cost-effective, and semi-automatic
approach competes successfully with those developed
using more expensive imagery, such as multi-spectral
and hyperspectral airborne imagery. The high overall
accuracy results obtained by the classification of the
diseased alders open the door to applications dedicated
to monitoring of the health conditions of riparian forest.
Our methodological framework will allow UAS users to
manage large imagery metric datasets derived from
those dense time series.
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Introduction

Despite their relatively low area coverage, riparian for-
ests are central landscape features that provide several
ecosystem services: stream bank stabilization, reduction
of fine sediment inputs and nutrient contamination,
aquatic and terrestrial habitat improvement, and recrea-
tional and educational opportunities (Guo et al. 2011;
Vidal-Abarca Gutiérrez and Suárez Alonso 2013;
Clerici et al. 2014). Nevertheless, riparian forests are
critically endangered in European countries by human
pressures, such as livestock grazing, land use pressures,
canalizations and wastewater, and also by natural haz-
ards, such as the black alder (Alnus glutinosa) disease
caused by Phytophthora alni (Cech 1998; Gibbs et al.
2003; De Merlier et al. 2005). The importance of ripar-
ian zones has been acknowledged by European direc-
tives (notably the Habitats Directive and the Water
Framework Directive), involving multi-scale monitor-
ing (local to network scales). Because of the typical
linear and narrow shape of the riparian zones, field-
based monitoring involves sampling, high labor costs,
and time-consuming travels (Debruxelles et al. 2009;
Myers 1989). The continuous improvement of the spa-
tial resolution of remote sensing data combined with
more powerful computer capacity and new geomatic
procedures to extract information make the remote sens-
ing approach more competitive (Alber and Piégay 2011;
Carbonneau and Piégay 2012; Johansen et al. 2010;
Michez et al. 2013; Roux et al. 2014). The use of this
very-high-resolution (VHR) imagery in a multi-
temporal approach is an emerging topic (Ardila et al.
2012; Champion 2012; Lasaponara et al. 2014). The
trend is reinforced by the recent and rapid growth of
the use of the unmanned aerial system (UAS), which has
prompted the development of innovative methodology.

The use of the UAS in environmental science has
become more common since the late 2000s. UAS imag-
ery can be an effective alternative for cost-effectively
describing riparian zones at the local scale (Dunford et
al. 2009; Husson et al. 2014). In the ecological scope, the
scientific community is very enthusiastic about the use of
the UAS, proclaiming the Bdawn of drone ecology^ (Koh
and Wich 2012) and that the UAS Bwill revolutionize
spatial ecology^ (Anderson and Gaston 2013). The two
most important characteristics of UAS imagery are said to
be the very high spatial and temporal resolution, allowing
description of events occurring at a very local scale in a
finite time window (e.g., the flowering of or the attack of

a pathogen on a given tree species). Because of its very
high spatial resolution (<0.1-m ground sampling distance
(GSD)), UAS imagery is regularly characterized as
hyperspatial imagery (Carbonneau and Piégay 2012;
Greenberg et al. 2005; Laliberte et al. 2007; Strecha et
al. 2012). Many studies have taken advantage of these
two characteristics, for a broad range of environmental
applications, such as landslide mapping (Lucieer et al.
2014), forest fire mapping (de Dios et al. 2011; Merino
et al. 2012; Urbahs et al. 2013), precision farming
(Bendig et al. 2013), wildlife census (Lisein et al.
2013a; Vermeulen et al. 2013), tree and forest character-
ization (Lisein et al. 2013b; Zarco-Tejada et al. 2014),
forest biodiversity assessment (Getzin et al. 2012), and
forest species composition (Dunford et al. 2009; Gini
et al. 2014). Recent studies have demonstrated the poten-
tial of UAS imagery to finely describe the forest canopy
(Dandois and Ellis 2010, 2013). When a good-quality
digital terrain model is available, UAS-derived photo-
grammetric point clouds (>10 points/m2) can provide a
canopy height model (CHM) with a quality comparable
to light detection and ranging (LiDAR) CHM but with
significant cost differences (Lisein et al. 2013b).
References on classification of forest species by use of
UAS imagery are still rare in the literature and include
only the single-date approach (Dunford et al. 2009; Gini
et al. 2014). However, useful pioneering studies are avail-
able on vegetation mapping projects based on UAS im-
agery (Knoth et al. 2013; Zaman et al. 2011).

Classification of forest species using remote-sensing
data is relatively well documented. Successful classifi-
cations have been carried out using multi-spectral aerial/
satellite imagery (Immitzer et al. 2012; Ke et al. 2010;
Key et al. 2001; Korpela et al. 2011; Lucas et al. 2008;
Sesnie et al. 2008) and hyperspectral data (Dalponte
et al. 2014; 2012). The scale of analysis varies from tree
crown pixel or object (object-based image analysis) to
the crown itself. When available, 3D data (ALS LiDAR,
SRTM DEM) can improve the classification accuracy
(Dalponte et al. 2014; Ke et al. 2010; Sesnie et al. 2008).
Forest species classification has also been studied
through the use of multi-temporal remote sensing
dataset which allows to highlight phenological differ-
ences between forest species (Key et al. 2001; Hill et al.
2010; Zhu and Liu 2014). These multi-temporal studies
were intended to identify discriminant phenological
stages (and related date) in order to schedule future
imagery acquisition at lower cost within the identified
time window. These studies identified the late growing
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season as the most relevant for these purposes. As UAS
imagery allows acquisition of cost-effective dense time
series of very-high-resolution imagery, new approaches
can be considered.

Few studies have taken advantage of the temporal
resolution of UAS imagery and the subsequent
possibility of redundancy. Interesting case studies can
be found, but they are outside the proper ecological
scope. In precision farming, Bendig et al. (2013) com-
puted UAS-derived digital surface model time series to
measure the growth rate of experimental field crops
while Torres-Sánchez et al. (2014) used UAS
orthophotos to differentiate weeds in wheat fields in
the early season. Multi-temporal data from UAS imag-
ery have also been used to evaluate landslide and
rockslide evolution (Lucieer et al. 2014; Ragg and Fey
2013). Most of these previous contributions used the
temporal resolution of UAS imagery to fit the acquisi-
tion period to the occurrence of the events to be mapped,
because UAS allow the final user to perform (at least to
really get involved in) the survey. Subsequently, a meth-
odological gap remains to be filled in terms of ap-
proaches that utilize dense (UAS) time series for a
unified and multi-temporal classification purpose.

We propose a methodological framework to explore
multi-temporal hyperspatial UAS imagery acquired dur-
ing a single vegetative period in order to characterize
riparian forest species and health condition. More speci-
fically, we intend to identify which type of variables
derived from hyperspatial imagery and which scale of
image analysis are the most relevant to reach our objec-
tives. Another major ambition is to highlight the best time
window and the configuration of off-the-shelf camera.

The methodological framework is applied to describe
the riparian forest through two fundamental characteris-
tics: the species composition and the health condition.
These characteristics were selected because of their
applicability as proxies for ecological integrity of the
riparian zones (Innis et al. 2000; Naiman et al. 2005) and
for their usefulness in targeting management strategies
(Debruxelles et al. 2009).

Methods

Study sites

Both study sites are riparian forests located in two diffe-
rent landscapes in Wallonia, southern Belgium (Fig. 1) in

the Ardennes eco-region. To ensure the riparian character
of the studied forest, forest patches located along the river
bank (<20 m from the wetted channel) were selected.

Riparian forests of site 1 (Vielsalm, Salm River) are
located in an agricultural landscape (pastures). They are
highly pressured by farm activities and remain mostly in
a managed forest strip along the riverbanks (<10 m).
The population of black alders in site 1 is known to be
infested by P. alni (Di Prinzio et al. 2013a). Riparian
forests of site 2 (Felenne—Houille River) are located in
a relatively undisturbed forest landscape. These strips
are mainly unmanaged and have a regular presence of
standing dead woods.

In terms of species composition, riparian forests of
both sites are dominated by A. glutinosawith non-native
coniferous stands (Picea abies and Larix decidua) in site
2. A. glutinosa is the typical overstory tree species in the
riparian zones of Wallonia (Claessens et al. 2010;
Debruxelles et al. 2009).

Acquisition of UAS imagery

Our workflow is based on a time series of 25 UAS
flights (Table 1) allowing production of 18 and 7
orthophotos in site 1 and site 2, respectively, using a
Gatewing X100 (wingspan 100 cm, weight 2 kg, cruis-
ing speed 80 km/h, flight height 100 to 750m). Two pre-
calibrated Ricoh GR3 cameras (10-megapixel sensor,
focal length 6 mm) were used. One camera was adapted
for near-infrared acquisition (Fig. 2). The UAS can only
carry one camera per flight. The flight duration never
exceeded 45 min, and the overlap between images was
set to 75 %.

Field staff performed the maximum number of flight
surveys during approximately 2 h around solar noon.
The number of flights per daywas directly influenced by
the meteorological conditions and logistical constraints
(i.e., period of air space restrictions, UAS equipment
failures, etc.). These circumstances resulted in a varying
number of flights per day (Table 1). The weather con-
ditions induced varying lighting conditions within and
between the orthophotos. Although orthophotos which
are the closest to solar noon should theoretically present
the best quality to reach our objectives, the varying
lighting conditions seriously complicated the selection
of a single orthophoto per flight date. With the willing-
ness to build a computer-based approach, all available
orthophotos were therefore used to avoid an operator-
mediated selection.
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Because one of the main objectives of the study was
the characterization of riparian forest health condition,
the aerial data survey was planned for the late growing
season, which is the best time window (Gibbs et al.
2003) for catching the leaf symptoms of the most com-
mon riparian forest pathogen in Wallonia: P. alni on the
black alder (Di Prinzio et al. 2013b; Pintos Varela et al.
2010). This time window also matches well with the
time windows found in other multi-temporal remote
sensing studies for differentiating forest species (Key
et al. 2001; Hill et al. 2010; Zhu and Liu 2014).

General workflow

We propose an innovative and replicable multi-platform
workflow to handle large and complex datasets induced
by the spatial and temporal resolution of the UAS time
series in a computer-based perspective to accurately

map riparian forest species and health conditions (see
summary in Fig. 3).

Photogrammetric process

General photogrammetric workflow

Agisoft Photoscan 1.0 Professional, which is now rela-
tively common in the UAS community, was used to
perform photogrammetric surveys with proven efficien-
cy (Dandois and Ellis 2013; 2010; Sona et al. 2014).
Every flight dataset was processed by following the
workflow described in Fig. 4.

Our photogrammetric workflow was based on the
work of Lisein et al. (2013b) in the Photoscan environ-
ment. On the basis of the information of the inertial
measurement unit (IMU), the GPS positions recorded
by the UAS, and a set of ground control points (GCPs),

Fig. 1 Study sites location. Site 1 (Salm River) is located in an agricultural landscape, with a globally managed riparian forest strip; site 2 is
located in an undisturbed forested landscape, with an unmanaged riparian forest strip
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an initial aerotriangulation, is performed (number 1 in
Fig. 4). The georeferencing process is based on a set of
particular points (road crossings, roofs, pedestrian cross-
ings, etc.) that are used as GCPs in Photoscan. For site 1,
the GCPs have been measured with a real-time kinemat-
ic (RTK) GPS (Leica 200+). For site 2 (low mobile
network coverage), the GCP planimetric coordinates
were defined on the regional orthophoto coverage
(0.25-m GSD), and the altimetric positions were extract-
ed from LiDAR digital terrain model (DTM). Bare
ground areas of the low-resolution 3D model (number
2 in Fig. 4) are aligned on a LiDAR DTM within
CloudCompare (http://www.danielgm.net/cc/), by use
of the iterative closest-point matching strategy. The

matching process results in a global transformation ma-
trix (number 3 in Fig. 4) of six parameters (translation
and rotation), which is used to perform a rigid transfor-
mation of the GCP coordinates. The registered GCP
positions are used to finely georeference the initial
aerotriangulation (number 4 in Fig. 4) and compute a
high-resolution dense matching (number 5 in Fig. 4).

Orthophoto generation

The photogrammetric workflow (Fig. 4) allows genera-
tion of orthophotos for every flight dataset. The
orthophotos were resampled to 0.1-m GSD. The
orthophoto generation process used the Bmosaic^
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Table 1 Eighteen (site 1) and seven (site 2) orthophotos (0.1-m GSD) generated

Site Date Departure
time

Camera Images Flying
altitude (m)

Coverage
(km2)

Reprojection
error (pixel)

1 10 Aug. 2012 10:36 RGB 527 114 0.31 1.11

6 Sep. 2012a 11:40 RGB 216 145 0.41 1.21

6 Sep. 2012a 12:52 RGNIR 168 145 0.42 0.97

6 Sep. 2012a 13:49 RGNIR 227 141 0.43 1.06

6 Sep. 2012a 14:37 RGB 277 143 0.42 1.12

18 Sep. 2012 10:14 RGNIR 266 148 0.49 1.23

18 Sep. 2012 13:06 RGNIR 230 141 0.42 1.33

18 Sep. 2012 11:14 RGB 270 144 0.50 1.36

18 Sep. 2012 12:12 RGB 272 143 0.50 1.40

18 Sep. 2012 13.59 RGB 227 140 0.41 1.41

10 Oct. 2012 11:33 RGNIR 186 141 0:33 1.13

10 Oct. 2012 12:26 RGB 184 152 0.33 1.15

10 Oct. 2012 13:40 RGNIR 186 143 0.34 1.24

10 Oct. 2012 14:58 RGB 161 151 0.29 1.18

19 Oct. 2012 11:47 RGNIR 185 142 0.36 1.09

19 Oct. 2012 13:34 RGB 190 148 0.34 1.18

16 Oct. 2012 11:28 RGNIR 230 132 0.37 1.12

16 Oct. 2012 12:24 RGB 255 132 0.36 1.04

Sum 4177 Mean (site 1) 141 Mean (site 1) 1.19

2 16 May 2012 13:54 RGNIR 553 289 2.58 0.83

1 Aug. 2012a 13:49 RGB 297 394 3.31 1.12

1 Aug. 2012a 15:07 RGNIR 304 393 3.32 0.84

12 Sep. 2012 11:27 RGB 369 372 3.64 0.79

12 Sep. 2012 12:33 RGNIR 369 375 3.76 0.66

8 Nov. 2012 13:14 RGNIR 258 404 3.94 0.84

9 Nov. 2012 14:20 RGB 279 396 4.06 0.89

Sum 2429 Mean (site 2) 375 Mean (site 2) 0.85

More than 6000 raw images were captured and processed for this study
a Selected flight date for site reference DSM computation

http://www.danielgm.net/cc/


blending mode with the color correction option enabled
in Photoscan 1.0. Table 1 presents the list of the
orthophotos, with the reconstruction error provided by
Photoscan.

Canopy height model computation

For each site, we computed a single CHM (0.1-m GSD)
by the combination of a LiDAR DTM and a photogram-
metric digital surface model (DSM) (DSM—DTM). The
two Bhybrid^ CHMs have been used as the sole 3D
reference for the segmentation/classification process, un-
der the condition that the surface remained unchanged
during the time window of the surveys (<6 months).

In each site, a reference flight date was selected to
compute the two site reference DSM (see Table 1). The
flights were selected manually on the basis of the visual
quality of the individual raw images (ground visibility,
luminosity, and sharpness). For each site, a new photo-
grammetric project (Table 2) was conducted with all
images of the selected date, by following the same
photogrammetric workflow (Fig. 4).

Reference dataset

A georeferenced database of 1186 deciduous trees
(434 in site 1, 752 in site 2) was compiled. The
position of the stem was measured with a field-
map system (http://www.fieldmap.cz), initially
positioned using a DGPS (GNSS Leica GPS1200+)
on site 1 and with a post-processed SXBlue II GPS
(http://sxbluegps.com) on site 2.

All overstory trees were mapped and identified (spe-
cies level) within the two study sites. Because site 1 has
been previously identified as infested by P. alni, the
health condition of the black alders was estimated by a
skilled operator according to two classes: asymptomatic
tree and tree with P. alni foliar symptoms (defoliation
and/or foliage yellowing). The field survey was con-
ducted in August 2012 in site 1, at the time the symp-
toms of the P. alni disease were the most distinctive
(Gibbs et al. 2003; Di Prinzio et al. 2013b). In site 2, the
field survey was conducted in October 2012 and was
only dedicated to identifying species.

Crowns of georeferenced trees were delineated by the
use of the generated orthophotos and the two site-
reference CHMs by the operator who performed the
field survey. Respectively, A. glutinosa represent 67
and 48 % of the trees in sites 1 and 2 (see details in
Table 3).

Multi-resolution image segmentation

The segmentation was performed by the use of
eCognition developer, with a multi-resolution image
segmentation algorithm (Blaschke 2010). This region-
growing segmentation algorithm starts from individual
pixels that are merged to most-similar adjacent regions.
The size and the shape of the resulting objects are
defined by a scale parameter (related to the object size),
shape, and compactness criterion (object homogeneity).
To define which object size is the most relevant, we
tested six different scale parameters: 5, 10, 15, 30, 45,
and 60 (Fig. 5). The mean size of the different objects of
homogeneity criteria (shape and compactness) was
equally balanced and set to 0.5.

The segmentation process is performed on selected
layers to which a pre-defined weight has been assigned.
To identify an object that can be considered as constant
during the time window of the multi-temporal dataset,
the segmentation process used in this study was based
on the two canopy height models.

Fig. 2 Idealized filter profiles (lines) and channel sensitivity
(surface) for the RGB (top) camera and the RGNIR modified
camera (bottom). The RGNIR camera was modified by removing
the internal hot-mirror filter and adding a blue-light-blocking filter
(i.e., a yellow long-pass filter). Adapted from Nijland et al. (2014)
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We extracted from each of the image objects a set of
metrics (Table 4) at eight scales of analysis. In addition
to the six OBIA scales, we tested one pixel-based scale
(4 pixels square objects) and the manually delineated
tree crown scale. To exploit the whole time series in a
single automated classification process on the basis of a
random forest machine-learning algorithm, various
spectral, texture, and vertical structure metrics were
derived from the UAS imagery.

We choose five gray level co-occurrence matrix
(GLCM) derivatives based on the work of Haralick et
al. (1973) and computed with eCognition: entropy, stan-
dard deviation, correlation, mean, and contrast (see
Table 4). Those derivatives were chosen, most notably,

because of their proven efficiency in similar approaches
(Laliberte and Rango 2009; Stumpf and Kerle 2011).
Those GLCM derivatives are typically computed
through symmetric matrices for pixels neighboring di-
rectly at 0°, 45°, 90°, or 135°. In our case, we select an
omnidirectional approach, in which the sums of all four
directions of GLCM derivatives are calculated before
texture calculation.

We test several simple metrics (see Table 4 for
details), derived from the spectral layers’ mean itself
and from different band ratios. Our approach was based
on normalized band ratios (such as NDVI or GNDVI)
and individual band ratios, such as the green ratio veg-
etation index.

Fig. 3 General overview of themethod applied to each classification process. Steps before the Bgeneration of sample database^ are executed
once for the 25 UAS surveys; the other is specific for each classification scenario (species composition and health condition)

Environ Monit Assess (2016) 188: 146 Page 7 of 19 146



On the basis of the two canopy height models, we
compute three metrics (mean, SD, and skewness) that
describe the vertical structure of a riparian forest, con-
sidered as constant during the time series (see Table 4).

Classification process

Generation of sample database

Objects with at least 75 % of relative overlay with
delineated tree crowns were selected to compile the tree
crowns’ object database (Table 5). This threshold is

relatively restrictive regarding to other comparable stud-
ies (60% forMa et al. (2015) and even 50% Stumpf and
Kerle (2011)). This choice was justified because of the
relatively high similarity between classes compared to
these two studies (land cover classes for Ma et al. (2015)
and Blandslide^ vs Bother objects^ for Stumpf and Kerle
(2011)).

We test two classification scenarios for the riparian
forest species and health condition (Table 6). For each of
the sites, we established a classification with five clas-
ses. The first four classes group the spatial units of each
of the four most common species from the field survey,

Fig. 4 Photogrammetric workflow
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Table 2 Key characteristics of the photogrammetric process to compute the reference photogrammetric DSM

Site Date Images Mean flying
altitude (m)

Coverage (km2) Reprojection
error (pixel)

1 6 Sep. 2012 837 141 0.45 0.72

2 1 Aug. 2012 598 392 3.58 0.86



whereas the fifth class (Bother riparian species^) re-
groups the spatial units corresponding to the other spe-
cies of the field survey. The purpose of this selection was
to ensure a sufficient number of objects at every scale of
image analysis. Because the black alders of the riparian
forest of site 1 were known to be highly contaminated by
P. alni (DeMerlier et al. 2005; Di Prinzio et al. 2013b),. a
focus was placed on the distinction between black alders
with and without foliage symptoms.

Selection of variables by the use of random forest

Random forests’ machine-learning algorithms have
proved their ability to handle very complex and high-
dimensional remote-sensing datasets (Cutler et al. 2007;
Lawrence et al. 2006; Stumpf and Kerle 2011; Watts
et al. 2009). Most of the previously cited studies used
the initial implementation of the random forest algo-
rithm (Breiman 2001) in the R software. Moreover,
different studies have provided some improvement to
this first package, notably to use the random forest

Table 3 Tree crown database

Dominant tree species Delineated
tree crowns

Fraction of total
area in sample (%)

Site

Alnus glutinosa 275 67

Fraxinus excelsior 49 12

Acer pseudoplatanus 44 8

Salix sp. 36 7

Other (deciduous species) 30 6

434 100

Site 2

Alnus glutinosa 424 48

Picea abiesa 12 22

Acer pseudoplatanus 165 14

Quercus robur 42 7

Other (decidious species) 121 9

764 100

a Coniferous stand (stand level delineation)

Fig. 5 Manual tree crown delineation and six values of the OBIA scale parameter. The values of the OBIA scale parameter result in object
size meanly varying from ca. 50 to 1 m2
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algorithm for variable selection (Diaz-Uriarte 2007;
Genuer et al. 2010). To identify which variable is the
most relevant to differentiate species or tree health con-
ditions, we use an implementation of the random forest
algorithm by Genuer et al. (2010) and implemented
within the R package BVSURF^ (http://cran.r-project.
org/). This process of variable selection was developed
to handle high-dimensional data (number of variables
exceeding number of observations) by following three
steps (Genuer et al. 2010). The first step (Bthresholding
step^) runs a set of classic random forest processes
(ntree parameter 2000) and eliminates irrelevant vari-
ables from the dataset through the study of variable

importance (Gini index), computed during the random
forest processes (see Breiman (2001) for details). The
second step (Binterpretation step^) selects the best mod-
el through successive calls of random forest processes,
starting with the random forest build utilizing only the
most important variable and ending with all variables.
The last step (Bprediction step^) refines the selected
variables by eliminating redundancy in the set of previ-
ously selected variables. The first model is based only
on the most important variable, and other variables are
added to the model in a stepwise manner. To remain in
the final model, a variable must have a bigger impact on
the model accuracy than a noise variable (variables left

Table 4 Metrics computed and related example case study

Class Type Formula (case of brand ratio) Camera Number of
variables

Case study

Site 1 Site 2
Texture GLCM Entropy, Standard

Deviation, Correlation, Mean
and Contrast (all direction)

Both 270 105 Laliberte and Rango
(2009)

Spectral Mean Both 54 21 Jensen (2006)

Brightness Rþ Gþ B
� �

=3 OR Rþ Gþ NIR
� �

=3 Both 18 7 Jensen (2006)

Normalized Difference Vegetation
Index (NDVI)

R−NIR
� �

= Rþ NIR
� �

NIR 8 4 Jensen (2006)

Green NDVI (GNDVI) G−NIR
� �

= Gþ NIR
� �

NIR 8 4 Sripada et al. (2006)

Normalized Green-Red Vegetation
Index (NGRVI)

G−R
� �

= Gþ R
� �

Both 18 7 Motohka et al. (2010)

Normalized Green Blue Index
(NGBI)

G−B
� �

= Gþ B
� �

RGB 10 3 This study

Normalized Red Blue Index
(NRBI)

R−B
� �

= Rþ B
� �

RGB 10 3 This study

Green Ratio Vegetation Index (GVI) NIR=G NIR 8 4 Sripada et al. (2006)

Ratio Vegetation Index (RVI) NIR=R NIR 8 4 Birth andMcVey (1968)

Band ratio: G/R G=R Both 18 7 This study

Band ratio: G/B G=B RGB 10 3 This study

Band ratio: R/B R=B RGB 10 3 This study

Normalized Red R= Rþ Gþ NIR
� �

OR R= Rþ Gþ B
� �

Both 18 7 Sripada et al. (2006)

Normalized Green G= Rþ Gþ NIR
� �

OR G= Rþ Gþ B
� �

Both 18 7 Sripada et al. (2006)

Normalized NIR NIR= Rþ Gþ NIR
� �

NIR 8 4 Sripada et al. (2006)

Normalized Blue B= Rþ Gþ B
� �

RGB 10 3 This study

234 91

Vertical
Structure

Mean Height Both 1 1

Skewness of height Both 1 1

Standard deviation of height Both 1 1

3 3

Total 507 199

The number of variables is directly linked to the number and the type (RGB or RGNIR) of the orthophotos

146 Page 10 of 19 Environ Monit Assess (2016) 188: 146

http://cran.r-project.org/
http://cran.r-project.org/


out by interpretation). This last concern is tuned into
VSURF through the Bnumber of mean jump (nmj)^
parameter, which was set to five with a trial and error
approach (default value 1).

Classification and accuracy assessment

Once the selected variables have been identified, the
original sample database is randomly resampled
(50 %) to create training and evaluation sets. The train-
ing set is used to run a new RF process (ntree parameter
2000). The model is then applied to the evaluation set
for the accuracy assessment. The entire classifica-
tion and accuracy process has been repeated 50
times to compute mean±SD values of accuracies

Results

Riparian forest species composition

The classification process was run on the entire sample
database, classifying riparian tree crown objects into
five classes (Table 6). The accuracy of the classification
varies with the scale of analysis (Table 7), suggesting
that the overall accuracy is improving while the size of
the analyzed objects is decreasing. Pixel-based or close
to pixel OBIA objects (scale 5) perform the best (ap-
proximately 80 % of overall accuracies).

The study of the selected variables (Table 7) at
various scales reveals that the data derived from flights
in the late growing season (site 1) or in partially leaf-
off conditions (site 2) are the most appropriate.

Phenological differences are enhanced during the late
season, especially in the riparian forest foliage. In very
late survey dates, various states of phenology can be
found from fully photosynthetically active foliage in
coniferous stands to completely Bleaf-off^ deciduous
riparian trees.

Compared to selected variables of the site 1, variables
derived from the modified RGNIR camera are more
frequent in selected variables of site 2 (Table 7). The
variables derived from the unmodified RGB camera
(regardless the scale of analysis) are far more used on
site 1 (Fig. 6).

Results presented in Fig. 7 show that most of the
selected variables are derived from the spectral

Table 5 Key information about
sample database linked to the
scale of analysis

aMean computed with the
deciduous individual tree crowns

2) Mean size (m2) Number of objects

Site 1 Site 2 Site 1 Site 2

Pixel 4 4 0.04 0.04 144,101 326,243

OBIA 5 83 0.83 1.01 20,247 57,811

OBIA 10 257 2.57 3.04 5987 12,054

OBIA 15 504 5.04 5.94 2856 5608

OBIA 30 1677 16.77 19.23 663 1350

OBIA 45 3212 32.12 39.21 271 499

OBIA 60 4801 48.01 64.15 118 242

Tree crown
(operator delineation)

4687 46.87 49.31a 434 764

Table 6 Classification approaches

Classification “species
composition”

Classification “health
condition”

Site 1

Alnus glutinosa Asymptomatic Alnus
glutinosa

Fraxinus excelsior Alnus glutinosa with
symptoms

Acer pseudoplatanus

Salix sp.

Other riparian species

Site 2

Alnus glutinosa

Picea abies

Acer pseudoplatanus

Quercus robur

Other riparian species
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Scale analysis Pixel (0.01 m



information. The results also highlight the advantage of
adding additional information to the classical spectral
information from 3D layers or texture information. The
3D information, from derivatives of the CHM, is used
for the finest scales of analysis, whereas the texture
information, from GLCM derivatives, is used at coarser
scale of analysis.

The study of the confusion matrices for the best
performing classification models (species composition
approach) for sites 1 and 2 (Tables 8 and 9) reveal
contrasted individual classification errors.

Classification of alder health conditions

The variables used to classify the health condition of the
black alders differ from those used for the species com-
position classification in two important ways. The health
condition classification presents better overall accuracy
value (>90 %) and requires fewer variables to construct
the optimal classification models (12 vs 9 for site 1)
(Table 10).

The classification of the health condition of A.
glutinosa in site 1 is based more on variables derived
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Table 7 Accuracy assessment and selected variables

Classification “Species composition”

Site 1 Site 2

Scale of analysis Glob Accuracy Variable NIR Flight date Glob Accuracy Variable NIR Flight date

±S.D. (%) n (top 3) n (dd/mm) ±S.D. (%) n (top 3) n (dd/mm)

Tree Crown (operator
declination)

60.2±5.5 8 GVI x 5 16/11 48.5±5.7 1 Norm. NIR 1 08/11
Norm. Green 18/09

Norm. Red 19/10

OBIA 60 64.4±8.6 4 NGRVI 4 10/08 51.4±5.5 RVI x 3 08/11

Norm. Green 16/11 NDVI x 12/09

Red / Blue 19/10 Norm. NIR x 08/11

OBIA 45 69.9±6.1 7 GVI x 5 16/11 54.4±4 7 RVI x 4 08/11

Norm. Green x 18/09 Mean Blue 09/11

NGRVI 10/08 Norm. Green 01/08

OBIA 30 69.8±3.2 8 Green/ Red 5 06/09 66.4±2.3 10 Norm. NIR x 3 08/11

Norm. Red 19/10 Mean Blue 09/11

NRBI 19/10 Green/ Blue 12/09

OBIA 15 76.8±1.8 12 Norm. Red 6 19/10 71.9±1.3 13 Norm. NIR x 5 08/11

NRBI 19/10 Norm. Green x 09/11

NGRVI 06/09 NGRVI 09/11

OBIA 10 77.4±1.3 18 Norm. Red 6 19/10 75±0.8 16 Norm. Green 6 09/11

NRBI 19/10 Norm. NIR x 08/11

NGRVI 06/09 Green/Red 09/11

OBIA 5 79.5±0.7 25 Norm. Red 6 12/10 74±0.3 13 Green/Red 5 09/11

NRBI 19/10 Normalized Green 09/11

Green/Red 06/09 Normalized NIR x 08/11

4 pixel 78.1±0.3 17 Norm. Red 6 19/10 84.1±0.2 14 NGRVI 5 09/11

Mean Height 06/09 Red/Blue 09/11

Green/Red 19/10 Norm. Green 09/11

Mean 12 6 10 4

Mean overall accuracies (cross validation approach) are computed from 50 runs of RFwith selected variables. The three most used variables
in the RF model (Gini index) are presented in terms of variable types and flight date. The total number of variables and the number of flight
day are also given as a proxy of the model complexity. The NIR column is checked for variables derived from the modified camera
(RGNIR). Bold variables: 3 most frequent variables (regardless scale of analysis)



from NIR imagery, which allow healthy alders to be
distinguished from those that presented defoliation
symptoms during the field survey.

Discussion

Riparian forest species and health condition

Overall accuracies of our tree species classifications
reached 79.5 % (site 1) and 84.1 % (site 2), which are
comparable with those raised by recent researchers who
used much more expensive hyperspectral imagery
(79 %, Dalponte et al. 2014) or multi-spectral imagery
(83 %, Waser et al. 2011). High overall accuracy results

were obtained for the classification of the health condi-
tion of the typical overstory tree species of Walloon
riparian forest (A. glutinosa, 90.6 %).

The study of individual classification errors (see
Table 8 and Table 9) for the best performing species
classification models can be analyzed through the phe-
nological traits of the tree species. In site 2 (Table 9),
Acer pseudoplatanus and A. glutinosa present similar
and relatively high classification error. These higher
classification errors can be explained by high intraspe-
cific phenological variations for Acer species (reported
by Hill et al. 2010) and by variation in the health
condition of A. glutinosa (recorded presence of P. alni).
P. abies or Quercus species present very low classifica-
tion errors in site 2. The phenological characteristics of

Fig. 6 Frequency of variables
derived from the RGNIR and
RGB camera in selected variables
for the species composition
classification approach (site 1).
RGB-derived variables are more
frequent in selected variables than
variables derived from the
modified off-the-shelf RGNIR
camera

Fig. 7 Scale of analysis and
variable type frequency in
selected variables for the species
composition classification
approach (site 1). Height:
variables derived from a canopy
height model. Texture: GLCM
derivative variable. Spectral:
variables derived from the
spectral layers. Spectral variables
are the most used. Texture
variables are used at coarse scales,
whereas 3D variables are used at
fine scales
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P. abies are quite obvious because this species forms
distinct even-aged and evergreen stands along site 2. In
site 1, the highest classification error is related to the
class of Fraxinus excelsior and can be explained by the
presence of the highly pathogenic Chalaria fraxinea
(recorded during field survey).

Operational recommendations

Time window

The most appropriate time windows to perform the
flight surveys were found to be the late season of
vegetation, when phenological differences of riparian
forest trees are the most enhanced. These results are
in line with previous studies such as Key et al.
(2001) and Hill et al. (2010), who used aerial
multi-spectral imagery, and Zhu and Liu (2014),
who used satellite imagery.

Number of surveys

Respectively, 6 and 5 days of surveys were required to
achieve the best classification results for sites 1 and 2,
whereas 6 days of flight surveys were required to assess
the health condition of black alders of site 1. These
results highlight the importance of the multi-temporal
character of the dataset. However, the health condition
of black alders in site 1 can be evaluated with a sufficient
accuracy (81 %) using two variables derived from a
single flight survey with the modified RGNIR camera.

Scale of analysis

The relation between the scale of the analysis and the
accuracy of the classification shows evidence of higher
global accuracies for the classification scenarios per-
formed with smaller objects (from segmented objects
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Table 8 Individual confusion matrix of the best performing scale of analysis (OBIA scale 5) for the species composition classification
approach (site 1)

Predicted class

Alnus
glutinosa

Other
riparian

Picea abies Acer
pseudoplatanus

Quercus sp. Class. error

Actual class Alnus glutinosa 447 26 25 54 27 21 %

Other riparian 56 441 51 56 61 20 %

Picea abies 16 23 448 8 15 18 %

Acer pseudoplatanus 15 29 4 410 19 22 %

Quercus sp. 15 30 21 21 427 21 %

OOB estimate of global error rate 20 %

Classification error (Class. error) are based on out-of-bag data

Table 9 Individual confusion matrix of the best performing scale of analysis (4 pixels) for the species composition classification approach
(site 2)

Predicted class

Alnus glutinosa Other riparian Picea abies Acer
pseudoplatanus

Quercus sp. Class. error

Actual class Alnus glutinosa 4328 495 26 751 53 27 %

Other riparian 444 4520 53 424 71 22 %

Picea abies 65 78 5687 111 16 2 %

Acer pseudoplatanus 921 555 61 4420 44 25 %

Quercus sp. 181 206 12 150 5670 3 %

OOB estimate of global error rate 16 %

Classification error (Class. error) are based on out-of-bag data



<1 m2 to 4 pixel objects, 0.04 m2). The trend is more
obvious for the Bspecies composition^ scenario.

This result highlights the importance of the tree
crown object segmentation process. The closer the size
of the segmented object is to the tree crown scale, the
more accurate the segmentation process must be to
avoid objects overlapping several individual trees. The
oversegmentation induced by the reduction of the OBIA
scale parameters limits this overlapping. However, tree
crown delineation is a research topic in itself, and the
multi-resolution segmentation process was, in our

approach, intentionally simple, without scale-related
fine-tuning. Fine-tuning of the segmentation process in
relation to the scale of image analysis would especially
improve the performance of coarser scales of image
analysis but would turn the approach into a more time-
consuming and less computer-mediated perspective.

Besides the quality of segmented objects, larger ob-
jects present higher spectral heterogeneity. This fact
combined to a lower number of training objects (due to
the fixed sampling ratio) induces the decrease of the
overall accuracy as the size of the objects increases.

Table 10 Accuracy assessment and selected variables (species composition classification)

Classification “Health Condition”

Site 1 (Alnus glutinosa)

Scale of analysis Glob. Accuracy Variable NIR Flight date

±S.D. (%) n (top 3) n (dd/mm)

Tree Crown (operator delineation) 83.5±5.8 5 Norm. Red x 3 18/09

GLCM_Corr. Green 08/10

RVI x 19/10

OBIA 60 81±10.8 2 Norm. Red x 1 18/09

Mean NIR x 18/09

OBIA 45 84.2±6.1 3 Mean NIR x 2 18/09

Norm. Green 10/10

Brightness x 18/09

OBIA 30 83.6±4.5 5 Norm. Green 3 10/10

Green / Blue 19/10

GVI x 19/10

OBIA 15 87.2±2.2 8 Norm. Green 19/10

GNDVI x 4 19/10

NGRVI 19/10

OBIA 10 87.1±1.3 14 Mean NDVI (leaf on) x 6 /

Norm. Red x 18/09

Norm. Red x 06/09

OBIA 5 90.6±0.7 21 Norm. Red x 6 18/09

Norm. Green 10/10

Norm. Green 19/10

4 pixel 90.3±0.3 12 Mean NDVI (leaf on) x 6 /

Mean MNH 06/09

RVI x 06/09

Mean 9 4

Mean overall accuracies (cross validation approach) are computed from 50 runs of RFwith selected variables. The three most used variables
in the RF model (Gini index) are presented in terms of variable types and flight date. The total number of variables and the number of flight
day are also given as a proxy of the model complexity. The NIR column is checked for variables derived from the modified camera
(RGNIR). Bold variables: 3 most frequent variables (regardless scale of analysis)
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These findings are in line with recent publication of Ma
et al. (2015) who also used UAS imagery. The lower
overall accuracy values of the manually delineated tree
crown scale (despite a lower mean area value than the
OBIA 60 scale objects) can be further explained by the
fact that a major part of delineated individuals in the
reference dataset is actually clump of trees. In this case, a
single individual polygon can regroup up to ten crowns,
with shadow and blurry effect between and around them,
inducing even higher spatial heterogeneity in these ob-
jects (compared to larger BOBIA 60^ objects).

Relevant type of variable

The analysis of the selected variables also confirms
the value of the use of 3D information (derived from
a canopy height model) at fine scale and texture
information at a coarser scale. The selection of the
Bmean height^ at fine scale can be explained by
height differences between Bhealthy^ and Bun-
healthy^ riparian trees. At the local scale, the dense
matching process can fail to reconstruct the canopy
of trees with extreme defoliation symptom, leading
to an underestimation of the height. The low effi-
ciency of texture metrics (and thus the high perfor-
mance of spectral metrics) can also be explained by
the orthophoto generation process. Because of the
very high complexity of the surface of the canopy,
tree crowns on orthophotos can present a blurry
aspect. Considering that the best results were
achieved at finer scale (<1-m2 objects), we do not
recommend the use of texture metrics, which are
time-consuming and were unused by classifiers at
best performing scales.

Use of modified RGNIR off-the-shelf camera

The site 1 being less contrasted in terms of forest type
and presenting the Bdensest^ time series, it can be used
as a model for comparing the performance of the mod-
ified RGNIR camera. The results (see Fig. 6) highlight
the higher performance of the RGB camera, which can
be explained by the spectral overlap between the spec-
tral bands of the modified RGNIR camera (see Fig. 2).

Compared to site 1, the more intense use of
RGNIR imagery in site 2 can be explained by the
forest species composition. As the appropriate time
windows to perform the flight surveys were found to
be the late season of vegetation, the simultaneous

presence in site 2 of photosynthetically active (ever-
green coniferous stands) and non-active species (ri-
parian leaf-off deciduous trees) induces higher con-
trast in NIR. This fact can also explain the selection
of the blue band capture in the late season of vege-
tation in site 2, because the soil (and subsequently
leaf-off trees) has a specific response within the blue
wavelength.

Conclusions

The quality of the classification models developed with a
UAS-based, cost-effective, and semi-automatic approach
competes successfully with those developed using more
expensive imagery, such as multi-spectral and hyper-
spectral airborne imagery. Our study uses the temporal
resolution of the UAS to compile a redundant dataset of
UAS imagery to highlight riparian forest phenological
differences. This innovative approach is the first forest case
study that takes advantage of both spatial and temporal
resolution of UAS imagery to successfully describe subtle
features, such as individual tree species or health condition.

The accuracy of the classification of the diseased
alders opens the door to applications dedicated to mon-
itoring of the health conditions of riparian forests. Our
approach is directly applicable in other context, notably
to characterize other emerging dieback diseases that also
induce defoliation symptoms (e.g., C. fraxinea on
F. excelsior in Europe).

Regarding the forest characterization, most of the
previous research on time series imagery aimed to iden-
tify a specific time window when the classification
would be the most reliable. The final operational appli-
cation was subsequently to schedule imagery acquisi-
tion at a lower cost within the identified time window.
With very low operational costs induced by UAS imag-
ery, applications can integrate dense time series imagery
on an operational basis. Our methodological framework
will provide UAS users with a solution to manage large
imagery metric datasets derived from those dense time
series. In temperate climate areas, our results confirm
the relevance of imagery acquired in the late season of
vegetation. Our results also highlight the importance of
time series to characterize riparian forest species while
the health condition of A.glutinosa can be assessed
through a single flight survey with satisfactory accuracy.

Future work should focus on the use of denser multi-
temporal datasets, covering several entire vegetation
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seasons linked with the climatic conditions. This effort
will limit the influence of early phenological distur-
bances and allow identification of more general pheno-
logical traits to develop better classification models.
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