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Abstract The most essential requirement for water
management is efficient and informative monitoring.
Operating water quality monitoring networks is a chal-
lenge from both the scientific and economic points of
view, especially in the case of river sections ranging
over hundreds of kilometers. Therefore, spatio-
temporal optimization is vital. In the present study, the
optimization of the monitoring system of the River
Tisza, the second largest river in Central Europe, is

presented using a generally applicable and novel meth-
od, combined cluster and discriminant analysis
(CCDA). This area for the study was chosen because,
spatial inhomogeneity of a river’s monitoring network
can more easily be studied in a mostly natural watershed
- as in the case of the River Tisza - since the effects of
man-made obstacles: e.g water barrage systems, hydro-
electric power plants, artificial lakes, etc. are more pro-
nounced. Furthermore, since the temporal sampling fre-
quency was bi-weekly, the opportunity of optimizing
the monitoring system on a temporal (monthly) scale
arose. In the research, 15 water quality parameters mea-
sured at 14 sampling sites in the Hungarian section of
the River Tisza were assessed for the time period 1975–
2005. First, four within-year sections (“hydrochemical
seasons”) were determined, characterized with unequal
lengths, namely 2, 4, 2, and 4 months long starting with
spring. Homogeneous groups of sampling sites were
determined in space for every season, with the main
separating factors being the tributaries and man-made
obstacles. Similarly, an overall pattern of homogeneity
was determined. As an overall result, the 14 sampling
sites could be grouped into 11 homogeneous groups
leading to the possibility of reducing the number of
sampling locations and thus making the monitoring
system more cost-efficient.
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Introduction

The aims of the Clean Water Act (1948) and EC Water
Framework Directive 2000/60/EC cannot be met with-
out a proper water quality monitoring system. The most
important criteria of monitoring systems are that they
should be as representative in time and space and as
cost-efficient as possible (Chilundo et al. 2008). The
optimization of sampling networks—generally based
on professional and economic considerations—may be
a solution in achieving representativeness as the basic
goal and requirement of monitoring. However, the opti-
mization of a monitoring system can only be executed
when the whole system (with all the sampling sites) is
analyzed at once, because only then can the differences
or similarities between the sampling locations (SL) be
revealed.

In the case of monitoring system optimization, the
most frequent approaches are either deterministic or the
stochastic. Additionally, geographic information system
(GIS)-based tools exist as well, which can be combined
with deterministic or stochastic ones. To give a view of
the diversity of methods used in monitoring network
optimization, in the following paragraphs, examples
will be shown of (i) deterministic methods both in the
planning of monitoring networks and the optimization
of already existing ones and (ii) their combination with
GIS-based methods. This will be followed by (iii) a
selection of studies of the use of stochastic modeling,
and finally (iv) the combination of stochastic and GIS-
based methods will be discussed.

The first step when one wants to set up a monitoring
system is precise planning. Telci et al. (2009) used
deterministic methods in their study. First, flow dynam-
ics were determined using numerical modeling, and then
an optimization model was created, which was in fact a
genetic algorithm and Pareto optimal analysis. The
methods of Sharp (1971) and Sanders (Sanders and
Adrian 1978; Sanders 1980; Sanders et al. 1983) are
also frequently used in the planning of monitoring net-
works (Strobl and Robillard 2008). These approaches
can be successfully applied in the case of larger riverine
systems as well. Using Sharp’s method, the sampling
locations are set out based on the locations of the tribu-
taries’mouths, while Sanders and his coauthors suggest
a more general consideration of point sources. If it is
supposed that the tributaries function as point sources,
the two methods are very similar. However, if there are
multiple branches which differ from each other to a great

extent, these approaches will not provide a satisfactory
result. Another problem which arises with the use of
these approaches is that the sampling site locations are
not determined precisely enough. Do et al. (2012) found
a solution to this problem by combining the determinis-
tic approach with data obtained from GIS. In this way,
they were able to study the effects of the non-point
sources (e.g. pollutant of anthropogenic origin arriving
to surface waters, mainly due to agricultural land use) as
well. Continuing along this line, Do et al. (2011) in their
previous study dealt with the question of using non-
point sources to design the sampling network. They
combine a nutrient export coefficient model and
Sharp’s method in designing a monitoring network.
Another example of combining deterministic (genetic
algorithm) and GIS methods is presented by Park et al.
(2006), whomanaged to determine the effectiveness of a
riverine monitoring network in the Nakdong River sys-
tem, Korea, while, e.g. Preziosi et al. (2013) used solely
GIS methods successfully in the design of a ground
water monitoring system in a pilot area in central Italy.

Besides planning new networks, there are many stud-
ies which deal with the optimization of already func-
tioning monitoring networks, such as that of Chen et al.
(2012). Here, a one-dimensional flow model, a water
quality model, and a matter element analysis (MEA)
were used to find similar sections of the 1890-km-long
upper and middle reaches of the Heilongjiang River in
northeast China. They state in their paper that “the
definition of the reach of homogeneous water quality
is not absolute and depends on the methodology used.”
The detailed description of MEA can be found in the
work of Wang (2001). Additionally, entropy theory is
also a frequently applied approach, e.g. (i) Masoumi and
Kerachian (2010) successfully applied entropy theory
and the transinformation–distance curves to determine
the efficiency of sampling sites and the optimal sam-
pling frequency of ground water quality monitoring
system, while (ii) Mahjouri and Kerachian (2011) used
amicro-genetic algorithm-based optimizationmethod to
optimize the spatio-temporal functioning of the moni-
toring network of the Jajrood River (Iran). Icaga (2005)
also used a genetic algorithm to optimize the monitoring
network of the River Gediz’s watershed (Turkey). Lee
et al. (2014) determined the optimal water quality mon-
itoring locations in the Logan and Albert River network
(USA) applying cost functions coupled with a genetic
algorithm. Staying with the deterministic approaches,
Kao et al. (2012) suggested the application of two
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different deterministic linear optimization models in-
stead of the previously used simulated annealing meth-
od to optimize the monitoring network of the Derchi
Reservoir watershed.

Naturally, besides deterministic, stochastic ap-
proaches are used as well when it comes to optimization
ofmonitoring networks.Many studies use trend analysis
to explore the redundancy of a certain system (Naddeo
et al. 2007, 2013; Scannapieco et al. 2012). Other fre-
quently used methods, such as cluster analysis (CA),
discriminant analysis (DA), principal component analy-
sis (PCA), and factor analysis (FA), have been com-
bined in the studies of Alberto et al. (2001) on the
watershed of the Suqia River (Argentina), Varol et al.
(2012) on the catchment of the Tiger River (Turkey),
and Wang et al. (2012) in their investigation of the
Xiangxi River (China) catchment. Combining only CA
and PCA, Fan et al. (2010) and Razmkhah et al. (2010)
sought the spatio-temporal variability between riverine
sampling sites. Hatvani et al. (2011; 2014a) also used
CA to group similar sampling sites in the Kis-Balaton
Water Protection System (the mitigation wetland of
Lake Balaton, Hungary) and the shallow groundwater
system of the Seewinkel (Hatvani et al. 2014c), while
Kovács et al. (2012a) used a special coded CA to
determine the water quality areas of Lake Balaton.

Multivariate statistical methods are frequently com-
bined with GIS-based methods. For example, Shen and
Wu (2013) used kriging during the optimization of the
monitoring in the Yangtze estuary. Naturally, kriging
can be used alone as well (Karamouz et al. 2009).
Júnez-Ferreira and Herrera (2013) also combined two
multivariate statistical methods (static Kalman filter
combined with a sequential optimization method) to
optimize spatio-temporarily the Valle de Querétaro aqui-
fer monitoring network (Mexico).

The aim of this study is to provide an alternative
to the previously discussed methods when it comes
to the optimization of monitoring networks in time
and space. This alternative is called combined cluster
and discriminant analysis (CCDA, Kovács et al.
2014). CCDA is capable of handling spatio-
temporal data obtained from an entire system over
the course of decades. It facilitates the frequently
difficult decision of whether an obtained grouping
should be further divided or not to find homoge-
neous groups. This capability distinguishes it from
the previously mentioned methods, be they determin-
istic, stochastic, or even combined with GIS.

The detailed aims of this study are (i) to point out
within-year similarities (hydrochemical seasons1) and
(ii) to find spatially homogeneous sampling sites on
the River Tisza, with special attention paid to anthropo-
genic activity. These homogeneous groups can later on
serve as the bases for the optimization of a monitoring
system.

Materials and methods

Description of the study area

The River Tisza collects the waters of the
Carpathian Basin’s eastern region; it is therefore a
highly important ecological corridor (Zsuga et al.
2004). It stretches from its source in the Eastern
Carpathians in Ukraine to its confluence with the
Danube at Titel in Serbia. According to Lászlóffy
(1982), the area of its watershed is 157,186 km2,
almost one third of which is located in Hungary
(approx. 47,000 km2). The average amount of water
brought by the Tisza into the Danube is 25.4
billion m3 year−1 (Pécsi 1969). The main branch
(966 km; Sakan et al. 2007) stretches through five
countries (Ukraine, Romania, Hungary (594.5 km),
Slovakia, and Serbia). Heading downstream in the
river’s Hungarian section, its tributaries are the fol-
lowing: the Szamos, Bodrog, Sajó, Zagyva, Körös,
and Maros, all of which—except for the Zagyva—
come from abroad (Fig. 1). It becomes clear from
the runoff values that the affluent having the stron-
gest effect on the main flow is the Szamos (at its
mouth, its average runoff exceeds half of the aver-
age runoff of the Tisza) and a considerable “chang-
ing effect” is expected from the Bodrog, Sajó,
Zagyva, Körös, and Maros Rivers (Table 1).

It has been documented that, besides the tribu-
taries, other, mostly anthropogenic, factors such as
water barrage systems (WBS; e.g. Tiszalök WBS;
Fig. 1) or lakes (e.g. Lake Tisza; Fig. 1) can also
have an effect on the water quality of the analyzed
river section (Kentel and Alp 2013; Moreira and

1 Hydrochemical seasons (e.g. Kolander and Tylkowski 2008) are
the seasonal characteristics reflected in the chemical parameters
analyzed in the waters of the river. These will be referred to as
“seasons” from now on and should not be confused with the
general concept of the climatic seasons, even if the former are
highly affected by the latter.
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Poole 1993). Even the river ice regime may change
due to the installation of WBSs (Takács et al. 2013;
Takács and Kern 2015). Lake Tisza is an artificial
reservoir on the river, built in 1973. It was planned
to function as a part of a future WBS. Nowadays, it
is a frequented recreation zone and nature reserve.
The lake’s length is 27 km, its mean depth is 1.3 m,

and it has a total area of 127 km2. Moreover, non-
point source nutrient loads arriving from agricultural
areas have to be accounted for as well (Mandera and
Forsberg 2000). Regarding large cities, there are
several along the river (e.g. Szolnok at SL-10 and
Szeged at SL-13; Fig. 1) which could also have an
environmental impact on the river’s water quality.

Fig. 1 Hungarian catchment of the River Tisza

Table 1 Characteristics of the Hungarian section of the River Tisza

Tisza Szamos Bodrog Sajó Zagyva Körös Maros

Watershed size (km2) 157,186 15,015 13,579 12,708 5677 27,537 27,049

Average runoff (m3 s−1) SL1-Tiszabecs 226

SL9-Tiszafüred 503 118 123 32 4 116 188

SL14-Tiszasziget 805

Average ratio (in %) of runoff between
the waters leaving the tributaries
and the runoff in the main branch

100 52 36 7 1 23 30

Full length (rkm) 962 411 65 223 179 741 683

Length of Hungarian section (rkm) 594.5 52 51 125 179 180 29
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Dataset used

Regarding systematic measurements, the Hungarian
section of the Tisza (594.5 rkm) fell under the
jurisdiction of many different water authorities
over the studied decades (1975–2005). These dif-
ferent authorities did not harmonize the timing of
the sampling; hence, samples were taken on dif-
ferent days (∼2250 sampling dates) at different
SLs. Fortunately, they did take the trouble to
intercalibrate the sampling methodologies (details
can be found in Hungarian Standard No. MSZ
12749:1993).

In the course of the analyses, the time series of the
period between 1975 and 2005, the following parame-
ters from 14 sampling sites (Fig. 1) were examined:
runoff (m3 s−1), pH, dissolved O2, BOD-5, Ca

2+,
Mg2+, Na2+, K+, Cl−, SO4

2−, HCO3
− (mg l−1), NH4-N,

NO2-N, NO3-N, and PO4-P (μg l−1). After 2005, the
sampling frequency was rarefied and the set of param-
eters changed. The total number of data analyzed added
up to ∼33,500.

Data preparation was performed so that the dataset
would meet some basic requirements of the applied
method: (i) no missing data were allowed; all time
points were discarded where there was missing data in
any of the parameters; (ii) no mistyped extreme values
were allowed. These were sought manually, because
there were occasions when an “act of God” (e.g. flood)
caused a certain parameter to behave differently from
the general tendencies, although its measurements were
probably accurate.

Data from the tributaries (rivers—Szamos,
Bodrog, Sajó, Zagyva, Körös, and Maros) were ac-
quired as well with the same set of variables as the
ones used for the analysis of the Tisza. Regarding
the tributaries, the data measured at the closest sam-
pling location to the confluences on the tributary
were used.

Methodology

A new method, combined cluster and discriminant anal-
ysis (CCDA; Kovács et al. 2014), formed the backbone
of the research. The main aim of CCDA is to find
homogeneous groups based on data with known origins,
i.e. sampling locations in this case. It consists of three
main steps (Fig. 2):

(I) a basic grouping procedure, e.g. using hierarchical
cluster analysis (HCA), to determine possible
groupings;

(II) a core cycle where the goodness of the groupings
from step I and the goodness of random classifi-
cations are determined using linear discriminant
analysis (LDA); these are then compared in the
form of a “difference value”;

(III) a final evaluation step, where a decision about
iterative further investigation of sub-groups is
taken.

The main idea here is that once the ratio of correctly
classified cases for a grouping is higher than at least
95 % of the ratios for the random classifications (i.e. the
difference value is positive), then at the level of
α = 0.05, the given classification is considered as inho-
mogeneous. For a detailed description of the method,
see Kovács et al. (2014) and the corresponding R pack-
age (“ccda”, http://cran.r-project.org/web/packages/
ccda/) used for the computations. It has to be
underlined that CCDA is generally applicable for
many types of data, be they water chemistry data
originating from surface (lake, wetland, river), sub-
surface water systems (the watershed of a steppe lake;
Kovács et al. 2015).

HCA and CCDAwere applied to the data in order to
(Fig. ESM 1)

& determine the time interval of interest for investiga-
tions (HCA based on annual averages),

& determine the seasons (HCA for monthly averages),
& determine the similarities between the consecutive

months pairwise using CCDA (note that in order to
ensure the comparability of pairwise difference
values, an equal number of samples was taken for
every month by resampling),

& find homogeneous groups of sampling sites in space
in the chosen time interval using CCDA to provide
the basis for monitoring network recalibration
(“overall picture”), as well as to

& assess the monitoring network in space within the
determined seasons (also using CCDA).

In every case where a cluster group is formed, the
role of each parameter in determining the formation of
the previously obtained cluster pattern can be analyzed.
Using Wilks’ λ statistics (1932), a Wilks’ λ quotient is
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assigned to every parameter, where the quotient is

λ ¼
∑i∑ j xij � xi

� �2

∑i∑ j xij � x
� �2

where xij is the jth element of the ith group, xi the ith
group’s mean, and x is the total mean.

The value of λ is the ratio of the within-group sum of
squares to the total sum of squares. It is a number
between 0 and 1. If λ = 1, then the mean of the discrim-
inant scores is the same in all groups and there is no
inter-group variability, so, in this case, the parameter did
not affect the formation of the cluster groups (Afifi et al.
2004). On the contrary, if λ = 0, then that particular
parameter affected the formation of the cluster groups
the most. The smaller the quotient is, the more it

determines the formation of the cluster groups (Kovács
et al. 2012b).

Results

The first step in the analysis was to find the most
appropriate time period for the detailed analyses.
Based on the time series of the water quality
variables, a breakpoint was suspected (e.g. Fig.
ESM 2). Therefore, HCA was applied to all the
annual averages of the variables together (1975–
2005). It pointed out that the dataset consisted of
two main time intervals: 1975–1992 and 1993–
2005 (Fig. ESM 3). In further investigations, the
time interval 1993–2005 was examined for the
following reasons: (i) data from an additional sam-
pling site were available in the latter period and

Fig. 2 Flowchart of CCDA (after
Kovács et al. 2014)
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(ii) it is to be expected that the second period
could provide the more accurate picture of the
current status of the monitoring system.

As a next step, the intra-annual similarities were
sought on a monthly scale. HCA pointed out that there
are basically four seasons (Fig. 3).

Fig. 3 Results of HCA conducted on monthly averages to find seasons

Fig. 4 Pairwise differences between the months pointed out by CCDA
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CCDA also provided the opportunity to explore ho-
mogeneity within the seasons. It showed that even
though the previously determined seasons consist of
similarly behaving months, these seasons cannot be
considered as homogeneous. Moreover, the months
would even form 12 separate homogeneous groups,
each month forming a “group” of its own. To point out
the significant differences, CCDA was applied to the
pairwise comparison of consecutive months (Fig. 4). To
ensure the comparability of the resulting difference
values, an equal number of samples for each month
was selected using resampling.

The next step was to find homogeneous spatial pat-
terns, to be more specific those SLs which contain
redundant information. For this, CCDA was used on
all the available data for the time interval 1993–2005,
resulting in an “overall picture” where 11 homogeneous
groups were formed from the 14 SLs considered. There
were eight groups consisting of one SL in each.
Although some of these are quite close to each other,
such as SL-5 and SL-6 at 2 rkm distance from each

other, the information obtained from them makes them
highly informative, even alone. In the meanwhile, three
groups consisting of two sampling sites were obtained.
These pairs of sampling sites were always located next
to each other (Fig. 5). However, these were sometimes
quite a long distance, ∼70 km, from each other (SL-3
and SL-4).

The other approach to determining the spatial pattern
in the sampling sites is to analyze their similarity, not on
a long but on a much shorter temporal scale, to be more
precise seasonally. This was considered to be an impor-
tant step since the hypothesis is that the sampling sites’
relationship to each other changes with the seasons.
Therefore, the question was raised, to what extent does
the “overall picture” coincide with the seasonal one?

As a first step, let us explore all the winter months for
the time period between 1993 and 2005. At this time of
the year, the 14 SLs can be divided into 10 homoge-
neous groups (Fig. 6a) using CCDA. Six SLs form
groups alone while there are four groups consisting of
two sampling sites each.

Fig. 5 Overall picture with colored sampling locations forming homogeneous groups
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In spring, there are only three SL pairs, because SL-
10 and SL-11 separated into two distinct groups. Apart
from this change, all the other SLs remained in the same
group as observed in winter. Therefore, there were 11
homogeneous groups in the spring compared to the 10
in winter (Fig. 6b). This pattern is in accordance with the
overall picture obtained from the data for the whole year.

Moving onto the two last seasons, a similar pattern
was obtained. In summer and fall, SL-2 connected to the
group containing SL-3 and SL-4, unlike in winter or
spring. This was the only group containing three SLs
(Fig. 6c, d). As a result, the number of homogeneous
groups decreased by one from 11 to 10 in summer and in
fall.

To summarize, concerning the similarities and differ-
ences of the SLs in space (downstream North to South)
with regard to the “overall” and the seasonal picture, the
following can be said:

i. SL-1 formed one group alone in the case of every
approach;

ii. SL-2 in summer and fall connects to the group
formed by SL-3 and SL-4: the latter two were
together in all cases;

iii. SL-5 and SL-6 always remained separated;
iv. SL-7 and SL-8 always formed one group together;
v. SL-9 formed one group alone in the case of every

approach;

Fig. 6 Homogeneous groups of sampling sites (colored ones) on the Hungarian section of the River Tisza for each of the four seasons
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vi. SL-10 and SL-11 in winter form one group;
vii. SL-12 and SL-13 always formed one group; and
viii. SL-14 formed one group alone in the case of every

approach.

Discussion

Separation of the time period

As presented, the dataset was split at 1992/1993 into two
similarly behaving time intervals. The reason for this
separation was the change in the concentration of the
parameters measuring the trophic conditions and
saprobity at the turn of the decade (1990). For example,
PO4-P, BOD-5, and NO3-N started decreasing at the
beginning of the 1990s, while DO started to increase
(Fig. ESM 2). The presence of these phenomena con-
curs with the findings of Mandera and Forsberg (2000),
who pointed out that anthropogenic activity was respon-
sible for the elevated concentrations of nutrients in the
waters of the Tisza. According to the new political
thinking at the end of the 1980s and the beginning of
the 1990s, high state subsidies were withdrawn from
artificial fertilizers, while high fertilizer prices and the
unpredictable future of state farms and cooperatives
resulted in a drastic reduction in fertilizer usage.
Hungarian agriculture and industry were severely
restructured after the collapse of the Soviet Union in
1991. There was a tenfold increase in fertilizer prices in
the 1980s. The fall in fertilizer use was much more
dramatic (between 10 and 20 times) than in the
Western European countries (Csathó et al. 2007;
Hatvani et al. 2014b).

These two facts played a great role in the decrease of
PO4-P concentrations in inland waters located in agri-
cultural areas in last years of the twentieth century
(Grimvall et al. 2000).

Separation of the seasons

Since Hungary is located in the continental climate
zone, from a meteorological perspective four seasons
exist. Huschke (1959) in his work entitled “The
Glossary of Meteorology” defines the seasons as fol-
lows: The warmest period in the year is summer every-
where in the world, except for a couple of tropic regions,
while the coldest is winter. According to Trenberth
(1983), between these two, spring and fall serve as

transitional periods. Here, Trenberth suggested that the
seasons should be determined based on annual mean
temperatures.

The seasonal pattern obtained did not concur with the
general meteorological aspect of the four seasons with
equal length in the continental climate zone. Summer
and winter were both 4 months long, while spring and
fall were each 2 months long (Fig. 3). This observation
is supported by the difference values obtained for con-
secutive months using CCDA (Fig. 4). Since the differ-
ence value between February and March (9 %) is much
smaller than the one for March–April (20 %), it is
reasonable that March rather joins the winter months.
Similarly, September is closer to August than October
(differences of 8 and 10 % respectively). The other
bordering months between the seasons, December and
June show a similar behavior as well, justifying that they
belong to the winter and the summer seasons,
respectively. This finding that the seasons are of
unequal length concurs with the research of Alpert
et al. (2004) conducted on meteorological data. It is
suspected that the reason behind this phenomenon lies
in the fast transition of the characteristic processes of
winter into summer in spring and the other way around
in fall.

To answer the question of which parameters were
responsible for the separation of the consecutive
months, their Wilks’ lambda statistics were determined
(Table 2). Parameters closely related to water

Table 2 Wilks’ lambda
statistics of the parame-
ters. The smaller the co-
efficient is, the more the
parameter was responsi-
ble for the separation of
the months

Parameter Wilks’ lambda

NO3-N 0.640

Dissolved O2 0.667

Runoff 0.744

NH4-N 0.756

Na2+ 0.876

C1− 0.882

K+ 0.885

HCO3
− 0.916

Ca2+ 0.924

pH 0.927

SO4
2− 0.955

NO2-N 0.961

BOD5 0.963

Mg2+ 0.966

PO4-P 0.984
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temperature (e.g. dissolved oxygen) and/or seasonal
effects such as floods, composition, and decomposition
processes (e.g., ammonium or nitrate; Table 2; Fig. ESM
4A) influenced the separation of the months the most
and are likely to vary between the different parts of the
year. Regarding the less influential variables, their dis-
tribution was less variable across the months (Table 2;
Fig. ESM 4B). Nitrate and dissolved oxygen are both
periodic. In the meanwhile, runoff reaches its maxima
during green floods, as a consequence becoming an

important grouping factor. However, not all of the
changes in the parameters’ concentrations were connect-
ed to the transitional seasons or even the points of
transition. Ammonium reaches its maximum in winter
because of the dominating decomposition processes
(Hatvani et al. 2011), standing out from the other sea-
sons and, therefore, becoming another considerable fac-
tor, while other (less determining) parameters are more
or less stable during the year and, thus, do not play such
an important role in the grouping procedure.

Fig. 7 Box-and-whiskers plots showing separating effects
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Separation of the sampling sites in space

The separation of the seasons was related to the intra-
year fluctuations of the parameter values, while the
spatial patterns were primarily caused by the tributaries
and anthropogenic obstacles. Irrespective of the
seasons, the tributaries separated the SLs on every
occasion. This finding concurred with those of Sharp
(1971) and Sanders (1980). The effect of the tributaries
consisted of two factors, (i) the geochemical composi-
tion of the waters brought from their watershed, and (ii)
their load of anthropogenic origin. Latter mainly
consisted of nutrients. After the mouths of the tributaries
the concentrations of the parameters changed (increased
or decreased). These phenomena were enough to sepa-
rate two SLs into two distinct groups. For example SL-
13 and SL-14 were separated by the Maros River (T6)
(Fig. 7a, b).

Unlike in the studies of Sharp (1971) and
Sanders (1980), in which only the tributaries were
identified as being responsible for the separation
of the sections of the river, here, other separating
factors were identified as well. Besides the tribu-
taries, man-made obstacles also played a role in
the separation of the SLs into different groups.
This finding concurs with the new wave of per-
ception when it comes to recalibrating monitoring
networks, i.e. taking anthropogenic effects into
account (Do et al. 2011). SL-5 and SL-6 (up-
and downstream of WBS) separated, supposedly
because of the WBS. Although the riverbed mor-
phology changed in the area resulting in slower
water velocity, the concentration of the parameters
related to halobity did not change, unlike the con-
centration of parameters related to biological activ-
ity. Their values changed significantly up- and
downstream of the WBS; DO decreased between
the two, while BOD-5 and NH4-N increased
(Fig. 7c, d). It is suspected that the effect of the
WBS could be decreased by fine-tuning its opera-
tion through integrated basin management e.g.
using the water quantity and quality optimization
model of Zhang et al. (2011).

A further separation between the SLs was
caused by Lake Tisza. It buffers the nutrient loads
arriving from upstream and stabilizes their concen-
trations (e.g. BOD-5; Fig. 7e, f). Therefore it sep-
arated the group consisting of SL-7 and SL-8 and

the group formed by SL-9 alone into two groups,
although they are relatively close to each other.

Conclusions and outlook

In this paper, homogeneous groups of sampling sites
were sought. First, it was shown that there are four
temporally similar sections for the period 1993–
2005. The months within hydrochemical seasons,
however, can only be regarded as similar and not
as homogeneous. The most explicit changes could
be observed in April–May and October–November.
Hence, a higher temporal sampling frequency is
suggested in spring and fall, compared to summer
and winter months, to obtain a more precise picture
of the underlying processes. Nevertheless, for simi-
lar cases of unequal season lengths, it should be kept
in mind that many statistical methods require equi-
distant sampling, for which the harmonization of the
temporal sampling frequency is essential. Thus, the
temporal sampling frequency should be aligned ac-
cording to the seasons with the highest difference
values, i.e., spring and fall; this will comply with the
needs of the whole monitoring as well.

In space, the borders between the homogeneous spa-
tial groups tend to be located at the mouths of the
tributaries, as shown by Sharp (1971), but not exclu-
sively. Human-made obstacles such as the WBS can
also cause such disturbances, leading to the separation
of close neighboring sampling sites. As a result, out of
the 14 SLs, only 11 are necessary.

The study shows a good example of the spatio-
temporal optimization of a monitoring network using
the generally applicable combined cluster and discrim-
inant analysis. The authors are convinced that similar
situations can be found all over the world; therefore, the
conclusions, the method, and the message can be
generalized.
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