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Abstract Theelemental contents in salmonidmuscle and
liver tissues from different lakes around the world were
investigated. Fish from pristine areaswere comparedwith
those fishes from impacted environments, both by volca-
nic and anthropogenic activities. Within the data, special
attention was given to fishes from the Andean Patagonian
lakes in two contexts: local and global. The local evalua-
tion includes geological and limnological parameters and
diet composition which were obtained through a data
search from published works. The volcanic influence in
Andean Patagonian lakes was mainly observed by an
increase of cesium (Cs) and rubidium (Rb) concentrations
in fishes, influenced by calcium (Ca) and potassium (K)
water contents. Zinc (Zn), selenium (Se), iron (Fe), silver
(Ag), and mercury (Hg) contents in fishes showed the
effect of thegeological substratum,andsome limnological
parameters. The diet composition was another factor
which affects the elemental concentration in fishes. The
analyzed data showed that the fishes from Andean Pata-
gonian lakeshadelemental contentpatternscorresponding

to those of pristine regions with volcanic influence. Sele-
nium and Ag contents from Andean Patagonian fishes
were the highest reported.

Keywords Elements . Salmonids . Andean Patagonian
lakes . Pristine area . Anthropic area . Volcanic influence

Introduction

The elements in freshwater ecosystems are incorporated
mainly through biogeochemical cycles. These involve
transfer processes of substances from rocks and soils
through weathering and runoff (Bailey et al. 1978). More-
over, the human activities which alter the land, biodiver-
sity, and hydrology systems intensify these processes in-
creasing the availability of the elements. The global trans-
port also represents element sources which are associated
to natural dust or gaseous products as volcanic or anthro-
pogenic compounds from remote areas of the world.

The elements enter to the aquatic ecosystems by dry
andwet precipitation, dissolve inwater, sediment deposits,
or suspended matter in the water column (Eisler 1987;
Alma 1983). Physical and biogeochemical characteristics
of the freshwater ecosystems determine the element bio-
availability to the organisms (Newman and Jagoe 1994).
In this sense, mixing processes, pH, dissolved organic
carbon (DOC), redox, and elemental concentrations are
the main factors involved (Newman and Jagoe 1994).
Among environmental pollutants, metals are of particular
concern, due to their potential toxic effects and liability to
be bioaccumulated.Heavymetals, including both essential
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and non essential elements, have a particular significance
in ecotoxicology since they are persistent and all have the
potential to be toxic to living organisms (Kwaansa-Ansah
et al. 2012). The water and diet are the metal entry routes
for aquatic organisms and the trophic position is one of the
main factors that influence the reached concentration
levels (Bury et al. 2003). The fishes include a variety of
trophic levels and have a long life cycle; this makes them
good indicators of long-term effects and habitat conditions
(Plafkin et al. 1989). The elemental bioconcentrations
depend on the chemical form, e.g., Hg which can be
biomagnified as methylmercury (Wang 2012), while
others such as arsenic (As), cadmium (Cd), and lead (Pb)
can be diluted (Leeves 2011; Revenga et al. 2012).

In the last years, elemental contents in fish tissues
from lakes of the Northern Patagonia Andean Range
have been studied (Ribeiro Guevara et al. 2005; Arribére
et al. 2006; Arribére et al. 2008; Rizzo et al. 2010 and
therein references), where high concentrations of several
elements, e.g., Se, Ag, Rb, and Cs, were found, respec-
tively, to other fishes from freshwater ecosystems of the
world.

The lakes of the Northern Patagonia Range limit
with the Andes Mountains to the west, which in-
cludes several active volcanoes known as the South-
ern Volcanic Zone (SVZ) (Petit-Breuilh Sepúlveda
2004). The orography and the prevailing westerly
winds determine the rainfall regime, with a strong
gradient from West to East. Due to these conditions,
the volcanic activity from SVZ has impacted over
the Northern Patagonia region. The lakes are the glacial
origin, mostly ultraoligotrophic, which are in an area with
low human development and historically protected under
the National Park Administration (Díaz et al. 2007). The
lakes have native fish species, e.g., Creole perch
Percichthys trucha, inagaGalaxias maculatus, and intro-
duced salmonids as rainbow trout Oncorhynchus mykiss,
brown trout Salmo trutta, brook trout Salvelinus
fontinalis. This fish group originated from the North
hemisphere and has been artificially widely distributed
around the world (Wegrzyn and Ortubay 2009). In Pata-
gonia, the salmonids were introduced at the end of the
nineteenth century, and at the beginning of the twentieth
century, adapted well in these environments (Ferriz, et al.
1998).

The aims of this work are the following: (a) to inves-
tigate how the regional characteristics affects the bioac-
cumulation processes of elements (K, sodium (Na), Rb,
Zn, Fe, bromine (Br), Cs, Se, Hg, and Ag) in muscle and

liver tissues of rainbow trout; (b) to investigate if the
trends observed in the local study are similar to those
found in other salmonids from ecosystemswith volcanic
influence; and (c) to investigate how the anthropic in-
fluence affects the bioaccumulation patterns.

To achieve these goals, an exhaustive search from the
scientific works published from 1968 to 2013 was done.
This range of time was considered for including more
amounts of elements due to the lack of reported data in
salmonids. The local study, involved the evaluation of
the elemental contents in fish related to elemental con-
centrations of the geological substratum (aquatic sedi-
ments), water chemistry, and rainbow trout diet compo-
sition. At a global scale, the elemental contents in sal-
monid species were compared to those from pristine
regions with and without volcanic influence and an-
thropic impacted areas.

Material and methods

Local study

Rainbow trout was the chosen specie for the elemen-
tal composition study from the Patagonian Andes due
to its wider distribution and abundance in this area
(Wegrzyn and Ortubay 2009). The elemental contents
in muscle and liver were taken from Bubach D. Ph.D.
(2010).

Elemental Analyses Aliquots of about 100 mg of
dried homogenized and powdered sample were sealed
in SUPRASIL AN® quartz ampoules, irradiated for
24 h, and analyzed by instrumental neutron activation
analysis (INAA) at the RA-6 nuclear research reactor at
Centro Atómico Bariloche. The elements analyzed were
as follows: K, Na, Rb, Zn, Fe, Br, Cs, Se, Hg, and Ag,
and corresponded to 183 adult individuals analyzed
mainly in pools. Gamma ray spectra were collected
using an intrinsic high-purity germanium (HPGe) n-
type detector, 12.3 % relative efficiency, and a 4096-
channel analyzer. Spectra were analyzed by using the
GAMANAL routine included in the GANAAS pack-
age, distributed by the International Atomic Energy
Agency (IAEA). Corrections for spectral interferences
were included when necessary. The concentrations re-
ported are referred to dry weight basis. Standard refer-
ence materials from the National Research Council of
Canada (NRCC)-DORM-2 dogfish muscle, (NRCC)-
TORT-2 lobster, (NRCC)-DOLT-2 dogfish liver, as well
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as sample replicates, were analyzed to check on the
quality of analysis. The analyses of the standard refer-
ence materials showed good agreement with certified
and informed values, and replicate samples were con-
sistent These data were reported by Ribeiro Guevara
et al. (2006).

Study area

Figure 1 shows the sampled lakes: Traful, Espejo
Chico, Nahuel Huapi, Moreno (Atlantic drainage ba-
sin), and Guillelmo (Pacific drainage basin) all be-
longing to Nahuel Huapi National Park (NHNP) and
Rivadavia and Futalaufquen (Pacific drainage basin)
from Los Alerces National Park (LANP) located at
Northeast of the Andean Patagonia (The main char-
acteristics of the lakes are shown on Table 1). These
lakes are glacial origin, ultraoligotrophic, with very
dilute calcium, bicarbonate, and silica dominance
(Pedrozo et al. 1993) and they have been classified
as warm monomictic, with a summer stratification
period (Quirós and Drago 1985). The largest human
settlement of the study site is around lake Nahuel
Huapi, mainly by the city of San Carlos de Bariloche
(circa 110,000), Dina Huapi (6500 habitants), and
Villa La Angostura (7600 habitants); other settle-
ments have less than 500 habitants (INDEC 2001).
The primary economic activity is tourism, which
attracts hundreds of people per year from Argentina
and abroad.

Geological substratum

The geological substratum was evaluated through the
Ag, Br, Cs, Fe, Hg, Na, Rb, Se, and Zn contents of
stream sediments from the principal lakes tributaries.
These data were obtained from Ferpozzi et al. (2001,
2004). The lake Traful tributary data correspond to
sediments from streams located in both the North and
South margins, which were systematically taken 1
every 10 from more than 1000 data finally reduced
to 554. The lake Espejo Chico tributaries correspond
only to the North margin. The lakes Espejo Grande
and Correntoso were considered as Nahuel Huapi
tributaries; Lakes Cholila and Menéndez were treated
as tributaries of the lakes Rivadavia and Futalaufquen
from LANP. In general, the total data of these lakes
were 10<N≤22.

Limnological data

Magnesium (Mg), Na, K, Ca, total phosphorous (TP),
soluble reactive phosphorous (SRP), bicarbonate
(HCO3=) contents, and pH were the chosen parameters
for characterizing the aquatic environment. The data
were taken from Pizzolón et al. (1994), Reissig (2005),
and Díaz et al. (2007), corresponding to seasonal values
of at least 1 year.

Fish diet

Diet composition was estimated from the stomach con-
tents in a summer period, which was performed through
the identification and count of the food categories and
prey using a stereomicroscope. The volume of each food
category per stomach was measured by water displace-
ment in a graduated cylinder (Macchi 2004). These data
were obtained from Bubach (2010).

Data for the global study

A database of elemental concentrations in liver and
muscle tissues from scientific publications from 1968
to 2013 was performed. The genera considered for this
work included the following: Salmo, Oncorhynchus,
Salvelinus, Coregonus, and Thymallus. The data pub-
lished were taken when the contents were given either in
dry weigh (DW) basis or wet weight (WW) with the
humidity percentage informed.

The classification of the regions was made according
to development degree or considering the type of impact
close to the lake area, namely:

Pristine region (PR): a place with low population
(less than 100,000 habitants), very small industrial or
farming activities.

Pristine region with volcanic influence (PRV): when
the area is pristine and has volcanic or hydrothermal
activity.

Anthropic impacted region (AIR): area impacted by
urban waste discharges, industrial development, mining
regions, hydrocarbons extraction, or intensive
agriculture.

The elemental contents in the tissues of fishes from
these three types of regions were compared with those
from the North Andean Patagonian (AP) aquatic eco-
systems used in the local study included other salmonids
such as brown trout (N=64) and brook trout (N=56),
wherein data were taken from Bubach (2010).
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Statistical analysis

The statistical analysis was performed with the program
XLSTAT version (7.5.3) copyright 1995–2005
Addinsoft. The significance level considered in all sta-
tistical tests was (α) ≤0.05. Principal components anal-
ysis (PCA) was performed for the local study where
elemental contents in fishes and averages of tributary
sediments and limnological parameters were used. The
differences among areas at global level were checked by
ANOVA and Kruskal-Wallis tests and post hoc Fisher’s
LSD test were used to discriminate similar groups.

Results

Evaluation at local scale

In this section, we present the results of the different
PCA obtained from AP lakes mentioned in the “Study
area” section and the rainbow trout diet composition.
The PCA of rainbow trout muscle samples produced
three independent components explaining 73 % of the
variance and 66 % for livers. Figure 2a shows the
component principal 1 (CP1) vs component principal 2
(CP2) and Fig. 2b, CP2 vs component principal 3 (CP3).

Fig. 1 Study area
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The CP1 and the CP3 are explained by Se, Br, Zn, Na,
Fe, and Hg, while Cs and Rb are explained by the
second component (CP2) in both plots. The observa-
tions are distributed in two groups in agreement with
Rb–Cs–Br, Zn–Fe–Hg–Na, and Se–Na vectors which
show significant correlations (Table 3, Complementary
data). The first group encloses fishes from lakes Espejo
Chico, Traful, Nahuel Huapi, Moreno, in a gradient
distribution related to Rb–Cs (Fig. 2a), distinguishing
the lake Espejo Chico on the top vector. The second
cluster includes lakes Futalaufquen, Rivadavia, and
Guillelmo due mainly to the Se and Zn contributions.
Figure 2b shows enclosed lakes Nahuel Huapi and
Moreno by vectors Fe and Hg. The significant correla-
tions among the elements in liver (Table 4, Complemen-
tary data) are the same as those observed for muscle.
Figures 3 shows the PCA for the liver data, where a
similar pattern to muscles is observed. The only differ-
ence is given by Ag and Hg in liver; both elements
determine a gradual separation of lakes Nahuel Huapi
and Moreno from the other lakes (Fig. 3b).

Figure 4 shows the PCA results using the data of the
stream sediments (Fig. 4a) and limnological parameters
(Fig. 4b). The lakes Rivadavia, Futalaufquen, and
Menéndez in Fig. 4a are separated from lakes
Correntoso, Cholila, Espejo Chico, and Traful. The first
group of lakes is mainly enclosed by K, Se, Ag, Cs, Br,
and also Rb; Na vector is associated with the other four
lakes, while the Espejo Grande is distinguished by Hg.
The same assemblage is also observed in Fig. 4b,

characterized by higher pH, Ca, PRS, HCO3, and K.
The lakes Moreno and Nahuel Huapi are in the same
direction of Na and TP and opposite to pH vector,
indicating a more acidic pH respect to the other lakes.

The rainbow trout diet composition is presented in
Fig. 5. This shows a similar composition among groups
of lakes as was observed in the PCA (Figs. 2 and 3). In
the lakes Guillelmo, Rivadavia, and Futalaufquen, the
diet includes larvae and adult insects and plankton while
insect larvae, amphipods, and organic matter are the
dominant items from fish of lakes Espejo Chico and
Traful and inanga G. maculatus, a native fish, for lakes
Moreno and Nahuel Huapi, which represented more
than the 60 % of consumption.

Evaluation at global scale

Table 2 shows mean and standard deviation of the
elemental concentrations in the muscle and liver of
fishes of different regions of the world and the proba-
bility level (p) of the ANOVA and Kruskal-Wallis test
for each element among areas. An extended version of
these data is found on Tables 1 and 2 in the Comple-
mentary data. Table 3 reports post hoc Fisher’s LSD test
for the elements that had significant differences.

The database is composed at least by 450 values from
each area depending on the element; in general, the
muscle data (2237 individual fishes) is more complete
than the liver (1892 individuals). A few data are reported
by Ag in muscle and Br in both tissues.

Table 1 Geographic coordinates and physical parameters of the study lakes

National park Lake Location Altitude Mean depth Maxim depth Area Watershed area Secchi disk
(msm) (m) (m) (km2) (km2) (m)

Nahuel Huapí Traful 40° 30′ S, 71° 17′ O 750a 173b 200a 75a – 15a

National park Espejo Chico 40° 34′ S, 71° 44′ O 750a – 68a 1.9a – 15a

Nahuel Huapi 40° 50′ S, 71° 30′ O 765a 157c 464a 557a 4260a 7a

Moreno 41° 5′ S, 71° 33′ O 765a – 180a 11a – 7a

Guillelmo 41° 23′ S, 71° 29 ′O 826a 61d 100a 5.4a – 11a

Los Alerces Rivadavia 42°3 6′ S 71° 39′ O 527e 104e 147e 22e 1647e 12e

National park Futalaufquen 42° 49′ S, 71° 43′ O 518a 101d 168f 45a 2920f 14a

a Díaz et al. (2007)
b Vigliano et al. (2002)
c Pedrozo and Vigliano (1995)
d Quirós (1988)
e Pizzolón and Arias (1995)
f Pizzolón (1995)
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The differences between muscle and liver sam-
ples basically are due to the different physiology
of the tissues (Yamazaki et al. 1996 and Barber
et al. 2003).

The elemental concentrations in the database de-
creases consistently with their natural abundance, bio-
logical function, and essentiality as shown on Table 2.
The concentrations in muscle decreases from (18,000 to
0.024 μg/g) in order: K>>>Na≫Fe~Rb~Br~Zn>
Se~Hg~Cs>Ag. The element sequence for the livers
shows a shift of Br and Rb, which are allocated between
Zn and Se.

Rubidium, Cs, and Na in both tissues and Hg in liver
showed significant differences among areas (p<0.05).
Those were given mainly for PRV which concentrations
were one to two orders of magnitude higher than in the
other three regions (AP, PR and AIR, Table 2). More-
over, significant differences (p<0.05) in both tissues of
AP fishes were observed among PRV; PR and AIR for
Cs, and also, between PRV and PR for Rb (post hoc
Fisher’s LSD test, Table 3). The concentrations of these
elements were twice higher than AP in respect to PR and
AIR (Table 2). Sodium and Hg from AP presented
significant differences with PRV in both tissues
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Fig. 2 Principal component analysis of elements in rainbow trout
muscle from lakes Futalaufquen (FU), Rivadavia (RI), and
Guillelmo (GU) within dotted circle and Moreno (MO), Nahuel
Huapi (NH), Espejo Chico (EC), and Traful (TR) within lined and
dotted circle. a Principal component 1 vs 2. b Principal component
2 vs 3
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Fig. 3 Principal component analysis of elements in rainbow trout
livers from lakes Futalaufquen (FU), Rivadavia (RI), Guillelmo
(GU), Moreno (MO), Nahuel Huapi (NH), Espejo Chico (EC), and
Traful (TR). a Principal component 1 vs 2. b Principal components
2 vs 3
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(p<0.05, post hoc Fisher’s LSD test, Table 3), and the
highest values were in PRV (Table 2).

Although, the elements K, Zn, Fe, and Ag did not
show significant differences among the areas due to
their great dispersion, it was observed in some ten-
dencies (Table 2). The highest values were mainly
observed in PRV for K and Zn in both tissues, in
addition to Se in muscle and Fe in liver. On the other
hand, Se and Ag were markedly higher, around dou-
ble, in liver of AP fishes respect to those from the
other areas (Table 2).

Discussions

Water chemical properties as well as geological substra-
tum influence on diverse factors like vegetation devel-
opment, elemental bioavailability, and food web assem-
blage in freshwater ecosystems (Newman and Jagoe
1994; Weatherhead and James 2001; Marziali et al.
2008). The trophic structure and dietary composition
are factors which also play an important role in the trace
elements bioaccumulation in aquatic organisms (Soto-
Jiménez 2011; Wang 2012).

Our results showed that the elemental contents in fish
tissues were grouped according to the lake of origin
(Figs. 2 and 3). The relevant result was the agreement
in the patterns observed in all PCA (fish tissues, limno-
logical parameters, and tributary sediment composi-
tion). The elements Rb, Cs, Br, Na, Se, and Zn mainly
distinguished the lakes Rivadavia-Futalaufquen-
Guillelmo; from Moreno-Nahuel Huapi-Espejo Chico,
also in some cases Espejo Chico-Traful. The lakes
Rivadavia, Futalaufquen, and Menéndez drain to the
Pacific Ocean, while the others lakes (Espejo Chico
and Traful) drain towards the Atlantic.

The rainbow trout diet composition (Fig. 5) pro-
vides some explanation for the elemental content
patterns. The diet of fishes from lakes of Pacific
drainage was mainly composed by plankton and in-
sects (larvae and adults), while the diet of fish from
lakes of Atlantic drainage were more varied. These
assemblages by drainage basin are also observed in
limnological parameters (Fig. 4b).

Alkaline elements are typically found in igneous
rocks and volcanic products like ashes and gases (Ruiz
and Cebriá Gómez 1990; Grassom et al. 1999;
Llyinskaya 2007). Thus, the high Rb, Cs, and Na values
could be explained by a volcanic source. The area of the
AP lakes has been affected by SVZ (Petit-Breuilh
Sepúlveda 2004). The geochemical characterization of
volcanic products may provide a fingerprint which en-
ables to identify the volcano provenance, associating
terrestrial and lacustrine tephra deposits with specific
volcanic events. Some investigations about the volcanic
product inputs in lakes from NHNP have been per-
formed by Daga et al. (2010, 2014). Chaitén volcano
and Puyehue Cordón Caulle (PCC) volcanic complex
had two of the most recent eruptions occurred in 2008
and 2011, respectively. The first is located close to lake
Futalaufquen in LAP while PCC volcanic complex is
near to lakes Espejo Grande, Espejo Chico, Brazo
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Rincón from Nahuel Huapi, and Traful (Fig. 1). In
particular, Daga et al. (2014) reported elemental con-
centration differences according to the volcano sources,
e.g., Rb and Cs in glass shards, with larger concentration
for Chaitén while Fe, Br, and Zn for PCC. After the
initial impact, the prolonged exposure of the pyroclastic
products to weathering may cause the slow release of
elements from the structure of constituent mineral
phases and glassy matrix to soils and waters. Further-
more, a bioindication study in the same AP area after the
last PCC eruption showed a positive correlation among
Rb, Cs, and Br with the distance to PCC volcano
(Bubach et al. 2012, 2014). Therefore, the results in fish
tissues may indicate a strong relation among Rb, Cs, and
also Br, with the distance to the volcano. Moreover, the
absence of concordance of fishes with sediments in the
PCA (Figs. 2, 3, and 4a) and the Daga et al. (2014)
results may be the consequence of the weathering and
runoff processes that produce dissimilar element bio-
availability due to limnological parameters, geological
substratum, and drainage slope differences (Fig. 4b).
The water, in addition to the diet, is another pathway
of elements to fishes mainly through the gills, which is a
metabolically active target organ for metal accumulation
(Yilmaz et al. 2007; Jarić et al. 2011; Poleksić et al.
2010; Višnjić-Jeftić et al. 2010). This route seems im-
portant for alkaline elements and dissolved gases. Rela-
tions between Rb and Cs with other alkaline elements in
fresh water environments were reported by Rowan and
Rasmussen (1994), Avery (1996), Hagström (1999).
These authors have found negative correlations between
K concentration in water and 137Cs in fish. Sonesten
(2001) verified that 137Cs contents in fish were lower
when the water hardness increased, probably due to Rb

and Cs competition with K absorption in the gills
(Oughton and Salbu 1992). This can explain the dif-
ference observed in the lakes patterns around the Rb
and Cs vectors where the lakes are grouped as
Espejo Chico, Nahuel Huapi-Moreno-Traful, sepa-
rated from Guillelmo-Rivadavia and Futalaufquen
(Figs. 2, 3 and 4).

Rubidium and Cs had the highest concentrations in
the fishes from Yellowstone National Park NS lakes
Bolserna and Bracciano, included into the PRVand AP
lakes, respectively, to the fishes of the other areas
(Table 2, and Tables 1 and 2 from Complementary
data). Yellowstone is an environment with thermal
springs. Lakes Bolserna and Bracciano, originating
from volcanic craters, are located in central-west Italy,
in the Vulcini volcanic and Sabatini complexhttp://en.
wikipedia.org/wiki/Italy.

High Na values were observed in fish tissues from
PRV. Besides the eventual Na and K volcanic
contribution, the Na concentration in fishes could also
be influenced by Ca concentrations in water. Wurts
(1987) and Ratte (1999) showed an Na influx increase
in the fish gills when Ca concentration in water is low.
Verbost et al. (1989) revealed the water chemistry im-
portance in the Na+/Ca2+ transepithelial exchange be-
tween gills and water. The Na concentration in AP fishes
(2300±420 μg/g) were higher than in Bolserna and
Bracciano (710±240 μg/g); Orban et al. 2006, Table 1
and Table 1 in Complementary data) while both Na
concentrations in water were similar (~1–2 mg/L,
Pizzolón 1995; Mosello et al. 2004; Díaz et al. 2007)
The Ca concentration in water of AP lakes (3–8 mg/L;
Pizzolón et al. 1994, 1995; Díaz et al. 2007) is one order
of magnitude lower than lakes Bolserna and Bracciano
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insect (AI), insect larvae (IL),
plant remains (PR), Aegla sp.
(AE), Samastacus sp. (SS), other
fishes (OF), Galaxias maculatus
(GM), amphipods (AN), and
mollusks (MO)
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(21 mg/L; Mosello et al. 2004). Sodium in fishes and Ca
in water comparisons between Bolserna and Bracciano
and our results indicate that the Cs, Rb, and Na concen-
trations in AP fishes may be explained by the exchange
of these ions through the gills (Fig. 4b).

Bromine sources have been identified in marine aero-
sols, volcanic products, and anthropic compounds such
as esters of polybrominated biphenyls (PBDEs) and
methyl bromide (Sturges and Harrison 1967; Wit
2002; Martin et al. 2012; Bubach et al. 2012, 2014). In
AP fishes, the correlation between Br and Rb and Br and
Cs could confirm its volcanic source; but at a global
level, it cannot be certain because the data are insuffi-
cient (Table 2, Figs. 2 and 3, Tables 1 and 2 in
Complementary data).

The element chemical availability in the freshwater
system is the result of the interaction of several variables
which include pH. The Fe, Zn, Hg, and Ag availability
is easier in acidic pH, in contrast to other elements like
Se, which is most favored at basic pH (Eisler 1987,
1993, 1996 and Ezoe et al. 2001). The rainbow trout
distributions (see Figs. 2a, b and 3b) in relation to Fe,
Hg, Se (muscle and liver) and Ag (liver) vectors is
according to pH like is shown in Fig. 4a. This distribu-
tion assembles the Nahuel Huapi and Moreno fishes by
the Hg and Ag vectors, and Guillelmo, Rivadavia, and
Futalaufquen by Se (Fig. 3b). This agreement between
element and pH is not observed for Zn, where its con-
centration in fishes is higher in the lakes Guillelmo,
Futalaufquen, and Rivadavia, which are more alkaline
than the other lakes. A probable explanation for this
could be the chelation reactions between PRS and Zn
(Fig. 4b) which solubility is higher at basic pH (Wetzel
1981). Likewise, the assemblage observed in relation to

this element and also Se in the fishes reflects the diet
composition (Figs. 2, 3, and 5). At a global level, the
great variation in Zn, Se, and Fe content observed in
Table 2 gave the lack of significant differences among
areas. This great variation was more important in the
AIR and PRV areas, mainly by Yellowstone National
Park with the highest concentrations (~50 % of average,
Table 2; and Table 1 and 2 in Complementary data).
However, Zn, Se, and Fe are regulated by the organisms;
the bioconcentration of those elements due to their high
availability exceeds probably the excretion capacity of
the fishes from those areas.

The Ag contamination occurs naturally in the earth’s
crust and in mining deposits (Purcell and Peters 1998;
Hein et al. 1999) and also sewage wastes (Ratte 1999;
Nichols et al. 2006) linked to a global and local transport.
The higher Ag content in AP livers could be due to the
presence of mineral deposits in the region (Giacosa et al.
1999) and Ag availability may be modified for anthropic
activities. Ribeiro Guevara et al. (2005) attributed the Ag
presence to the release of photography reagents from the
city waste effluents, which were dumped directly into
lakeNahuel Huapi. However, Ag in photographic wastes
is in a chemical form (as a metal) that cannot be
bioconcentrated by the organisms (Eisler 1996; Ratte
1999). Silver has high affinity to sulfur ligands and
halogens in water and sediments (Bell and Kramer
1999), andmay be accumulated in the benthic food chain
as described by Ratte (1999) and Larissa et al. (2006).
The rainbow trout diet from the lakes Nahuel Huapi and
Moreno is mostly composed for inanga (40–60 %). This
native species has benthic feeding habits (Wegrzyn and
Ortubay 2009), which could provide an explanation to
Ag content observed in AP fishes.

Table 3 Probability values of the post hoc Fisher test of ANOVA. Andes of Northern Patagonia (AP), pristine areas without (PR) and with
volcanic influence (PRV) and anthropic impacted areas (AIR)

Areas Muscle Liver

Rb Cs Na Rb Cs Hg

PRV-PR <0.00010 <0.00010 0.0087 0.023 0.00013 <0.00010

PRV-AIR <0.00010 0.00017 0.013 0.023 <0.00010 0.00087

PRV-AP <0.00010 0.0033 0.036 0.012 0.00022 0.00047

AP-PR 0.042 0.0011 0.28 0.52 0.010 0.14

AP-AIR 0.063 0.045 0.53 0.94 0.0053 0.92

AIR- PR 0.96 0.22 0.58 0.60 0.72 0.26

p<0.05 are presented in italics
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On the other hand, Ribeyre et al. (1995) observed a
30 % Ag increase in zebrafish when metals like Cu, Zn,
Hg, and Se, were present. The same results were report-
ed in fishes by Howe and Dobson (2002). Selenium and
Ag concentrations in liver from AP fishes (see Table 2)
showed the highest values reported in the literature. In
consequence, higher Ag and Se contents may be a signal
of the environmental exposition to the divalent
elements.

Increases in Hg accumulation rates have been ob-
served in the uppermost layers of lake sediment cores
including remote places (Lindberg et al. 2007). The
background Hg concentrations are assumed to represent
the “pre-industrial” accumulation rates. These increases
have been attributed to an enhancement of the Hg global
load in the environment due to direct inputs from min-
ing, land use, and other industrial activity also from
natural sources such as Hg deposition from volcanic
origin (Martin et al. 2011, 2012). This Hg load in the
environment was also reflected in the Hg contents in
fishes at global and local scale being highest in PRV due
probably to volcanic contribution, following by AIR
and AP (Table 2). In particular, sediment sequences in
different AP lakes not only showed increments of Hg
concentrations corresponding to the second half of the
twentieth century but also high concentrations in time
periods in the past millennium (Ribeiro Guevara et al.
2010). This was ascribed as the result of the natural
sources, e.g., volcanic activity of the Andes or extended
fires. Thus, the Hg in AP fishes could be the conse-
quence of that observed in the sediment, in addition to
the presence of the metals in the divalent form as was
mentioned earlier by Ag and Se.

Conclusions

At a local level, we found similarities in the elemental
concentrations in fishes among lakes Espejo Chico-
Traful, Nahuel Huapi-Moreno on the one hand; and
Guillelmo, Rivadavia, and Futalaufquen on the other,
as result of several factors that included volcanic
sources, geological substratum, chemistry of the water,
characteristics associated to drainage basin (Atlantic vs.
Pacific), and diet composition.

In particular, Rb, Cs, and Br correlation indicated
volcanic sources mainly associated to the PCC complex
distance and their bioavailability due to Ca and K water
contents. Iron, Se, Hg, and content in rainbow trout were

associated to a major availability due to pH and Zn by
PRS.

At a global scale, Se and Ag in livers of AP
fishes showed the higher concentrations. The wide
concentration range of elements usually associated
with anthropic activities (Zn, Fe, and Hg) of the
database did not allow us to find significant differ-
ences among areas. The elemental content patterns,
especially the Rb, Cs, and Na concentrations,
showed that the fishes from Andean Patagonian
lakes correspond to those of pristine region with
volcanic influence.
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