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Abstract Monitoring of heavy metal concentrations in
groundwater potentially used for drinking and irrigation
is very important. This study collected groundwater
samples from 78 wells in July 2012 and analyzed them
for 17 heavy metals (Pb, Zn, Cr, Mn, Fe, Cu, Cd, Co, Ni,
Al, As, Mo, Se, B, Ti, V, Ba). Spatial distributions of
these elements were identified using three different in-
terpolation methods [inverse distance weighing (IDW),
radial basis function (RBF), and ordinary kriging (OK)].
Root mean squared error (RMSE) and mean absolute
error (MAE) for cross validation were used to select the
best interpolation methods for each parameter.
Multivariate statistical analysis [cluster analysis (CA)
and factor analysis (FA)] were used to identify similar-
ities among sampling sites and the contribution of var-
iables to groundwater pollution. Fe and Mn levels
exceeded World Health Organization (WHO) recom-
mended limits for drinking water in almost all of the
study area, and some locations had Fe and Mn levels
that exceeded Food and Agriculture Organization
(FAO) guidelines for drip irrigation systems. Al, As,
and Cd levels also exceededWHO guidelines for drink-
ing water. Cluster analysis classified groundwater in the

study area into three groups, and factor analysis identi-
fied five factors that explained 73.39 % of the total
variation in groundwater, which are as follows: factor
1: Se, Ti, Cr, Mo; factor 2: Ni, Mn, Co, Ba; factor 3: Pb,
Cd; factor 4: B, V, Fe, Cu; and factor 5: AS, Zn. As a
result of this study, it could be said that interpolation
methods and multivariate statistical techniques gave
very useful results for the determination of the source.
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Introduction

Heavy metal pollution of groundwater represents an
important environmental problem. Some heavy metals
that are essential for human health may cause various
health problems if present in concentrations that exceed
permissible limits. In order to determine the suitability
of groundwater for drinking and agricultural and indus-
trial use, heavy metal levels must be evaluated. Heavy
metals as well as pesticides may cause problems due to
their generally non-biodegradable nature (Eugenia et al.
1996). Numerous studies have been conducted examin-
ing heavy metal contamination of groundwater and
surface water in different parts of the world (Alam and
Umar 2013; Kanmani and Gandhimathi 2013;
Madhulakshmi et al. 2012; Tiwari et al. 2013). For
example, Haloi and Sarma (2012) examined groundwa-
ter in the Barpeta District of Assam, India, and found Fe,
Mn, and Pb concentrations to be above permissible
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limits for drinking water. Kumari et al. (2014) evaluated
groundwater quality in industrial areas of Ghaziabad,
India, and found 12 elements to exceed prescribed stan-
dards. Similarly, Yılmaz et al. (2010) found heavy metal
contamination of groundwater in Turkey posed a signif-
icant risk for drinking as well as irrigation.

Interpolation methods used to estimate unknown
values from data observed at known locations can suc-
cessfully map the spatial distribution of various
hydrochemical parameters (Quyang et al. 2013; Shan
et al. 2013). Techniques such as inverse distance
weighting (IDW), ordinary kriging (OK), and radial
basis functions (RBF) have been extensively used in
groundwater quality and pollution studies (Rabah et al.
2011). Yao et al. (2014) used eight different interpola-
tion methods to investigate the spatial distribution of
groundwater levels and found kriging methods to
produce the best models. Noori et al. (2013) used sev-
eral spatial interpolation methods (kriging, cokriging,
RBF, IDW) to map the spatial distribution of ground-
water levels in Iran, evaluating the performance of each
method by RMSE, MAE and R2. Hua et al. (2009)
compared IDW and OK estimates of groundwater
depths in the Shule River Basin, China, and concluded
that OK was more efficient than IDW based on the
lower RMSE values of the former.

Multivariate techniques are very useful for identify-
ing relationships between variables. Methods such as
cluster analysis (CA) and factor analysis (FA) have been
used increasingly in studies conducted to measure and
monitor groundwater. Whereas CA can be used to illus-
trate the overall similarity of variables in a data set and
link similar groups (Massart and Kaufmann 1983), FA
can identify similarities between factors as well as the
most important factors contributing to data structure.
CA and FA have been widely used to study heavy
metals in groundwater (Brahman et al. 2013;
Monjerezi et al. 2012). In their study evaluating ground-
water quality in coastal areas in China using FA, Huang
et al. (2013) identified four factors affecting groundwa-
ter quality, namely seawater intrusion and As contami-
nation; water-rock interaction, surface water recharge,
and acidic precipitation; heavy metal pollution from
industry; and agricultural pollution and sewage
intrusion.

Several recent studies have combined the use of mul-
tivariate analysis and GIS techniques in order to evaluate
groundwater (Lu et al. 2012; Arslan 2013). In addition to
measuring heavy metal concentrations in the Çarşamba

Plain in northern Turkey, the present study evaluated
three interpolation methods and used the optimal method
to map the spatial distribution of each heavy metal in the
study area. Then, using multivariate statistical analysis, it
classified the study area into groups according to ground-
water pollution by heavy metals and identified the genet-
ic origin of these pollutants.

Materials and methods

Study area

The study was conducted in the Middle Black Sea
Region of Northern Turkey in Çarşamba Plain, one of
Turkey’s largest plains (41° 11′–41° 23′ E, 36° 30′–37°
00′ N) (Fig. 1). Elevation of the research site ranges
from 0.0–18.0m above sea level, with slope gradients of
approximately 1 %. The climate is semi-humid, with an
average annual precipitation of about 700 mm and an
average annual temperature of 17 °C. Cropping patterns
in the study area vary considerably. The dominant crop
was hazelnut. Wheat, tomatoes, and rice are grown in
the irrigation season, whereas cabbage and leek are
grown in rainy seasons, and corn is grown as both a
primary and secondary crop. There are several indus-
tries, including copper and fertilizer factories over the
study area.

Çarşamba Plain was formed by the alluviums
brought by Yeşilırmak River. The aquifer system lies
over the Quaternary deposits under unconfined condi-
tions. The unconfined aquifer is within a wedge of
unconsolidated gravels and sands that thicken towards
the coast (Fig. 2). The fill of Carşamba Plain consists of
detrital Quaternary sediments that contain sand, silt, and
clay that have little vertical or lateral continuity and
frequent lateral changes in facies with 20–110 m thick
and increase from south to north. The aquifer of
Çarşamba Plain is composed of alluvium deposit and
eosin-aged volcanic rock units. The aquifer has avail-
able discharges of between 2 and 32 l/s. The aquifer has
varying hydraulic gradient and the highest gradient is
0.0025. Groundwater depths ranged from about 3 to
10 m below ground surface (DSI 1994).

Groundwater sampling and analysis

Groundwater samples were collected from 78 water
wells in July 2012. Sampled wells were homogeneously
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distributed over the study area as to represent the
entire site. Well locations are shown in Fig. 1. Each
sampling location was recorded with a global posi-
tioning system (GPS). Pumps were operated for
15 min. Prior to sample collection. Water samples

were analyzed for concentrations of 17 heavy metals
[lead (Pb), zinc (Zn), chromium (Cr), manganese
(Mn), iron (Fe), copper (Cu), cadmium (Cd), cobalt
(Co), nickel (Ni), aluminum (Al), arsenic (As) mo-
lybdenum (Mo), selenium (Se), boron (B), titanium

Fig. 1 Study area and sample locations

Fig. 2 Geological units of Çarşamba Plain aquifer (modified from DSI 1994)
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(Ti), vanadium (V), barium (Ba)] using an Agilent
7500a inductively coupled plasma mass spectrometry
(ICP-MS) at the General Directorate of Hydraulic
Works (DSI), Department of Technical Research
and Quality Control.

Interpolation methods for heavy metals

Spatial interpolation refers to the estimation of
values of a particular attribute at unsampled loca-
tions using existing information from other obser-
vation points. By converting data from observation
points to continuous fields, the spatial patterns of
sampled measurements can be compared with the
spatial patterns of other entities. The three most
widely used interpolation methods are inverse dis-
tance weighting (IDW), radial basis functions
(RBF), and ordinary kriging (OK) (Sun et al.
2009). IDW estimates values at unsampled points
by using a linear combination of values at sampled
points weighted by an inverse function of the dis-
tance from the point of interest to the sampled
points using the following formula:

Z ¼
Xn

i¼1

Zi=d
m
i

� �.Xn

i¼1

1=dmi
� �" #

ð1Þ

where Z is the estimated value, Zi is the measured
sample value at point i, diis the distance between Z
and Zi, and m is the weighting power that defines
the rate at which weights fall off withdi, with a
typical m value of 1–5 (Keshavarzi and Sarmadian
2012). RBF comprises a series of interpolation
methods in which the estimated surface must pass
through all measured sample values. There are five
different basis functions: thin-plate spline (TPS),
spline with tension (SPT), completely regularized
spline (CRS), multiquadric function (MQ), and in-
verse multi-quadric function (IMQ) (Xie et al.
2011). Ordinary kriging, the most common interpo-
lation method used in geostatistical studies (Guler
et al. 2014), resembles IDW in that it uses a linear
combination of weights at known points to estimate
the value at an unknown point. Other types of
kriging include simple kriging (SK), universal
kriging (UK), and indicator kriging (IK). OK uses
a linear combination of measured values whose

weights are determined based on their spatial corre-
lation to produce estimated values using the follow-
ing formula:

Z ¼
Xn

i¼1

λiZ xið Þ ð2Þ

Where Z is the estimated value, Z χið Þis the mea-
sured value atχi, λiis the weight assigned to the
residual of Z χið Þ, andn is the number of the data
used at known locations in a neighborhood. This
study compared the results of IDW (using weighting
powers of 1, 2, and 3), RBF (using five different
basis functions), and OK interpolation in estimating
heavy metal concentrations and then used the best
method to evaluate the spatial distribution of each
heavy metal in the study area. Data was evaluated
using the software ARCGIS 10.0 with Geostatistical
Analyst Extensions.

This study compared the results of IDW (using
weighting powers of 1, 2, and 3), RBF (using five
different basis functions), and OK interpolation in
estimating heavy metal concentrations and factor
scores of each factor and then used the best method
to evaluate the spatial distribution of each heavy
metal and factor scores in the study area. Data was
evaluated using the software ARCGIS 10.0 with
Geostatistical Analyst Extensions.

Cross validation

Cross-validation is performed to assess the best method
of interpolation (Yao et al. 2014). Several techniques
can be used to judge the relationships between observed
and predicted values and determine the best method (Li
and Heap 2011).

Root-mean-square error (RMSE) and mean absolute
error (MAE) were used to evaluate the predictive per-
formance of different techniques, with the smallest
RMSE and MAE indicating the most accurate predic-
tions. MAE and RMSE are calculated using the follow-
ing formulas:

MAE ¼ 1

n

Xn

i¼1

Zi−Zj j ð3Þ
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and

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
Zi−Zð Þ2
n

s
ð4Þ

Where Zi is the predicted value, Z is the observed
value, and n is the number of observations.

Multivariate statistical analysis

Multivariate statistical analysis is widely used to identi-
fy and evaluate surface water and groundwater data
(Chidambaram et al. 2012; Narany et al. 2014; Vieira
et al. 2012). Multivariate techniques make it possible to
simplify, organize, and classify data to draw out useful
meaning.

Cluster analysis is used to group data into hierarchies
based on similarities or dissimilarities. Yadav et al.
(2013) and Hossain et al. (2013) successfully used clus-
ter analysis to classify groundwater samples according
to similarities. In the present study, CA was applied to
group groundwater samples for Pb, Zn, Cr, Mn, Fe, Cu,
Cd, Co, Ni, Al, As, Mo, Se, B, Ti, V, and Ba content.

Factor analysis is used primarily to reduce the con-
tribution of less significant variables in order to further
simplify data structure. In a study evaluating groundwa-
ter in a region of Taiwan affected by Blackfoot disease,
for example, Liu et al. (2003) defined factor loading as
Bstrong,^ Bmoderate,^ and Bweak,^ corresponding to
absolute values of >0.75, 0.50–0.75, and 0.30–0.50,
respectively; factors with eigenvalues >1 explained
more total variation in the data than individual ground-
water quality variables, and factors with eigenvalue <1
explained less total variation than individual variables.
Statistical analyses were performed using the Statistical
Package for the Social Sciences (SPSS), version 20.

Results and discussion

Heavy metals in groundwater

Descriptive statistics related to groundwater heavy met-
al concentrations are given in Table 1. Coefficient of
variation (CV) was the most important factor in describ-
ing the variability of groundwater properties. Data was
ranked according to amount of variation as Blow

Table 1 Descriptive statistics for heavy metal concentrations in groundwater in the study area

Parameter
(mg/l)

Min Max Mean CV WHO guideline
value

Skewness Kurtosis K-S p* value Data distribution

Pb 0.0001 0.0093 0.0006 241.1 0.010 4.76 28.55 0.000 Non-normal

Zn 0.0010 0.1265 0.0142 113.3 5.000 4.83 32.41 0.000 Non-normal

Cr 0.0011 0.0121 0.0031 83.10 0.050 6.14 47.40 0.006 Non-normal

Mn 0.0044 2.4820 0.3396 119.7 0.100 2.58 12.19 0.000 Non-normal

Fe 0.1711 5.3790 0.9978 109.2 0.300 2.32 8.20 0.000 Non-normal

Cu 0.0010 0.0761 0.0080 132.6 2.000 4.04 24.31 0.000 Non-normal

Cd 0.0008 0.0073 0.0002 461.9 0.003 6.17 42.04 0.000 Non-normal

Co 0.0009 0.0088 0.0006 227.3 0.050 4.34 22.81 0.000 Non-normal

Ni 0.0003 0.0516 0.0042 152.4 0.070 5.60 41.46 0.000 Non-normal

Al 0.0010 0.6357 0.0770 166.7 0.200 2.63 9.40 0.000 Non-normal

As 0.0001 0.0634 0.0079 182.5 0.010 2.54 8.45 0.000 Non-normal

Mo 0.0002 0.0051 0.0004 224.3 0.070 3.29 14.20 0.000 Non-normal

Se 0.0002 0.0091 0.0008 161.4 0.040 8.41 73.14 0.000 Non-normal

B 0.0100 0.9700 0.1694 103.8 2.40 2.30 8.68 0.000 Non-normal

Ti 0.0002 0.0040 0.0009 92.60 – 8.60 75.26 0.004 Non-normal

V 0.0003 0.0066 0.0020 64.00 – 1.65 5.66 0.001 Non-normal

Ba 0.0127 0.3465 0.1139 76.80 0.700 0.72 2.64 0.004 Non-normal

*p< 0.05
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variability^ (CV, ≤15 %), Bmoderate variability^ (CV,
15–35 %), or Bhigh variability^ (CV, >35 %) (Wilding
1985). All heavy metals in the study area were found to
exhibit high variability.

Groundwater heavy metal constituents were ex-
amined in relation to WHO standards for drinking
water (2011). Concentrations of zinc (Zn), chromi-
um (Cr), copper (Cu), cobalt (Co), molybdenum
(Mo), vanadium (V), and titanium (Ti) and selenium
(Se) in the study area were far below the WHO
limits for drinking water, nickel (Ni), boron (B),
and barium (Ba) concentrations in all samples were
also below the established limits. Lead (Pb) concen-
trations ranged between 0.00–0.0093 mg/l (mean:
0.0013 mg/l), which are also below WHO limits
for drinking water, although some samples are close
to these limits. Manganese (Mn) concentrations
ranged between 0.0044–2.4820 mg/l (mean,
0.3396 mg/l), with many sites exceeding WHO
limits for drinking water. Iron content (Fe) varied
considerably, from 0.1711 to 5.3790 mg/l (mean,
0.9978), with many samples above the WHO limit
of 0.3 mg/l. Similarly, Al content measured at some
wells greatly exceeded the WHO recommended lim-
it of 0.2 mg/l for drinking water. Arsenic (As) and
cadmium (Cd) concentrations also exceeded guide-
lines in some areas.

Comparison of interpolation methods

Maps were prepared only for those heavy metals whose
concentrations were close to or above the recommended
limits for drinking and irrigation water (Fe, Mn, Al, As,
Cd, B, Pb). The spatial variability of heavy metals was
assessed using inverse distance weighting (IDW) raised
to powers of 1, 2, and 3; radial basis functions (CRS, ST,
MQ, IMQ, and TPS) and ordinary kriging. Kriging
methods work best with data with a normal distribution
(Xie et al. 2011). However, a Kolmogorov-Smirnov test
showed the data for heavy metals concentrations in
groundwater in the study area were not normally dis-
tributed (P < 0.05); therefore, values were log-
transformed prior to calculation of semi variance.

The RMSE and MAE were used to compare the
performance of interpolation methods. The method
that yields the smallest value of RMSE and MAE
is the best (Table 2). However, if MAE is not at
the lowest value when RMSE is at the lowest, the
most accuratet method is the one which has the
lowest RMSE value. In addition, MAE values are
considered to determine the best method when
RMSE values are equal.

IDW-1 had the lowest RMSE values for Mn, Al, and
B, whereas Pb was best estimated using IDW-2, Cd
using IDW-3, As using RBF-IMQ, and Fe using OK.

Table 2 Accuracy of methods used to interpolate groundwater heavy metal content

Heavy
metal

Cross validation IDW-1 IDW-2 IDW-3 RBF-CRS RBF-ST RBF-MQ RBF-IMQ RBF-TPS OK

Fe RMSE 1.170 1.210 1.260 1.210 1.190 1.330 1.130 1.520 1.15

MAE 0.840 0.860 0.880 0.840 0.840 0.960 0.816 1.170 0.740

Mn RMSE 0.431 0.448 0.486 0.442 0.438 0.491 0.432 0.575 0.465

MAE 0.292 0.299 0.320 0.295 0.294 0.322 0.292 0.387 0.354

Al RMSE 0.131 0.134 0.138 0.133 0.132 0.141 0.131 0.156 0.135

MAE 0.086 0.086 0.090 0.086 0.086 0.092 0.087 0.106 0.094

As RMSE 0.014 0.015 0.015 0.015 0.015 0.016 0.014 0.018 0.015

MAE 0.009 0.009 0.009 0.009 0.009 0.010 0.008 0.012 0.009

Cd RMSE 0.00100 0.00100 0.00100 0.00102 0.00102 0.00107 0.00101 0.00113 0.00103

MAE 0.00340 0.00320 0.00300 0.00360 0.00360 0.00380 0.00370 0.00440 0.00380

B RMSE 0.000170 0.000180 0.000190 0.000180 0.000190 0.000200 0.000180 0.000240 0.000170

MAE 0.000125 0.000127 0.000129 0.000126 0.000125 0.000139 0.000124 0.000167 0.000127

Pb RMSE 0.001440 0.001430 0.001450 0.001470 0.001460 0.001600 0.001430 0.001800 0.001450

MAE 0.000770 0.000770 0.000790 0.000820 0.000810 0.000920 0.000780 0.001130 0.000790
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Xie et al. (2011) found that the greater the weighting
power of IDW, the greater the RMSE of interpolation.
As Table 2 shows, RBF-TPS had the highest RMSE and

MAE values for all heavy metals and should be consid-
ered unsuitable for interpolating heavy metal groundwa-
ter concentrations.

Fig. 3 Interpolated maps for heavy metals a Fe using OK, bMn using IDW-1, cAl using IDW-1, dAs using RBF-IMQ, eCd using IDW-3,
f B using IDW-1, g Pb using IDW-2
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Spatial distribution of heavy metals

Best-fit methods (Fig. 3a–g) were used to interpolate the
spatial distribution of heavy metals. Problematic areas
for Fe, Mn, Al, As, Cd, B, and Pb were mapped using
geographic information systems (GIS). Other recent
studies have also used GIS in identifying spatial and
temporal distribution of groundwater and soil properties
(Sun et al. 2009; Varouchakis and Hristopulas 2013).

Using OK, Fe was mapped into three categories for
drinking and irrigation (Fig. 3a). Fe concentrations were
above 0.17 mg/l throughout the study area (Table 1),
with the highest concentrations mainly in the eastern
part of the area. Normally, iron concentrations in drink-
ing water must be below 0.3 mg/l; however, as Fig. 2a
indicates, only 1 % of the study area had Fe concentra-
tions below 0.3 mg/l, whereas the remaining 99 %
should be considered unsuitable for drinking due to high
Fe concentrations. In terms of irrigation, the recom-
mended maximum concentration of soluble iron in irri-
gation water is 5 mg/l, whereas concentrations above
1.5 mg/l are considered to represent a severe clogging
hazard for drip irrigation emitters, and concentrations
between 0.1 and 1.5 mg/l represent a moderate clogging

hazard (FAO 1994). Fe concentrations ranged from 0.17
to 1.5 mg/l in close to 88 % of the study area,
representing a moderate hazard for drip irrigation,
whereas close to 12 % of the study area had a Fe value
above 1.5 mg/l, representing a severe hazard. These
areas thus require another type of irrigation system, such
as sprinkler or furrow irrigation. Finally, the iron con-
centration of one well (site 38) was above 5 mg/l,
making it unsuitable for any irrigation use.

Using IDW-1, Mn was mapped into two categories
for drinking and irrigation (Fig. 3b). Permissible limits
for Mn in drinking water and irrigation water are nor-
mally less than 0.1 and 2 mg/l, respectively.
Accordingly, water in 97 % of the study area was found
unsafe for drinking, whereas only one well (site 7) was
found unsafe for irrigation. However, while Mn concen-
trations in most of the study area were below the level of
plant toxicity (2 mg/l), groundwater in 97 % of the area
had Mn concentrations above 0.1 mg/l, making it a
moderate hazard for drip irrigation systems (FAO 1994).

Using IDW-1, Al was mapped into three categories
for drinking (Fig. 3c). As the map shows, groundwater
in a portion of the center of the study area amounting to
7 % of the total is unsuitable for drinking.

Table 3 Rotated factor pattern
of five factors after varimax
rotation

Italic values indicate strong
(<0.75) and moderate (0.50–0.75)
loadings, respectively

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Se 0.981 0.000 0.049 −0.078 −0.066
Ti 0.967 −0.028 0.044 −0.155 −0.049
Cr 0.950 0.113 0.017 0.139 0.104

Mo 0.563 0.047 0.277 0.252 −0.099
Ni 0.048 0.874 0.253 0.08 −0.051
Mn −0.128 0.831 −0.100 −0.136 −0.090
Co 0.328 0.642 0.640 0.071 −0.028
Ba 0.118 0.623 −0.337 −0.07 −0.095
Pb −0.013 −0.104 0.901 −0.086 0.020

Cd 0.518 0.033 0.751 0.024 0.018

B 0.224 0.146 −0.225 0.752 0.466

Va −0.036 −0.012 0.411 0.734 0.317

Fe −0.099 0.333 0.057 −0.592 0.407

Cu 0.489 −0.046 0.153 0.514 0.228

Al 0.299 0.049 0.262 −0.499 0.133

As 0.002 −0.119 −0.103 0.025 0.803

Zn −0.026 −0.085 0.125 0.100 0.585

Eigenvalue 4.510 2.640 2.100 1.930 1.300

% total variance 26.55 15.53 12.36 11.32 7.630

Cumulative % variance 26.55 42.08 54.44 65.76 73.39
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Using RBF-IMQ, As was mapped into three catego-
ries for drinking (Fig. 3d). Different parts of the study
area amounting to 26 % of the total were found to
exceed the WHO limit of 0.01 mg/l for drinking water.

Using IDW-3, Cd was mapped into two categories
for drinking (Fig. 3e). For the majority of the area,
cadmium does not represent a problem; however, 2 %
of the study area registered levels above the 0.001 mg/l
WHO guideline.

Using IDW-1, B was mapped into four categories for
drinking and irrigation (Fig. 3f). Boron is essential for
drinking and irrigation water. However, the concentra-
tion of boron in irrigation water should not exceed
0.7 mg/l, with concentrations ranging from 0.7 to
3.0 mg/l considered to represent a severe to moderate

hazard for irrigation (FAO 1994). Excessive boron con-
centrations were observed in only 1 well (site 15) in the
northern part of the study area.

Using IDW-2, Pb was mapped into three categories
for drinking (Fig. 3g). Pb concentrations in all samples
were below the permissible limits, with the highest Pb
value found at site 21.

Factor analysis

Correlations among hydrochemical constituents of the
groundwater samples were examined by factor analysis
(Li and Zhang 2010; Guler et al. 2013) using each of the
heavy metals tested as variables. Five factors were
found to explain 73.39 % of the total variance in the

Fig. 4 a–e Distribution of scores for five factors
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data set. Eigenvalues, percentages of variance, and cu-
mulative percentages for the five factors identified are
given in Table 3.

Three different weighing powers of IDW method,
five different functions of RBF method and ordinary
kriging method were tested. IDW-1 had the lowest
RMSE andMAE values for factor 1, factor 3, and factor
5, whereas factor 2 and factor 4 were best estimated
using IDW-2. Best-fit methods were used to interpolate
the spatial distribution of factor scores. Spatial distribu-
tion of the scores for factors 1, 2, 3, 4, and 5 are given in
Figs. 4a–e, respectively, with lighter colors indicating
lower values and darker colors indicating higher values.
Heavy metals in groundwater originate from a variety of
sources. Cu, Mo, and Cd are common components of
pesticides, insecticides, herbicides, and fertilizers used
in the study area (Kumbur et al. 2008). Whereas Cd
originates primarily from anthropogenic sources (e.g.,
agriculture or industry); As and Pb may originate from
urban and Industrial activities such as energy produc-
tion, mining, manufacturing processes, and waste incin-
eration; and Ba, Fe, Co, Mn, Ni, and Cr may originate
from pedogenic sources (Li and Zhang 2010; Demirel
2007).

Factor 1 explained 26.55 % of the total variance
(eigenvalue, 4.51) and included strong positive loadings
on Se, Ti, and Cr and moderate loading on Mo. This
factor was ascribed to predominantly anthropogenic and
industrial sources. Cr is a marker of paint and metal
industrial waste, and high Mo concentrations may also
be related to industrial activities (Demirel 2007). As
Fig. 4a shows, factor 1 is generally the highest in the
middle of the region.

Factor 2 explained 15.53 % of total variance (eigen-
value, 2.64), with strong loadings on Ni and Mn and
moderate loadings on Co and Ba. Hence, this factor was
attributed to mixed origins, including pedogenic (Mn,
Ni, Co) and geogenic (Ba) sources (Krisha et al. 2009).
As Fig. 4b shows, the highest score for factor 2 was at
site 7.

Factor 3 accounted for 12.36 % of the total variance
(eigenvalue, 2.10), with strong loadings on Pb and Cd.
Pb is mainly an indicator of agrochemical and industrial
waste (Li et al. 2008). This factor can be interpreted as
relating to variations in agrochemical sources. As Fig. 4c
shows, the highest score for factor 3 was at site 21.

Factor 4 explained 11.32 % of the total variance
(eigenvalue, 1.93), with a strong loading on B, moderate

Fig. 5 Dendrogram showing the clustering of heavy metals pa-
rameters of groundwater
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loadings on Va and Cu, and negative moderate loading
on Fe (Fig. 4d). Huang and Jin (2008) showed that long-
term use of chemical fertilizers contributes to the accu-
mulation of Cu in agricultural soil. This factor was
interpreted as relating to agricultural run-off and indus-
trial effluents. As Fig. 4d shows, the highest score for
factor 4 was at site 15.

Factor 5 accounted for 7.63 % of total variance
(eigenvalue, 1.30), with a strong positive loading on
As and moderate loading on Zn. This factor was
interpreted as influenced by industrial effluents. As

Fig. 4e shows, excessive arsenic represented the greatest
problem in the northeastern part of the study area (sites
4, 38, and 41) and the smallest problem in the south,
west, and southeastern regions (sites 28, 56, and 34).

Cluster analysis

Hydrochemical data was classified by cluster analysis
(CA) into 17 dimensional spaces represented by the
dendrogram shown in Fig. 5, and groundwater wells
were distributed into three groups according to signifi-
cant differences in groundwater heavy metal concentra-
tions (Table 4). When evaluated in light of existing
drinking water guidelines, clusters 1, 2, and 3 could be
classified, respectively, as Bpolluted,^ Bhighly polluted,^
and Bvery highly polluted.^ IDW, RBF, and OK
methods were separately tested to create the spatial
distribution of groups, and IDW-2 yielded the lowest
RMSE and MAE values. Therefore, spatial distribution
map was created according to IDW-2.

Cluster 1 comprised the 49 monitoring wells with
the lowest loading score for Fe and moderate load-
ing for Mn. In general, cluster 1 had the lowest
values for groundwater heavy metals in the study
area and included wells located on the outer limits
of the area (Fig. 6).

Cluster 2 comprised the 26 wells located in the
central part of the Çarşamba Plain that had mod-
erate loading for Fe and Mn and high loading for
As.

Cluster 3 comprised the three wells (7, 21, and 78)
with the worst groundwater quality in the study area.
Located in different parts of the plain, these wells had

Table 4. Mean values (mg/l) for heavy metals for each group

Heavy metal Cluster 1
(n = 49)

Cluster 2
(n = 26)

Cluster 3
(n = 3)

Pb 0.00030 0.00071 0.00355

Zn 0.01135 0.01941 0.01522

Cr 0.00237 0.00410 0.01919

Mn 0.34463 0.27067 0.85415

Fe 0.72137 1.46012 1.50683

Cu 0.00544 0.01109 0.02179

Cd 0.00001 0.00015 0.00398

Co 0.00028 0.00057 0.00721

Ni 0.00317 0.00387 0.02276

Al 0.03645 0.14149 0.17804

As 0.00228 0.01917 0.00137

Mo 0.00015 0.00070 0.00249

Se 0.00048 0.00119 0.02888

B 0.00013 0.00026 0.00012

Ti 0.00063 0.00143 0.03770

V 0.00173 0.00253 0.00292

Ba 0.12270 0.09426 0.13960

Fig. 6 Spatial distribution of
groups formed by cluster analysis
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the highest loadings for Fe, Mn, Cd, and Al. The reason
for this is thought to be agricultural and industrial activ-
ities. Thus, it would be useful to control the pesticide
and fertilizer usage in these areas.

Conclusion

This study clearly demonstrated the usefulness of inter-
polation methods and multivariate statistical analysis for
identifying groundwater heavy metals. Optimal interpo-
lation methods for estimating the spatial distribution of
heavy metals in the Çarşamba Plain in northern Turkey
were found to vary, which are as follows: IDW-1: best fit
for Mn, Al, and B; IDW-2: best fit for Pb; IDW-3: best
fit for Cd; OK: best fit for Fe; and RBF-IMQ: best fit for
As. Maps illustrating problematic areas for drinking and
drip irrigation were drawn using the best interpolation
method for each heavy metal. Anthropogenic activities,
agriculture among them, have led to high levels of
groundwater pollution. The leading mineral pollutants
in the study area include Fe, Mn, Al, As, and Cd, while
B and Zn represent potential pollutants. Whereas As, Al,
and Cd concentrations exceed permissible limits at cer-
tain locations within the study area; alarmingly, approx-
imately 99 % of the study area suffers from Fe and Mn
pollution. In addition to interpolation, data obtained
from 78 groundwater wells were subjected to multivar-
iate statistical analysis, with cluster analysis grouping
wells into three clusters (Bpolluted,^ Bhighly polluted,^
Bvery highly polluted^) and factor analysis/principal
component analysis identifying five main factors
explaining 73.59 % of the total variance of the 17
variables tested. Results indicated that groundwater in
the study area cannot be used as drinking water due to
high levels of Fe, Mn, and As. Moreover, groundwater
cannot be used for drip irrigation due to very high levels
of iron and magnesium.

Acknowledgments This study was supported by Ondokuz
Mayıs University, Scientific Research Programs under the project
no. of PYO. ZRT. 1901.12.005.

References

Alam, F., & Umar, R. (2013). Trace elements in groundwater of
Hindon-Yamuna interfluve region, Baghpat District, western

Uttar Pradesh. Journal of the Geological Society of India, 81,
422–428.

Arslan, H. (2013). Application of multivariate statistical tech-
niques in the assessment of groundwater quality in seawater
intrusion area in Bafra Plain, Turkey. Environmental
Monitoring and Assessment, 185(3), 2439–2452.

Brahman, K. D., Kazi, T. G., Afridi, H. I., Naseem, S., Arain, S. S.,
& Ullah, N. (2013). Evaluation of high levels of fluoride,
arsenic species and other physicochemical parameters in
underground water of two sub districts of Tharparkar,
Pakistan: a multivariate study. Water Research, 47, 1005–
1020.

Chidambaram, S., Karmegam, U., Prasanna, M. V., & Sasidhar, P.
(2012). A study on evaluation of probable sources of heavy
metal pollution in groundwater of Kalpakkam region, South
India. The Environmentalist, 32(4), 371–382.

Demirel, Z. (2007). Monitoring of heavy metal pollution of
groundwater in a phreatic aquifer in Mersin-Turkey.
Environmental Monitoring and Assessment, 132, 15–23.

DSI (1994) Hydrogeological investigation report of Çarşamba
Plain, Ankara.

Eugenia, G. G., Vicente, A., & Rafael, B. (1996). Heavy metals
incidence in the application of inorganic fertilizers and pes-
ticides to rice forming soils. Environmental Pollution, 92,
19–25.

FAO (1994). Water quality for agriculture, FAO Irrigation and
Drainage Paper 29 rev. 1, Rome, 174 pp.

Guler, C., Kaplan, V., & Akbulut, C. (2013). Spatial distribution
patterns and temporal trends of heavy-metal concentrations
in a petroleum hydrocarbon-contaminated site: Karaduvar
coastal aquifer (Mersin, SE Turkey). Environmental Earth
Sciences, 70(2), 943–962.

Guler,M., Arslan, H., Cemek, B., & Ersahin, S. (2014). Long-term
changes in spatial variation of soil electrical conductivityand
exchangeable sodium percentage in irrigated mesic
ustifluvents. Agricultural Water Management, 135, 1–8.

Haloi, N., & Sarma, H. P. (2012). Heavy metal contaminations in
the groundwater of Brahmaputra flood plain: an assessment
of water quality in Barpeta District, Assam (India).
Environmental Monitoring and Assessment, 184(10), 6229–
6237.

Hossain, M. G., Selim, A. H. M., Lutfun-Nessa, M., & Ahmed, S.
S. (2013). Factor and cluster analysis of water quality data of
the groundwater wells of Kushtia, Bangladesh: implication
for arsenic enrichment and mobilization. Journal of the
Geological Society of India, 81(3), 377–384.

Hua, Z., Debai, M., Cheng, W. (2009). Optimization of the spatial
interpolation for groundwater depth in Shule River Basin.
Environmental Science and Information Application
Technology. ESIAT 2009.

Huang, S. W., & Jin, J. Y. (2008). Status of heavy metals in
agricultural soils as affected by different patterns of land
use. Environmental Monitoring and Assessment, 139, 317–
327.

Huang, G., Sun, J., Zhang, Y., Chen, Z., & Liu, F. (2013). Impact
of anthropogenic and natural processes on the evolution of
groundwater chemistry in a rapidly urbanized coastal area.
South China. Science of the Total Environment, 463-464(1),
209–221.

Kanmani, S., & Gandhimathi, R. (2013). Investigation of physi-
cochemical characteristics and heavy metal distribution

516 Page 12 of 13 Environ Monit Assess (2015) 187: 516



profile in groundwater system around the open dump site.
Applied Water Science, 3, 387–399.

Keshavarzi, A., & Sarmadiani, A. (2012). Mapping of spatial
distribution of soil salinity and alkalinity in a semi-arid
region. Annals of Warsaw University of Life Sciences Land
Reclamation, 44(1), 3–14.

Krishna, A. K., Satyanarayanan, M., & Govil, P. K. (2009).
Assessment of heavy metal pollution in water using multi-
variate statistical techniques in an industrial area: a case study
from Patancheru, Medak District, Andhra Pradesh, India.
Journal of Hazardous Materials, 167, 366–373.

Kumari, S., Singh, A. K., Verma, A. K., & Yaduvanshi, N. P. S.
(2014). Assessment and spatial distribution of groundwater
quality in industrial areas of Ghaziabad, India.Environmental
Monitoring and Assessment, 186(1), 501–514.

Kumbur, H., Ozsoy, H. D., & Ozer, Z. (2008). Mersin ilinde
tarımsal alanlarda kullanılan kimyasalların su kalitesi
üzerine etkilerinin belirlenmesi. Ekoloji, 17, 54–58.

Li, J., & Heap, A. (2011). A review of comparative studies of
spatial interpolation methods in environmental sciences: per-
formance and impact factors. Ecological Informatics, 6, 228–
241.

Li, S. Y., & Zhang, Q. F. (2010). Spatial characterization of
dissolved trace elements and heavy metals in the upper Han
River (China) using multivariate statistical techniques.
Journal of Hazardous Materials, 176, 579–588.

Li, S., Xu, Z., Cheng, X., & Zhang, Q. (2008). Dissolved trace
elements and heavy metals in the Danjiangkou Reservoir,
China. Environmental Geology, 55, 977–983.

Liu, C. W., Lin, K. H., & Kuo, Y. M. (2003). Application of factor
analysis in the assessment of groundwater quality in a
Blackfoot disease area in Taiwan. The Science of the Total
Environment, 313, 77–89.

Lu, K. L., Liu, C. W., & Jang, C. S. (2012). Using multivariate
statistical methods to assess the groundwater quality in an
arsenic-contaminated area of Southwestern Taiwan.
Environmental Monitoring and Assessment, 184(10), 6071–
6085.

Madhulakshmi, L., Rauma, A., & Kannan, N. (2012). Seasonal
distribution of some heavy metal concentrations in ground-
water of Virudhunagar District, Tamilnadu, South India.
Electronic Journal of Environmental, Agricultural and
Food Chemistry, 11(2), 32–37.

Massart, D. L., & Kaufman, L. (1983). The interpretation of
analytical chemical data by the use of cluster analysis.
New York:Wiley.

Monjerezi, M., Vogt, R. D., Gebru, A. G., Saka, F. D. K., &
Aagaard, P. (2012). Minor element geochemistry of ground-
water from an area with prevailing saline groundwater in
Chikhwawa, lower Shire Valley (Malawi). Physics and
Chemistry of the Earth Parts A/B/C, 50(52), 52–63.

Narany, T. S., Ramli, M. F., Aris, A. Z., Sulaiman, W. N. A., &
Fakharian, K. (2014). Spatiotemporal variation of groundwa-
ter quality using integrated multivariate statistical and
geostatistical approaches in Amol–Babol Plain, Iran.
Environmental Monitoring and Assessment, 186(9), 5797–
5815.

Noori, S. M. S., Ebrahimi, K., Liaghat, A. M., & Hoorfar, A. H.
(2013). Comparison of different geostatistical methods to
estimate groundwater level at different climatic periods.
Water and Environment Journal, 27(1), 10–19.

Quyang, Y., Zhang, J., & Parajuli, P. (2013). Characterization of
shallow groundwater quality in the Lower St. Johns River
Basin: a case study. Environmental Science and Pollution
Research, 20(12), 8860–8870.

Rabah, F. K. J., Ghabayen, S. M., & Salha, A. A. (2011). Effect of
GIS interpolation techniques on the accuracy of the spatial
representation of groundwater monitoring data in Gaza strip.
Journal of Environmental Science and Technology, 4, 579–589.

Shan, Y., Tysklind, M., Hao, F., Quyang, W., Chen, S., & Lin, C.
(2013). Identification of sources of heavy metals in agricul-
tural soils using multivariate analysis and GIS. Journal of
Soils and Sediments, 13(4), 720–729.

Sun, Y., Kang, S., & Li, F. (2009). Comparison of interpolation
methods for depth to groundwater and its temporal and
spatial variations in the Minqin oasis of northwest China.
Environmental Modelling & Software, 24, 1163–1170.

Tiwari, R. N., Mishra, S., & Pandey, P. (2013). Study of major and
trace elements in groundwater of Birsinghpur Area, Satna
District Madhya Pradesh, India. International Journal of
Water Resources and Environmental Engineering, 5(7),
380–386.

Varouchakis, E. A., & Hristopulo, D. T. (2013). Comparison of
stochastic and deterministic methods for mapping groundwa-
ter level spatial variability in sparsely monitored basins.
Environmental Monitoring and Assessment, 185(1), 1–19.

Vieira, J. S., Pires, J. C. M., Martins, F. G., Vilar, V. J. P.,
Boaventura, R. A. R., & Botelho, C. M. S. (2012). Surface
water quality assessment of Lis River using multivariate
statistical methods. Water, Air, and Soil Pollution, 223,
5549–5561.

WHO (2011). The guidelines for drinking-water quality (fourth
ed., ). Geneva:World Health Organization.

Wilding, L. P. (1985). Spatial variability: its documentation, ac-
commodation andimplication to soil surveys. In D. R.
Nielsen, & J. Bouma (Eds.), Soil spatial vari-ability (pp.
166–194). Wageningen: Pudoc.

Xie, Y., Chen, T., Lei, M., &Yang, J. (2011). Spatial distribution of
soil heavy metal pollution estimated by different interpola-
tion methods: accuracy and uncertainty analysis.
Chemosphere, 82, 468–476.

Yadav, P., Singh, B., Mor, S., & Garg, V. K. (2013). Quantification
and health risk assessment due to heavy metals in potable
water to the population living in the vicinity of a proposed
nuclear power project site in Haryana, India. Desalination
and Water Treatment. doi:10.1080/19443994.2013.833877.

Yao, L., Huo, Z., Feng, S., Mao, M., Kang, S., Chen, J., Xu,
J., & Steenhuis, T. S. (2014). Evaluation of spatial inter-
polation methods for groundwater level in an arid inland
oasis, northwest China. Environmental Earth Sciences, 71,
1911–1924.

Yılmaz, T., Seçkin, G., & Sarı, B. (2010). Trace element levels in
the groundwater ofMediterranean coastal plains—the case of
Silifke, Turkey. CLEAN – Soil Air Water, 38(3), 221–224.

Environ Monit Assess (2015) 187: 516 Page 13 of 13 516

http://dx.doi.org/10.1080/19443994.2013.833877

	Estimation...
	Abstract
	Introduction
	Materials and methods
	Study area
	Groundwater sampling and analysis
	Interpolation methods for heavy metals
	Cross validation
	Multivariate statistical analysis

	Results and discussion
	Heavy metals in groundwater
	Comparison of interpolation methods
	Spatial distribution of heavy metals
	Factor analysis
	Cluster analysis

	Conclusion
	References


