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Abstract Forest inventories are commonly used to es-
timate total tree biomass of forest land even though they
are not traditionally designed to measure biomass of
trees outside forests (TOF). The consequence may be
an inaccurate representation of all of the aboveground
biomass, which propagates error to the outputs of spatial
and process models that rely on the inventory data. An
ideal approach to fill this data gap would be to integrate
TOF measurements within a traditional forest inventory
for a parsimonious estimate of total tree biomass. In this
study, Light Detection and Ranging (LIDAR) data were
used to predict biomass of TOF in all Bnonforest^ Forest
Inventory and Analysis (FIA) plots in the state of
Maryland. To validate the LIDAR-based biomass pre-
dictions, a field crew was sent to measure TOF on
nonforest plots in three Maryland counties, revealing
close agreement at both the plot and county scales
between the two estimates. Total tree biomass in
Maryland increased by 25.5 Tg, or 15.6 %, when bio-
mass of TOF were included. In two counties (Carroll
and Howard), there was a 47 % increase. In contrast,

counties located further away from the interstate high-
way corridor showed only a modest increase in biomass
when TOF were added because nonforest conditions
were less common in those areas. The advantage of this
approach for estimating biomass of TOF is that it is
compatible with, and explicitly separates TOF biomass
from, forest biomass already measured by FIA crews.
By predicting biomass of TOF at actual FIA plots, this
approach is directly compatible with traditionally report-
ed FIA forest biomass, providing a framework for other
states to follow, and should improve carbon reporting
and modeling activities in Maryland.

Keywords Trees outside forest . Carbonmanagement .

Nonforest biomass . LIDAR . Forest inventory

Introduction

Forest inventories provide valuable datasets for monitor-
ing forests, including biomass stock and stock changes
that are periodically reported to the Intergovernmental
Panel on Climate Change (IPCC), the Food and
Agriculture Organization (FAO), and domestic outlets.
Additionally, process-based and geospatial models of
aboveground biomass frequently rely on forest inventory
data to both calibrate and validate model results
(Blackard et al. 2008; Wilson et al. 2012; Zhang et al.
2012). However, when forest inventories are assumed to
represent total tree biomass in an area, the trees outside of
forests (TOF) are ignored, potentially underestimating
the total biomass. Unmeasured biomass of TOF may be
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a substantial, especially in areas with highly fragmented
forests or urban and suburban development. Besides
underestimating carbon stocks over a landscape or re-
gion, other potential consequences of ignoring this data
gap include the following: overestimating carbon losses
from land use changes, incorrectly calibrating process-
based models, and incorrectly assuming error or bias in
model outputs when compared with forest inventory data
(Houghton 2003; Johnson et al. 2014). As populations
increase and developed areas expand, TOF will likely
become increasingly important.

There aremany definitions of Bforest^ and Bnonforest^
used by the natural resource community. Most definitions
include some measure of tree stem or cover abundance
such as percent stocking or percent canopy cover
(Konijnendijk et al. 2006). The definition of the USDA
Forest Service also includes the size and shape of the
treed patch, the presence of developed land uses, and the
ability of the understory to provide tree regeneration.
Under this definition, areas where trees may be present,
such as orchards, city parks, residential yards, and rural
areas, may be considered nonforest (Fig. 1) (Bechtold
and Patterson 2005; de Foresta et al. 2013).

We know from previous TOF inventories that the TOF
biomass pool is substantial (Guo et al. 2014; Nowak et al.
2013; Riemann 2003), but there is still a considerable
uncertainty about its actual contribution to total above-
ground carbon stock, especially in highly fragmented

forested landscapes (Jenkins and Riemann 2003; Nowak
and Crane 2002; Nowak et al. 2013). Ground measure-
ment inventories are the most direct way to estimate the
TOF biomass pool (Lister et al. 2012; Nowak et al. 2013;
Riemann 2003). Such inventories, however, are often
expensive, difficult to implement (e.g., denied access from
private land-owners), and rarely extend beyond urban
borders. Furthermore, urban and other nonforest invento-
ries are often not part of the design objectives for existing
forest resource inventories and thus require establishment
of a new network of field measurement plots (Cumming
et al. 2008; Lister et al. 2012). Additionally, inventories
that are spatially limited are sometimes extrapolated to
larger polygons of urbanized areas that overlap forest
inventories (Nowak et al. 2013; Riemann 2003). To mea-
sure total tree biomass in an area, a parsimonious ap-
proach is most ideal; i.e., one that leverages the data
already collected in traditional forest inventories and sim-
ply fills the TOF data gap within the same inventory.

The goals of this study were to estimate and separate
the contribution of biomass of TOF to the total tree
biomass pool in Maryland, using Forest Inventory and
Analysis (FIA) and Light Detection and Ranging
(LIDAR) data sets. We used LIDAR to estimate mean
canopy height and spatial occurrence of trees at unmea-
sured forest inventory plots. In addition to analyzing
results at the plot scale, we also estimated biomass of
TOF at the county scale because this is a common

Fig. 1 An example of an FIA
plot (made up of four subplots)
located in fragmented forest cover
in Maryland. Brighter colors are
higher canopy heights of the 1-m
canopy height model. Inset: a
zoomed-out view of the same plot
showing as an example of a
Bnonforest^ condition. The tradi-
tional FIA inventory will not visit
this plot because it does not meet
the requirements of BForest land,^
even though it is highly probable
that trees are in the plot
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estimation unit of the FIA program. Prediction estimates
were validated in threeMaryland counties at the plot and
county scales by directly measuring TOF in Bnonforest^
FIA plots.

Data sets and methods

Tree canopy was extracted from high-resolution imagery
and LIDAR using an object-based approach described in
O’Neil-Dunne et al. (2014). The imagery consisted of
leaf-on, 4-band, 1-m resolution aerial data acquired as
part of the National Agricultural Imagery Program
(NAIP) in the summer of 2011. LIDAR data were ob-
tained from individual counties and the Maryland
Department of Natural Resources (DNR). The LIDAR
datasets met established USGS mapping standards (e.g.,
either a 1/9 or 1/27 arc second required posting). The
LIDAR collection was processed to create various raster
surface models that were integrated with the imagery and
where available, existing vector datasets (e.g., roads and
buildings), to automatically map tree canopy features
through the application of segmentation, classification,
and morphology algorithms in an object-based expert
system. The final output consisted of a 1-m resolution
tree canopy raster dataset for the entire state of Maryland
(O’Neil-Dunne et al. 2014).

Data from the most recently completed inventory
(2008–2012) was used to calculate forest biomass (FB)
density (Mg/ha) at standard FIA plots and subplots (one
of several sample points in a cluster), and total biomass
(Tg) at the county scale in Maryland with the
EVALIDATOR tool (Miles 2014). The allometric
models used for biomass estimations were volume-
based, following the standard component ratio method
used by FIA (Heath et al. 2008). Since FIA data sys-
tematically samples all lands, we assumed that combin-
ing LIDAR-based TOF biomass from nonforest FIA
plots with those from ground measured forested plots
provided a holistic characterization of the biomass re-
source in Maryland.

TOF models and validation process

Subplot level model in Maryland

In Maryland, biomass of TOF was predicted from the
relationship between aboveground biomass in live trees

at least 2.54 cm in diameter (AGB) and the mean canopy
height from LIDAR (H) within Bforested^ FIA subplots
(Fig. 1). We selected a simple one parameter model
(mean canopy height) as opposed to a more sophisticat-
ed model because we strove for general applicability to
other large datasets and it was unclear whether addition-
al metrics would significantly improve the model (c.f.
Asner et al. 2014). Twenty of the 23 counties in
Maryland were used to develop the relationship and
three counties were left out for validation purposes. In
the training dataset, a few plots were affected by bio-
mass removals or other perturbations between the time
of the data collection in the field and the time of the
LIDAR flight, so these plots were excluded. The ordi-
nary least squares linear regression model for the train-
ing data was (r2 = 0.25, RMSE = 1753 kg, P < 0.0001,
n = 704):

TOFsubplotbiomass kgð Þ ¼ AGBsubplot kgð Þ
¼ 167:95*H subplot mð Þ ð1Þ

where TOF biomass is the biomass of an FIA nonforest
condition, AGB is the aboveground living biomass cal-
culated from tree diameters and heights using the com-
ponent ratio method, andH is themean canopy height of
the subplot. It was necessary to predict biomass of TOF
at the subplot level because of some few instances when
there were two land types within the same subplot (i.e., a
subplot with a forest/nonforest split mapped by FIA).
Nonetheless, a plot level version of this model is some-
what better in terms of fit (r2 = 0.35, RMSE = 271 kg)
and all model assessments were conducted at the plot
level instead of the subplot level. Although Eq. 1 had a
poor fit, we relied on the validation data to assess bias
and the accuracy of the model.

Although Eq. 1 does not predict for specific species
groups or forest types, we note that the species compo-
sition of the training dataset was very similar to the
validation dataset collected for nonforest conditions
(for the top 10 species occurrence of both datasets, 9
of the 10 were the same). This suggests that Eq. 1 was
developed from essentially the forest conditions as it
was applied to in the prediction of TOF biomass.

After applying the TOF biomass model, we no-
ticed that biomass was occasionally predicted at sub-
plots where it was known that no biomass occurred.
This occurred in mainly two situations: (1) the sub-
plot had both forest and nonforest conditions (Bsplit
condition plot^) but it was clear that FIA crews
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measured every tree in the subplot, and (2) trees
adjacent to the plot that were detected by LIDAR
but the stems actually fell outside the subplot (com-
mon on the edge of agriculture fields). To remove
these false-positive estimates and avoid double
counting tree biomass, all subplots potentially affect-
ed by these situations (9 % of all nonforest plots)
were visually checked with aerial imagery to deter-
mine which subplots should be given a zero value in
terms of their TOF biomass.

The TOF biomass predictions at the plot and county
scales were validated against field data collected in the
summer of 2012 in actual nonforest FIA plots in three
Maryland counties—Allegany, Baltimore, and
Dorchester. These three counties are representative of
the major physiographic provinces found in Maryland
(Appalachian, Piedmont, and Coastal Plain) and also a
gradient of TOF occurrence.

County level estimates in Maryland

After confirming that Eq. 1 gave accurate results for
the validation datasets (see BResults^), the model
was applied to all nonforest FIA subplots in
Maryland to estimate county level biomass of TOF.
County level TOF biomass was calculated by adding
the additional TOF biomass to original inventory
data with the EVALIDATOR tool, resulting in total
tree biomass for both forest and nonforest condi-
tions. The county level biomass of TOF was the
difference between the new EVALIDATOR estimate
and the original forest-only estimate. We used the
EVALIDATOR tool because one of our goals was to
compare against traditionally reported FIA estimates
of biomass stocks as estimated by EVALIDATOR
(Miles 2014).

To approximate the 95 % confidence limits, the sam-
pling error of predicted biomass of TOF by county was
doubled. Sampling errors (half widths of the 68 % con-
fidence interval) were calculated with EVALIDATOR
using the post-stratified estimator described in Bechtold
and Patterson (2005). This assumes that the TOF bio-
mass error distribution is normal and does not propagate
the error from Eq. 1. More sophisticated methods that
quantify uncertainty were not the focus of this analysis
but we recognize that these methods may improve the
uncertainty estimates (e.g., Monte Carlo and Bayesian
approaches).

Results

TOF biomass model validation with field data in three
counties

In the validation dataset of 33 nonforest plots in
Allegany, Baltimore, and Dorchester counties, the rela-
tionship between measured biomass of TOF and pre-
dicted biomass of TOF was nearly 1:1 (r2 = 0.87,
RMSE = 1583 kg) (Fig. 2). The validation results were
better than the training model results because of the
ability of the LIDAR model to predict not only canopy
height but also the presence or absence of TOF. In other
words, the r2 was inflated in the validation results be-
cause of the weight of many zero values that were
included compared to the training model.

Comparison results at the county level were also
close. Combined TOF biomass predictions and tradi-
tional FIA estimates were similar to estimates derived
from the joint FIA and TOF ground inventory conduct-
ed in the three counties used for validation. The predict-
ed estimates of total nonforest biomass from Eq. 1, and
the percent increase from the traditional FIA estimate
(i.e., without gap-filling TOF), were well within the
95 % confidence intervals of the validation measure-
ments (Table 1).

Predicted biomass of TOF in Maryland

For the state of Maryland, there was 25.5 Tg of biomass
in TOF accounting for an estimated 13.5 % of the total

Fig. 2 Measured vs. predicted biomass of TOF from the LIDAR
mean canopy height model for 33 nonforest plots in Allegany,
Baltimore, andDorchester counties. The solid line is the regression
line (r2 = 0.87, RMSE = 1583 kg) and the dashed line is the 1:1
line
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biomass (Table 2). Predicted TOF biomass was highly
variable among Maryland counties, with some counties
having essentially none and others with substantial bio-
mass in TOF. In terms of total biomass added by county,

TOF biomass ranged from 0.02 Tg in Somerset to
1.7 Tg in Baltimore County. In terms of the percent
increase in biomass from the traditionally reported FIA
value, 13 of the 23 counties increased by 10 % or more.

Table 1 Biomass of trees outside forest (TOF) estimates for three counties

TOF biomass, Tg % increase

County Predicted (95 % CI) Measured (95 % CI) Predicted Measured

Allegany 0.56 (0.39, 0.74) 0.52 (0.36, 0.69) 5.7 5.3

Baltimore 3.30 (2.15, 4.46) 3.51 (2.27, 4.74) 26.8 28.4

Dorchester 0.57 (0.34, 0.80) 0.60 (0.35, 0.84) 6.7 7.0

Predicted estimates represent those predicted from LIDAR using Eq. 1. Measured estimates represent a ground inventory of all trees in FIA
plots, both forest and nonforest. The % increase is the increase of total biomass in a county when TOF biomass is added to the traditionally
reported FIA estimate. All estimates and 95 % confidence intervals were calculated using the EVALIDATOR tool

Table 2 The traditionally reported county and state FIA estimates, the predicted biomass of TOF, and the total tree biomass estimates in Tg
biomass

County/state FIA traditional, Tg TOF biomass, Tg Total tree biomass
(FIA + TOF), Tg

Increase, % TOF, Mg/ha

Worcester 9.14 (5.45, 12.83) 0.05 (0.04, 0.06) 9.19 (5.5, 12.9) 0.6 0.3

Somerset 4.03 (1.73, 6.33) 0.04 (0.03, 0.05) 4.07 (1.77, 6.39) 1.0 0.5

Wicomico 7.16 (3.78, 10.54) 0.36 (0.31, 0.41) 7.52 (4.12, 11.07) 5.1 3.6

Allegany 9.88 (6.73, 13.02) 0.56 (0.48, 0.65) 10.44 (7.13, 13.76) 5.7 4.8

Caroline 3.21 (0.88, 5.53) 0.18 (0.14, 0.22) 3.39 (1.05, 5.84) 5.7 2.0

Dorchester 8.5 (4.84, 12.17) 0.57 (0.49, 0.65) 9.07 (5.36, 12.98) 6.7 3.3

Kent 3.78 (1.06, 6.49) 0.31 (0.25, 0.37) 4.09 (1.35, 7.03) 8.2 4.3

Charles 12.72 (8.24, 17.21) 1.08 (0.97, 1.18) 13.8 (9.24, 18.66) 8.5 8.8

Washington 8.26 (4.46, 12.07) 0.78 (0.71, 0.86) 9.05 (5.21, 13.21) 9.5 6.4

St. Mary’s 8.25 (4.12, 12.38) 0.81 (0.71, 0.92) 9.06 (4.85, 13.59) 9.8 7.4

Queen Anne’s 4.55 (1.48, 7.62) 0.5 (0.43, 0.58) 5.06 (1.91, 8.47) 11.1 4.7

Garrett 14.35 (10.19, 18.51) 1.62 (1.49, 1.74) 15.97 (11.76, 20.6) 11.3 9.8

Montgomery 6.63 (2.97, 10.28) 0.76 (0.71, 0.81) 7.38 (3.68, 11.46) 11.4 6.0

Frederick 10.87 (6.51, 15.23) 1.38 (1.3, 1.47) 12.25 (7.73, 17.16) 12.7 7.6

Baltimore 12.34 (7.31, 17.37) 3.3 (3.09, 3.52) 15.64 (10.16, 22.02) 26.8 19.9

Pr. George’s 8.57 (4.4, 12.75) 2.32 (2.14, 2.49) 10.89 (6.51, 16.2) 27.1 18.5

Talbot 2.09 (0.4, 3.78) 0.58 (0.45, 0.71) 2.67 (0.81, 4.83) 27.6 6.7

Calvert 6.31 (2.13, 10.48) 1.79 (1.42, 2.16) 8.1 (3.42, 13.46) 28.4 28.2

Cecil 4.9 (2, 7.79) 1.39 (1.28, 1.5) 6.28 (3.14, 10) 28.4 13.3

Harford 7.12 (3.22, 11.01) 2.25 (2.03, 2.46) 9.36 (5.17, 14.49) 31.5 18.6

Anne Arundel 3.23 (0.94, 5.52) 1.15 (1.04, 1.27) 4.38 (1.96, 7.49) 35.6 11.3

Howard 4.81 (1.49, 8.14) 2.24 (1.95, 2.53) 7.05 (3.27, 11.93) 46.5 32.6

Carroll 3.18 (0.84, 5.53) 1.5 (1.36, 1.63) 4.68 (2.08, 8.13) 47.0 13.3

Maryland 163.88 (153.75, 174) 25.52 (25.46, 25.58) 189.39 (179.47, 201.1) 15.6 25.9

All estimates were calculated using the EVALIDATOR tool. The % increase refers to the increase in biomass from the traditional FIA
estimate. TOF biomass density in Mg/ha is the TOF biomass divided by the county area reported by FIA
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Worcester and Somerset counties only increased by 1 %
or less, but there was as much as a 47 % increase in
Howard and Carrol counties. In terms of TOF biomass
density per county (in Mg/ha), the counties located
closer to the I-95 corridor generally had higher biomass
in TOF (Fig. 3). There was also a strong positive
Pearson’s correlation between the TOF biomass density
per county and the proportion of county area sampled as
nonforest (r = 0.81, P < 0.0001).

Discussion

Comparing approaches for analyzing the impact
of biomass of TOF in Maryland

Jenkins and Riemann (2003) estimated biomass of TOF
in Maryland based on an additional inventory of
nonforest areas in several Maryland counties, mostly
along the I-95 corridor. Their estimate was 52 Tg, or
25 % of the total biomass, roughly double our estimates
of 26 Tg and 14 %. As much as 30 % of this difference
may be due to a difference in the allometric equations
applied (i.e., BJenkins^ equations vs. component ratio
method) (Johnson et al. 2014). The reason for the rest of
the difference is unclear, but we note that the TOF

biomass density of the five counties in their study
(35.6 Mg/ha) was higher than the predicted density for
the same counties in this study (18.3 Mg/ha).

This study’s estimate for Maryland is closer to an-
other estimate from Nowak et al. (2013), reporting 23.8
and 31.2 Tg of biomass for Burban^ and Burban
communities,^ respectively. However, the results are
not exactly comparable because in that study, Burban^
areas were defined by polygons from the US Census
Bureau (2007) and large areas overlap forest FIA plots.
Thus, with the Burban^ polygon approach, there is a
double counting of biomass when Burban^ area biomass
is combined with FIA forest biomass, and the separation
of the two components is not straightforward (Nowak
et al. 2013). In contrast, this study estimated total tree
biomass parsimoniously by filling in biomass estimates
where they were missing within the same inventory.

Filling the TOF data gap

Biomass in TOF accounts for a substantial proportion of
the total biomass, but the distribution of TOF biomass
density is variable and depends on the degree of forest
fragmentation and nonforest land use in counties. The
current results for Maryland indicate that FIA reporting
of forest biomass for nearby states may also be

Garrett Cecil

Frederick

Carroll

Baltimore

Kent

Charles

Harford

Dorchester

Worcester

Talbot

Allegany

St. Mary's

Montgomery

Wicomico

Washington

Caroline

Somerset

Anne Arundel

Howard

Calvert

Prince George's

Queen Anne's

TOF Biomass Density Mg/ha
0 - 5

5.01 - 10

10.01 - 15

15.01 - 20

>20

0 50 10025 Kilometers

Fig. 3 The biomass density of TOF by county in Maryland. Higher densities generally correspond to counties closer to Interstate 95, which
divides the Howard and Anne Arundel counties
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underestimating total tree biomass. Like many US states,
some nearby states also have wall to wall LIDAR
(Pennsylvania, Delaware, and New Jersey) that can be
used to fill the TOF data gap. In other areas where forest
fragmentation is common but wall to wall LIDAR is not
available, it is possible that small areas, or transects,
could be flown in a way that helps predict TOF occur-
rence. For example, LIDAR transects in the USA and
Mexico have targeted national forest inventory plots for
modeling and validating biomass maps at a much lower
cost than wall to wall acquisitions (Cook et al. 2013).

The new biomass estimates for Maryland and its
counties should be more comparable to remote sensing-
derived biomass maps that are becoming increasingly
important for carbon monitoring purposes. These maps
have the advantage of representing biomass at high reso-
lutions where no plot information is available (Huang
et al. 2015). However, it is difficult to improve such maps
by assessing if they are too high or too low at the county
scale when they are compared against reference ground
data that incompletely represents total tree biomass. For
example, Johnson et al. (2014) showed that using both a
nonforest inventory and FIA estimate in Anne Arundel
County resulted in much better agreement with a biomass
map than if only the FIA estimate was used. In contrast, in
Howard County, they found that adding nonforest data
actually resulted in a greater difference between the two
estimates. This observation applies to larger scales as well
- global biogeochemical models will benefit as reference
data for aboveground biomass and other important terres-
trial carbon pools become more accurate.

Limitations

Serviceable, yet basic, approaches were used in this
study to estimate biomass of TOF and uncertainty but,
more sophisticated methods could be applied. For ex-
ample, more LIDAR metrics could be used in the step
that predicts subplot level TOF biomass. Bayesian and
Monte Carlo methods could be applied to propagate
allometric model and LIDAR model errors to more
accurately represent uncertainty. Additionally, although
this approach complements FIA estimates by filling a
data gap at the county and state scales, urban areas with
few FIA plots (e.g., Baltimore City) will still be inade-
quately represented for TOF detection. Therefore, inten-
sifying field collection in sub-county estimation units,
such as highly urbanized areas (e.g., Nowak and Crane
2002), is still likely needed to account for biomass of

TOF at these smaller scales. Finally, we note that the
TOF prediction equation does not explicitly include
exotic and ornamental trees that are sometimes found
within urban landscapes. Nonetheless, we believe these
cases are few and mostly limited to urban areas that are
relatively a small portion of TOF biomass.

Conclusions

Biomass of TOF is a substantial carbon pool that cannot
be ignored in many areas of the world where populations
and forests intersect to create highly fragmented land-
scapes. Yet, because the trees in these areas are not
usually of economic interest and do not meet forest land
definitions, most forest inventories do not include TOF.
The consequences are that evenwell-designed spatial and
ecosystem models of biomass stocks and changes will
suffer from this lack of information in some areas. To fill
this data gap, it is common to combine separate nonforest
and forest inventories. However, this is usually less ideal
because of the additional costs needed for field sampling
a new inventory and accommodating for differences in
sample intensity and plot designs. By utilizing available
LIDAR data, no additional network of plots needed to be
established and measured. As populations continue to
grow and expand, the need to account for biomass in
TOF will be even greater in the future.
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