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Abstract We have evaluated the performance of three
satellite-based latent heat flux (LE) algorithms over
forest ecosystems using observed data from 40 flux
towers distributed across the world on all continents.
These are the revised remote sensing-based Penman-
Monteith LE (RRS-PM) algorithm, the modified
satellite-based Priestley-Taylor LE (MS-PT) algorithm,
and the semi-empirical Penman LE (UMD-SEMI) algo-
rithm. Sensitivity analysis illustrates that both energy
and vegetation terms has the highest sensitivity com-
pared with other input variables. The validation results
show that three algorithms demonstrate substantial dif-
ferences in algorithm performance for estimating daily
LE variations among five forest ecosystem biomes.
Based on the average Nash-Sutcliffe efficiency and
root-mean-squared error (RMSE), the MS-PT algorithm
has high performance over both deciduous broadleaf
forest (DBF) (0.81, 25.4 W/m2) and mixed forest (MF)
(0.62, 25.3 W/m2) sites, the RRS-PM algorithm has
high performance over evergreen broadleaf forest
(EBF) (0.4, 28.1 W/m2) sites, and the UMD-SEMI

algorithm has high performance over both deciduous
needleleaf forest (DNF) (0.78, 17.1 W/m2) and ever-
green needleleaf forest (ENF) (0.51, 28.1 W/m2) sites.
Perhaps the lower uncertainties in the required forcing
data for the MS-PT algorithm, the complicated algo-
rithm structure for the RRS-PM algorithm, and the
calibrated coefficients of the UMD-SEMI algorithm
based on ground-measured data may explain these
differences.
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Introduction

Latent heat flux (LE) refers to the transferred energy
during the process of evaporation of liquid water from
various land surfaces (including small water bodies) and
transpiration from the leaves of plants and sublimation
of ice and snow (Liang et al. 2010; Vinukollu et al.
2011a; Wang and Dickinson 2012; Yao et al. 2013,
2014a, b). Especially, the amount of LE for terrestrial
forest transpiration, approximately 5–30 times greater
than the amount of LE for soil evaporation, has played
an important role in the climate system by coupling the
surface with the atmosphere, and the variable that links
the water, energy, and carbon cycles (Mu et al.
2007; Fisher et al. 2008; Wang and Liang 2008;
Yuan et al. 2010; Mueller et al. 2011; Yao et al.
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2014c). Accurately estimating LE over forest ecosys-
tems is therefore required to understand and simulate
dynamics of surface vegetation in energy and hydro-
logical cycles.

Numerousmodels with different levels of complexity
and process parameterizations have been developed and
widely used to for quantifying surface LE. These LE
methods mainly include (1) statistical and empirical
methods (Jackson et al. 1977; Wang et al. 2007; Jung
et al. 2010; Mueller et al. 2011), (2) surface energy
balance methods (Norman et al. 1995; Kustas and
Norman 1996; Anderson et al. 1997), (3) Penman-
Monteith (PM) method (Monteith 1965; Wang et al.
2010a, b; Mu et al. 2011), (4) Priestley-Taylor (PT)
method (Priestley and Taylor 1972; Fisher et al.
2008; Jin et al. 2011; Yao et al. 2013), and (5)
data assimilation (DA) methods (Pipunic et al.
2008; Xu et al. 2011a, b). However, most of the
models described above vary in structural com-
plexity, parameterization, and the level of data
required to run them. Moreover, when applied at
different surface vegetation types, these methods
have resulted in large differences (Jiménez et al.
2011; Mueller et al. 2011).

In recent years, several studies have focused on esti-
mating regional LE based on the PM and PT method
driven by meteorological and remote sensing data
(Cleugh et al. 2007; Fisher et al. 2008; Zhang et al.
2009, 2010; Wang et al. 2010a, b; Vinukollu et al.
2011b). Cleugh et al. (2007) proposed a simple surface
resistance algorithm for the PM method using leaf area
index (LAI) and other meteorological parameters.
Fisher et al. (2008) designed a novel PT-based LE
algorithm (PT-JPL) by introducing both atmospheric
(relative humidity, RH, and vapor pressure deficit
(VPD)) and eco-physiological constraints (fraction of
photosynthetically active radiation, FPAR, and LAI)
without using any ground-based observed data.
Subsequently, Mu et al. (2011) developed a LE algo-
rithm to generate moderate-resolution imaging
spectroradiometer (MODIS) product by introducing a
stomatal conductance parameterization based on envi-
ronmental controlling factors and separating surface
conductance over bare soil. To overcome the
overestimation of canopy conductance when LAI is
higher than 3, Wang et al. (2010a, b) used the normal-
ized difference vegetation index (NDVI) and relative
humidity deficit (RHD) to parameterize canopy conduc-
tance and proposed a semi-empirical Penman LE

algorithm to estimate global surface LE. Although these
models have proven to be effective for estimating LE at
regional-scale applications, model parameters were cal-
ibrated locally, limiting the utility of the studied model
to those specific locations or areas with similar meteo-
rological and land surface conditions (Wang and
Dickinson 2012; Ershadi et al. 2013).

Considering that it is difficult to select an appro-
priate LE algorithm for different land cover types,
many scientist attempted to focus on a number of
model intercomparison studies. Sumner and Jacobs
(2005) compared PM and PT methods using eddy
covariance (EC) observations of pasture sites in
Florida and found that the PT method with a
calibrated alpha coefficient outperforms the PM
method. Vinukollu et al. (2011a) evaluated three
LE algorithms (Surface Energy Balance System
(SEBS), PM and PT algorithms) using eddy covari-
ance observations from 16 FLUXNET tower sites
and documented that PT algorithm provided the
best estimates. Similarly, Chen et al. (2014) com-
pared eight LE models, including five empirical and
three process-based models, using the observed data
from 23 eddy covariance towers in China and re-
ported that the parameters of the empirical methods
may have different combinations because the envi-
ronmental factors of LE are not independent. Many
of these intercomparison studies mainly focus on
evaluation of different actual LE algorithms using
few eddy covariance sites of small regions
(Jiménez et al. 2011; Mueller et al. 2011; Ershadi
et al. 2013). However, selection of the best LE
algorithm for different forest ecosystems applications
is still not documented in current method intercom-
parison contributions.

In this study, we evaluate the performance of
three satellite-based LE algorithms, including a
revised remote sensing-based Penman-Monteith
LE (RRS-PM) algorithm, a modified satellite-
based Priestley-Taylor LE (MS-PT) algorithm, and
a semi-empirical LE (UMD-SEMI) algorithm of
the University of Maryland, across a variety of
forest types. Our study has two major objectives.
First, we analyze the LE algorithms’ structure and
the sensitivity of input variables for the three
satellite-based LE algorithms. Second, we evaluate
the LE algorithms’ performance over forest eco-
systems based on 40 flux tower sites provided by
FLUXNET network.
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Datasets

Data at FLUXNET eddy covariance sites

Three satellite-based LE algorithms were evaluated with
the flux data from six Ameriflux towers (http://public.
ornl.gov/ameriflux/data-get.cfm), one Chinaflux tower
(http://159.226.111.42/pingtai/LoginRe/opendata.jsp),
nine Asiaflux towers (http://asiaflux.yonsei.kr/index.
html) (Yu et al. 2006a, b, 2008, 2013), and 24
FLUXNET towers (http://www.fluxdata.org). These
data sets include the longest continuous worldwide
multisite measurements of LE, sensible heat flux (H),
surface net radiation (Rn), and corresponding
meteorological observations. The flux tower sites
cover five major global land-surface forest biomes: de-
ciduous broadleaf forest (DBF; 10 sites), deciduous
needleleaf forest (DNF; 4 sites), evergreen broadleaf
forest (EBF; 10 sites), evergreen needleleaf forest
(ENF; 10 sites), and mixed forest (MF; 6 sites)
(Table 1 and Fig. 1). Detailed information on site infor-
mation and data gap-filling technique were available at
the FLUXNETweb site. The data cover the period from
2000 to 2007, and each flux tower has at least 1 year of
reliable data. Although the eddy covariance method is
considered best for directly measuring heat fluxes in
global measurement experiments (Baldocchi et al.
2001; Gough et al. 2013), we selected the method pro-
posed by Twine et al. (2000) to correct the LE from the
FLUXNET flux towers and Chinese flux towers, due to
the problem of energy imbalance.

Satellite inputs to LE algorithms

To evaluate the performance of all LE algorithms over
forest ecosystems in this study for all 40 flux tower sites,
the 8-day MODIS FPAR/LAI (MOD15A2) product
(Myneni et al. 2002) and the 16-day MODIS NDVI/
EVI (MOD13A2) product (Huete et al. 2002) with 1-km
spatial resolution were used to drive three algorithms.
These data were downloaded directly from the Oak
Ridge National Laboratory Distributed Active Center
(ORNL DAAC) web site (http://daac.ornl.gov/
MODIS/). Quality control (QC) flags were examined
to screen and reject poor quality LAI/FPAR and NDVI/
EVI data. The daily FPAR and LAI values were tempo-
rally interpolated from the 8-day averages using linear
interpolation. Similarly, the daily NDVI/EVI values

were temporally interpolated from the 16-day averages
using linear interpolation.

Algorithms descriptions

Revised remote sensing-based Penman-Monteith LE
algorithm

Based on the beta version of the MOD16 algorithm (Mu
et al. 2007), Yuan et al. (2010) developed a revised
remote sensing-based PM LE (RRS-PM) algorithm by
revising the equations dealing with temperature con-
straint for stomatal conductance and energy allocation
between vegetation canopy and soil surface (Yuan et al.
2012, 2014). The RRS-PM algorithm meets Penman-
Monteith equation, namely,

LE ¼ Δ Rn−Gð Þ þ ρCp es−eð Þ=ra
Δþ γ 1þ rs=rað Þ ð1Þ

where ρ is the density of air, Cp is the specific heat of air
at constant pressure, es is the saturated vapor pressure, e
is the actual vapor pressure,Δ is the slope of the saturate
vapor pressure curve, γ is the psychrometric constant, rs
and ra are the aerodynamic and surface resistance,
respectively.

In the RRS-PM algorithm, the temperature constraint
(mT) for stomatal conductance follows the equation
detailed by Fisher et al.(2008) with an optimum Topt
set as 25 °C.

mT ¼ exp −
T−Topt

Topt

� �2
 !

ð2Þ

In the RRS-PM algorithm, the Beer-Lambert law was
used to exponentially partition net radiation between the
canopy (Ac) and the soil surface (Asoil).

Asoil ¼ Rnexp −k � LAIð Þ ð3Þ

Ac ¼ Rn−Asoil ð4Þ

where k is extinction coefficient (0.5). The validation for
23 EC flux tower sites in China revealed higher accura-
cy for the RRS-PM algorithm than for the beta version
of the MOD16 algorithm (Chen et al. 2014).
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Table 1 A description of site conditions

Site name Country Land cover
types

Lat Lon Elev Time
period

Network

NH-Bartlett Experimental Forest (US-Bar) USA DBF 44.06 −71.29 272 2004–2005 AmeriFlux

MA-Harvard Forest EMS Tower (HFR1) (US-Ha1) USA DBF 42.53 −72.17 340 2000–2006 AmeriFlux

IN-Morgan Monroe State Forest (US-MMS) USA DBF 39.32 −86.41 275 2000–2004 AmeriFlux

MI-Univ. of Mich. Biological Station (US-UMB) USA DBF 45.56 −84.71 234 2000–2003 AmeriFlux

FL-Slashpine-Austin Cary- 65 years nat regen
(US-SP1)

USA ENF 29.74 −82.22 50 2000–2005 AmeriFlux

CA-Blodgett Forest (US-Blo) USA ENF 38.89 −120.63 1315 2000–2006 AmeriFlux

Laoshan (LSH) China DNF 45.28 127.58 340 2002–2003 AsiaFlux

Southern Khentei Taiga (SKT) Mongolia DNF 48.35 108.65 1630 2000–2004 AsiaFlux

Tura (TUR) Russia DNF 64.21 100.46 250 2004–2005 AsiaFlux

Siberia Yakutsk Larch Forest Site (YLF) Russia DNF 62.26 129.24 220 2003–2004 AsiaFlux

Bukit Soeharto (BKS) Indonesia EBF −0.86 117.04 20 2001–2002 AsiaFlux

KoFlux Gwangneung supersite (GDK) Korea MF 37.75 127.15 260 2004–2007 AsiaFlux

Tomakomai Flux Research Site (TMK) Japan MF 42.74 141.52 140 2001–2003 AsiaFlux

Teshio CC-LaG Experiment Site (TSE) Japan MF 45.05 142.10 70 2001–2005 AsiaFlux

Mae Klong (MKL) Thailand EBF 14.58 98.84 231 2003–2004 AsiaFlux

Changbaishan (CN-Cha) China MF 42.40 128.09 761 2003–2004 ChinaFlux

Tumbarumba (AU-Tum) Australia EBF −35.66 148.15 1200 2001–2006 FLUXNET

Wallaby Creek (AU-Wac) Australia EBF −37.43 145.19 545 2005–2007 FLUXNET

Santarem-Km83-Logged Forest (BR-Sa3) Brazil EBF −3.02 −54.97 100 2000–2003 FLUXNET

Puechabon (FR-Pue) France EBF 43.74 3.59 270 2000–2006 FLUXNET

Palangkaraya (ID-Pag) Indonesia EBF 2.35 114.04 30 2002–2003 FLUXNET

Castelporziano (IT-Cpz) Italy EBF 41.71 12.38 68 2000–2006 FLUXNET

Lecceto (IT-Lec) Italy EBF 43.30 11.27 314 2005–2006 FLUXNET

Espirra (PT-Esp) Portugal EBF 38.64 −8.60 95 2002–2006 FLUXNET

UCI-1850 burn site (CA-NS1) Canada ENF 55.88 −98.48 260 2001–2006 FLUXNET

Quebec Boreal Cutover Site (CA-Qcu) Canada ENF 49.27 −74.04 392 2001–2006 FLUXNET

Bily Kriz- Beskidy Mountains (CZ-BK1) Czech Republic ENF 49.50 18.54 908 2000–2006 FLUXNET

Anchor Station Tharandt-Old Spruce (DE-Tha) Germany ENF 50.96 13.57 380 2000–2006 FLUXNET

Le Bray (after 6/28/1998) (FR-LBr) France ENF 44.72 −0.77 61 2000–2006 FLUXNET

Lavarone (after 3/2002) (IT-Lav) Italy ENF 45.96 11.28 1353 2000–2006 FLUXNET

Fyodorovskoye Wet Spruce Stand (RU-Fyo) Russia ENF 56.46 32.92 260 2000–2004 FLUXNET

Griffin-Aberfeldy-Scotland (UK-Gri) UK ENF 56.61 −3.79 340 2000–2006 FLUXNET

Brasschaat (De Inslag Forest) (BE-Bra) Belgium MF 51.31 4.52 16 2000–2006 FLUXNET

Vielsalm (BE-Vie) Belgium MF 50.31 5.99 450 2000–2006 FLUXNET

Hainich (DE-Hai) Germany DBF 51.79 10.45 430 2000–2006 FLUXNET

Soroe-LilleBogeskov (DK-Sor) Denmark DBF 55.49 11.65 40 2000–2006 FLUXNET

Fontainebleau (FR-Fon) France DBF 48.48 2.78 90 2005–2006 FLUXNET

Collelongo-Selva Piana (IT-Col) Italy DBF 41.85 13.59 1550 2000–2006 FLUXNET

Zerbolo-Parco Ticino-Canarazzo (IT-PT1) Italy DBF 45.20 9.06 60 2002–2004 FLUXNET

Hampshire (UK-Ham) UK DBF 51.15 −0.86 80 2004–2005 FLUXNET

Land cover types (DBF deciduous broadleaf forest, DNF deciduous needleleaf forest, EBF evergreen broadleaf forest, ENF evergreen
needleleaf forest,MFmixed forest), latitude (Lat), longitude (Lon), elevation (Elev, meter), time-period, and network names are shown here
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Modified satellite-based Priestley-Taylor LE algorithm

The modified satellite-based Priestley-Taylor algorithm
(MS-PT) is specifically designed to minimize the need
for ancillary meteorological data (Vinukollu et al.
2011a; Yao et al. 2013). It only needs four variables—
surface net radiation (Rn), air temperature (Ta), diurnal
air temperature range (DT), and NDVI. In the MS-PT
algorithm, LE is calculated by the sum of the unsaturat-
ed soil evaporation (LEs), the canopy transpiration
(LEc), the saturated wet soil surface evaporation
(LEws), and the canopy interception evaporation (LEic).
The RRS-PM algorithm can be expressed as:

LE ¼ LEs þ LEc þ LEws þ LEic ð5Þ

LEs ¼ α 1− f wetð Þ f sm
Δ

Δþ γ
Rns−Gð Þ ð6Þ

LEc ¼ α 1− f wetð Þ f T f c
Δ

Δþ γ
Rnv ð7Þ

LEws ¼ α f wet
Δ

Δþ γ
Rns−Gð Þ ð8Þ

LEic ¼ α f wet
Δ

Δþ γ
Rnv ð9Þ

where α is a coefficient of the Priestley-Taylor equation
(1.26), fwet is the wet surface fraction, fsm is the soil
moisture constraint, fc is the vegetation cover fraction, fT
is the plant temperature constraint, G is soil heat flux,

Rns is the surface net radiation to the soil, and Rnv is the
surface net radiation to the vegetation.

Semi-empirical LE algorithm of the University
of Maryland

To detect LE variations on a scale of several decades,
Wang et al. (2010a, b) developed a semi-empirical LE
(UMD-SEMI) algorithm based on the Penman equation.
The UMD-SEMI algorithm considers the impacts of
wind speed (WS) on LE and it can be expressed as:

ET ¼ a1 ETE þ ETAð Þ þ a2 ETE þ ETAð Þ2 ð10Þ

ETE ¼ Δ
Δþ γ

Rs a3 þ a4NDVIþ RHD a5 þ a6NDVIð Þ½ �

ð11Þ

ETA ¼ γ
Δþ γ

WS a7 þ RHD a8 þ a9NDVIð Þ½ �VPD
ð12Þ

where a1=0.819, a2=0.0017, a3=0.476, a4=0.284, a5=
−0.654, a6=0.264, a7=3.06, a8=−3.86, a9=3.64, RHD
equals to 1 minus relative humidity (RH), and VPD
refers to vapor pressure deficit.

Statistical analysis

We selected a simple method to analyze the sensitivity
of input variables for three satellite-based LE algorithms
(Wang et al. 2007; Yao et al. 2012), and this formula can
be written as:

SRC ¼ ∂LE
∂V xð Þ ð13Þ

where SRC is the sensitivity coefficient,V(x) is the input
variable (e.g., Rn, Ta, NDVI).We have also summarized
the coefficient of determination (R2), the root-mean-
squared error (RMSE), the Nash-Sutcliffe efficiency
coefficient (NSE), and the average bias and p values
for the estimated LE and those derived from tower data
to evaluate the relative predictive errors for three LE
algorithms. The Nash-Sutcliffe efficiency repre-
sents a normalized statistic that determines the
relative magnitude of the residual variance (noise)

Fig. 1 Location of the 40 flux tower sites used in this study. DBF
deciduous broadleaf forest,DNF deciduous needleleaf forest, EBF
evergreen broadleaf forest, ENF evergreen needleleaf forest, MF
mixed forest
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compared to the measured data variance (Nash and
Sutcliffe 1970) and is expressed as:

NSE ¼ 1−

Xn
i¼1

LEobs
i −LEsim

i

� �2
Xn
i¼1

LEobs
i −LEmean

� �2 ð14Þ

where LEi
obs is the ith observed LE, LEi

sim is the ith
simulated LE, LEmean is the mean of the observed LE,
and n is the total number of observations. NSE varies
from −∞ to 1.0, with a NSE=1 being the optimal value
(Moriasi et al. 2007; Ershadi et al. 2013).

Results

Sensitivity analysis of three satellite-based LE
algorithms

Given the great difference in three satellite-based LE
algorithm structures and the input variables, it is of
interest to examine the sensitivity of input variables for
three satellite-based LE algorithms. Rn, Ta, LAI, and
RH are the input variables for the RRS-PM algorithm.
As illustrated for the MS-PT algorithm, except for Rn
and Ta, it also acquires NDVI and DT. The UMD-SEMI
algorithm is the only method that explicitly includes
wind speed, which may play an important role in annual
or decadal LE (Wang et al. 2010a, b; McVicar et al.
2012). The energy term of the UMD-SEMI algorithm is
Rs rather than Rn. The averaged LE varies at all flux
towers up to ±20 % for the MS-PT and RRS-PM algo-
rithms by changing Rn with ±20 and ±16 %, respective-
ly (Fig. 2). For the UMD-SEMI algorithm, in response
to the ±20 % change in LE, Rs varies by ±18 %. LE
varies by ±20 % for the RRS-PM and UMD-SEMI
algorithms by changing RH with ±4 and ±6 %, respec-
tively. However, for the MS-PT algorithm, LE relatively
increases up to 3% for DTchange of −20%. In response
to the change in NDVI (LAI) with ±20 % for both MS-
PT and UMD-SEMI (RRS-PM) algorithms, LE varies
by ±10 and ±8% (±6 %) at all flux towers. LE estimated
by the UMD-SEMI algorithm varies by ±4 % for WS
change of ±20 %. Overall, LE estimation by three algo-
rithms shows different sensitivity orders: Rn>LAI>
RH>Ta for the RRS-PM algorithm, Rn>NDVI>Ta>

DT for the MS-PT algorithm, and Rs>NDVI>RH>
Ta>WS for the UMD-SEMI algorithm.

For the above three LE algorithms, energy (Rn or Rs)
and vegetation (NDVI or LAI) terms account for more
than 78 % variation of LE. The contribution of the
energy term (Rn or Rs) is the highest in the three LE
algorithms because these algorithms are calculated as
the sum of the surface energy balance term. Hwang and
Choi (2013) found the sensitivity orders: Rn>LAI>Pa
for the revised remote sensing-based PM model. Yao
et al. (2014b) considered the sensitivity orders of esti-
mated LE using the MS-PT algorithm with Rn (±20 %
change of LE for ±20 % change of the variable)>NDVI
(±10 %)>Ta and DT (less than ±7 %) at different land
cover types. Besides Rn, the dependency of NDVI (or
LAI) in these algorithms is higher in all flux towers as
vegetation amount quantified by vegetation index
(NDVI) and LAI affect the vegetation photosynthesis
and transpiration (Tucker 1979; Wang and Liang 2008;
Yao et al. 2013, 2014a). Canopy conductance, which is
directly related with plant transpiration, and vegetation
index (or LAI) represented a nonlinear relationship.
Wang and Dickinson (2012) pointed out that many
equations will overestimate canopy conductance when
LAI is higher than 3 or 4, and using vegetation index can
effectively correct this issue. Compared with energy and
vegetation terms, other variables play a minor role.

Comparisons of three satellite-based LE algorithms
over forest ecosystems

Three satellite-based LE algorithms demonstrate sub-
stantial differences in algorithm performance for esti-
mating daily LE variations among five forest ecosystem
types (Fig. 3). For both ENF and EBF, all algorithms
demonstrate low performance with high RMSE and low
R2. In contrast, all algorithms exhibit good performance
over DBF and DNF sites. This may be attributed to the
fact that strong seasonality for vegetation indices or LAI
effectively characterizes the variations in the LE of
broadleaf forest while reliable vegetation information
is difficult to acquire for evergreen forest because sea-
sonal evergreen forest variation is less evident (Yebra
et al. 2013). For all five forest types, the MS-PT algo-
rithm has a good overall performance and exhibits the
highest R2 and RRS-PM shows the lowest R2 because
the MS-PT algorithm has partitioned total evaporation
(canopy transpiration, soil evaporation, wet canopy
evaporation) and its lower uncertainties in the required
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forcing data. The second good model is the UMD algo-
rithm and the performance of the RRS-PM algorithm is
ranked third.

For a given forest type, algorithm performance dif-
fers greatly (Figs. 3 and 4). For all DBF sites, theMS-PT
algorithm shows the highest performance with higherR2

(averaged R2=0.79) and NSE (averaged NSE=0.81),
and lower RMSE (averaged RMSE=25.4 W/m2) when
compared with the other two algorithms while the RRS-
PM algorithm shows the lowest performance. For all
DNF sites, the RRS-PM algorithm has the highest aver-
age RMSE (20.3W/m2), and the UMD-SEMI algorithm
has the lowest RMSE (17.1 W/m2) and the greatest
average NSE (0.78). It is clear that the MS-PT and
UMD-SEMI algorithms both overestimate terrestrial

LE, but the RRS-PM algorithm underestimates terrestri-
al LE for all DNF sites. For all EBF sites, the RRS-PM
algorithm has the lowest average RMSE (28.1 W/m2),
with average R2 of 0.55 and average NSE of 0.4 for all
EBF sites. However, the MS-PT algorithm has the
highest R2 despite of its higher RMSE. For all ENF
sites, the UMD-SEMI algorithm has the lowest average
RMSE (28.1 W/m2), with average bias of 5.7 W/m2 and
with average NSE of 0.51. Considering the UMD-SEMI
algorithm was calibrated using the data from 64 flux
tower sites provided by FLUXNET projects, the perfor-
mance of the UMD-SEMI algorithm is strongly related
to the regression coefficients (Yao et al. 2013, 2014a).
For all MF sites, the performance of the MS-PT algo-
rithm with the highest average NSE (0.62) and the

Fig. 2 Sensitivity analysis of the LE estimated by the a RRS-PM, b MS-PT, and c UMD-SEMI algorithms with the corresponding input
variables, respectively
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lowest average RMSE (25.3 W/m2) is higher than both
the RRS-PM and UMD-SEMI algorithms. In general,

MF has the higher canopy conductance than that of
deciduous forests (Eugster et al. 2000) and perhaps the

Fig. 3 Observed LE at eddy covariance sites versus estimated LE from three algorithms
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MS-PT algorithm may capture this information by pa-
rameterization of the vegetation index.

Figure 5 shows an example of the seasonal cycles of
the 8-day LE average simulated by three satellite-based
latent heat flux algorithms at different type sites. Distinct
seasonal cycles of LE can be found at different sites. In
general, the measured and predicted seasonal curves are
in good agreement. For DBF, DNF, ENF, and MF sites,
the estimated LE is higher in summer when the Rs, Ta,
and vegetation index are maximal. During spring and
fall, the estimated LE is smaller due to the decreasing Rs
and Ta. In contrast, compared with other forests, the LE
for the EBF site is high in winter. Although the LE
estimated by the three satellite-based algorithms has
similar seasonal variation, in comparison to the RRS-
PM and UMD-SEMI algorithms, the MS-PT algorithm
yields seasonal LE variations that are closest to the
ground-measured values at most forest types and this
is generally consistent with the previous literature (Yao

et al. 2014a, b; Ershadi et al. 2013; Chen et al. 2014).
Ershadi et al. (2013) used FLUXNET data to evaluate
four LE algorithms (SEBS, PM, PT, and complementary
method) and found that the PT method has improved
performance compared to the PM method. Chen et al.
(2014) compared eight LE models, including five em-
pirical and three process-based models and reported that
although the three process-based models showed high
model performance across the validation sites, there
were substantial differences among them in the temporal
and spatial patterns of LE.

Discussion

Regulators of the three LE algorithms

Available energy, moisture demand, and atmospheric
evaporative demand have been considered as the three

Fig. 4 Model performance of three LE algorithms for estimating daily LE for five forest biomes
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most factors controlling LE. In this study, the three LE
algorithms have strongly correlated with Rn (Rs) be-
cause it has been widely recognized as the most impor-
tant parameter that varies with spatiotemporal variation
in LE in terrestrial ecosystems (Wang and Dickinson
2012). However, Rn (Rs) exerts greater influence on
energy-limited water-yielding catchments than water-
limited (Nemani et al. 2003; McVicar et al. 2012;
Wang and Dickinson 2012). McVicar et al. (2012)
mapped the global distribution of areas where LE was
energy-limited or water-limited to conclude that energy
drives LE in both tropical ecosystems (mainly EBF) and
high-latitude ecosystems (mainly ENF), and water
drives LE in arid regions. Therefore, most EBF trees
of tropical regions sustain elevated LE during the dry
season through deep roots and most ENF trees in high-
latitude regions are less water stressed because of their
slow transpiration (Karam and Bras 2008; Wang and
Dickinson 2012).

Moisture demand is another key factor in determin-
ing LE in most ecosystems, especially in semiarid and
arid regions. Satellite-derived NDVI and LAI are good

at characterizing the spatial variability of soil and veg-
etation moisture. Therefore, many scientists attempted
to use NDVI or LAI as a surrogate for vegetation mois-
ture and use RH to replace soil moisture to develop
satellite-based LE algorithms (Fisher et al. 2008; Mu
et al. 2011; Yuan et al. 2010; Wang et al. 2010a, b). The
three algorithms in this study have improved the accu-
racy of LE simulation by integrating satellite-based
vegetation parameters (NDVI or LAI).

WS, as an aerodynamic controlling variable of atmo-
spheric evaporative demand during the evapotranspira-
tion (ET) process, also contributes to the long-term
variation in LE (Wang et al. 2010a, b; McVicar et al.
2012). Several studies have focused on the causes of
evaporative dynamics without consideringWS, whereas
the UMD-SEMI algorithm clearly illustrates the contri-
butions of WS to LE (Mu et al. 2007; Fisher et al. 2008;
Yao et al. 2013). Although many LE algorithms without
WS have higher accuracy compared with the UMD-
SEMI algorithm, detection of long-term variation in
terrestrial LE may cause large uncertainty when ignor-
ing the impacts of WS on LE.

Fig. 5 Example of a time series
for the 8-day LE average as
measured and estimated using
three algorithms for five forest
biomes
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Performance of the three LE algorithms

Although the three satellite-based LE algorithms per-
formed well in most forest sites and displayed season-
ality in its performance over the majority of the flux
towers, the results of this study illustrated some limita-
tions in the application of the three algorithms. We
found that the RRS-PM algorithm underestimated LE
for most deciduous forests flux tower sites and in winter,
the performance of the RRS-PM algorithm is low be-
cause of large errors resulting in LE underestimation. In
theory, the RRS-PM algorithm should outperform the
MS-PT model because its theoretical advances of the
PM approach over the PT method (Ershadi et al. 2013).
However, surface resistance parameterization technique
is complicated and the uncertainties in forcing data
reduced the accuracy of RRS-PM-based LE estimation
(Mu et al. 2007; Yuan et al. 2010; Chen et al. 2014;
Ershadi et al. 2013). Yuan et al. (2010) found that choice
of vegetation and temperature parameterization will lead
to great impact on RRS-PM-based LE estimation.
Ershadi et al. (2013) also reported that the surface resis-
tance parameterization is more important than the actual
structure of the algorithm, which affected the RRS-PM
algorithm.

Compared with the RRS-PM algorithm, the MS-PT
algorithm demonstrated the most consistent perfor-
mance for most forests sites because this algorithm does
not require aerodynamic and surface resistances to re-
duce the uncertainties in forcing data. However, theMS-
PT algorithm reduced performance for the ENF tower
sites and this may be resulted from the limitation of
NDVI in capturing the vegetation seasonal variation of
this type (Xiao et al. 2004; Ershadi et al. 2013). In
addition, Rn and Ta are the main driving factors for
the MS-PT algorithm and they generally have lower
uncertainty in observations (Yao et al. 2013; Ershadi
et al. 2013). Similar issues in the performance of the
PT algorithm have been documented in substantial pre-
vious studies (Fisher et al. 2008; Vinukollu et al. 2011a;
Yao et al. 2014b). Vinukollu et al. (2011a) reported the
good performance of the PT algorithm in 12 eddy co-
variance tower sites. Yao et al. (2014b) found that com-
pared with the PT-JPL algorithm, the MS-PT algorithm
improves the LE estimates at 40 eddy covariance flux
tower sites.

The UMD-SEMI algorithm performed well in ENF
sites, which may be attributed to the coefficients cali-
bration using ground-measured data from most ENF

sites. Although the UMD-SEMI algorithm ignores ex-
plicit biophysical mechanisms, it provides a simple yet
seemingly robust method by building functional rela-
tionships between the LE and predictor variables (Wang
et al. 2010a, b). A similar conclusion has been reported
by Wang et al. (2010a, b); the 16-day average daily LE
can be reasonably predicted with an average correlation
coefficient of 0.94 and average RMSE of 17 W/m2

using 64 FLUXNET sites. However, the representative-
ness of the limited training dataset will lead to large
uncertainties by extrapolating other regions (Jung et al.
2010; Wang and Dickinson 2012; Chen et al. 2014).
Chen et al. (2014) found that the parameters of the
UMD-SEMI algorithm may have different combination
because the environmental factors of ET are not
independent.

The possible sources of uncertainty in the three
satellite-based LE algorithms may stem from: (1) the
errors of the ground-measured variables (Hollinger and
Richardson 2005; Richardson et al. 2006; Jenkins et al.
2007), (2) the biases of the satellite-derived LAI retriev-
al, (3) the energy imbalance issue of the eddy covariance
method, (4) the spatial scale mismatch between flux
tower site and satellite-derived NDVI and LAI, and (5)
the uncertainties inherent in the structure of the three
algorithms for coefficients parameterization. The three
algorithm used in this study are all developed with high-
quality tower scale dataset. Therefore, application of
these algorithms at large spatial scale will lead to large
uncertainties.

Conclusion

The goal of the study was to evaluate three satellite-
based LE algorithms over forest ecosystems using
ground-measured data collected from 40 eddy covari-
ance flux tower sites provided by the FLUXNET pro-
ject. The LE algorithms used in this study include the
RRS-PM algorithm, the MS-PT algorithm, and the
UMD-SEMI algorithm. Given the great difference in
the three satellite-based LE algorithm structures and
the input variables, we first analyzed the sensitivity of
input variables for the three satellite-based LE algo-
rithms. Furthermore, we compared the three LE algo-
rithms’ performance over forest ecosystems.

Results of the sensitivity analysis of input variables
for the three satellite-based LE algorithms illustrate that
overall, LE estimation by the three algorithms shows
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different sensitivity orders: Rn>LAI>RH>Ta for the
RRS-PM algorithm, Rn>NDVI>Ta>DT for the MS-
PT algorithm, and Rs>NDVI>RH>Ta>WS for the
UMD-SEMI algorithm. For the three LE algorithms,
energy (Rn or Rs) and vegetation (NDVI or LAI) terms
can account for more than 78 % variation of LE. Results
of the evaluation and intercomparison among these al-
gorithms show that the three satellite-based LE algo-
rithms demonstrate substantial differences in algorithm
performance for estimating daily LE variations among
five forest biomes. The MS-PT algorithm has the high
performance over both DBF and MF sites, the RRS-PM
algorithm has the lowest average RMSE (28.1 W/m2)
over EBF sites, and the UMD-SEMI algorithm has the
high average NSE of 0.51 over ENF sites and average
NSE of 0.78 over DNF sites. Regulators and uncer-
tainties of the three LE algorithms are also discussed.
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