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Abstract Constant use of treated wastewater (TWW) for
irrigation over prolonged periods may cause buildup of
heavy metals up to toxic levels for plants and animals, and
entails environmental hazards in different aspects.
However, application of TWWon agricultural land might
be an effective and sustainable strategy in arid and semi-
arid countries where fresh water resources are under great
pressure, as long as potential harmful effects on the envi-
ronment including soil, plants, and fresh water resources,
and health risks to humans are minimized. The aim of this
study was to assess the effect of deep emitters on limiting
potential heavymetal accumulation in soils and grains, and
health risk under drip irrigation with treated municipal
wastewater. A field experiment was conducted according
to a split block design with two treatments (fresh and
wastewater) and three sub-treatments (0, 15, and 30 cm
depth of emitters) in four replicates on a sandy loamCalcic
Argigypsids, in Esfahan, Iran. The annual rainfall is about
123 mm, mean annual ETo is 1457 mm, and the elevation
is 1590 m above sea level. A two-crop rotation of wheat
(Triticum spp.) and corn (Zea mays) was established on
each plot with wheat growing from February to June and
corn from July to September. Soil samples were collected
before planting and after harvesting for each crop in each

year. Edible grain samples of corn and wheat were collect-
ed at harvest. Elemental concentrations (Cu, Zn, Cd, Pb,
Cr, Ni) in soil and grains were determined using an atomic
absorption spectrophotometer. Results showed that the
concentrations of heavy metals in the wastewater-
irrigated soils were not significantly different (P>0.05)
compared with the freshwater-irrigated soils. No signifi-
cant difference (P>0.05) in heavy metal content in soil
between different depths of emitters was found. A pollu-
tion load index (PLI) showed that there was no substantial
buildup of heavy metals in the wastewater-irrigated soils
compared to the freshwater-irrigated soils. Cu, Pb, and Zn
concentrations in wheat and corn grains were within the
permissible US Environmental Protection Agency (EPA)
limits, but concentrations of Cd (in wheat and corn) and Cr
(in corn) were above the safe limits of the EPA. In addition,
concentrations of Ni in wheat and corn seeds were several
folds higher than the EPA standards. A health risk index
(HRI) which is usually adopted to assess the health risk to
hazard materials in foods showed values higher than 1 for
Cd, particularly for wheat grain (HRI >2.5). Results also
showed that intake of Cu through consumption of edible
wheat grains posed a relatively high potential health risk to
children (HRI >1.4), whereas children might also be ex-
posed to health risk fromCd and Cr from corn grains (HRI
>1.4). Based on aforementioned results, it can be conclud-
ed that the emitter depth in drip irrigation does not play a
significant role in the accumulation of heavy metals from
TWWin our sandy loam soil. Although their accumulation
in the soil was limited and similar to using freshwater,
uptake of Cd andCr bywheat and cornwas relatively large
and hence resulted in health risk. The results suggest that
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more attention should be directed towards cultivation of
other crops with drip irrigation system for a safe and
more productive use of wastewater for irrigation.
Alternatively, methods that filter the wastewater before
it enters the soil environment might be an option that
needs further investigation.

Keywords Municipal wastewater . Subsurface drip
irrigation system .Health risk index . Plant concentration
factor . Pollution load index . Esfahan

Introduction

Water scarcity is a main issue in most countries in the
Middle East and North Africa. According to the
International Water Management Institute (IWMI), by
2025, 1.8 billion people will live in countries or regions
with serious water shortage (IWMI 2000). Using poor
quality water could be an option for reducing pressure
on water resources (Oweis and Hachum 2009).
Nonconventional water such as wastewater is an indis-
pensable part of irrigation water resources particularly in
arid regions, which are facing drought during a consid-
erable part of the crop growing season. In Esfahan
region (Iran), municipal (urban) treated wastewater
(TWW) is widely used for irrigating agricultural lands
for fruit and vegetable production. Besides providing
water and nutrients to meet crop requirements, this
usage could solve disposal problems of wastewater, in
that it alleviates environmental pollution in city suburbs.
Research has shown that properly using TWW for irri-
gation of agricultural crops is the best solution for the
abovementioned problem (Pescod 1992).

However, application of TWWand sludge, separated
from urban wastewater, on agricultural land entails en-
vironmental hazards in different aspects. Wastewater
contains metals that are toxic when given thresholds
are exceeded. Constant use of TWW for irrigation over
prolonged periods may cause buildup of heavy metals
up to toxic levels for plant and animal health (Jagtap
et al. 2010; Ehsan et al. 2011.; Kelepertzis 2014). Crops
irrigated with such waters take up substantial high
amounts of heavy metals (Arora et al. 2008). Wei and
Yang (2010) reported that the concentrations of Cr, Cu,
Pb, Zn, Ni, Cd, Hg, and As in agricultural soils were
higher than their background values in most of the 12
studied cities in China. A study in Lechang,
Guangdong, showed that irrigating rice fields with

untreated mining wastewater caused rice grains to
become heavily contaminated by Cd (Yang et al.
2006; Williams et al. 2009). Lu et al. (2015) made
a comprehensive map of soil and water pollution
threats to food safety and human health in some
villages in eastern China where the morbidity rate
of cancer was significantly higher than the average
level. Usage of TWW in irrigation thus necessi-
tates special management to take advantage of
nutrients while ensuring that harmful effects on
the environment including soil, plants, and fresh
water resources, and health risks to humans are
minimized.

Therefore, new irrigation management strategies and
technologies must be developed and integrated with
farming systems in order to effectively utilize the pre-
cious existing water resources for achieving high water
use efficiency and increasing productivity (Naeem and
Rai 2005). Pescod (1992) presented benefits and disad-
vantages of different wastewater irrigation systems and
concluded that drip irrigation is able to solve most
problems of using wastewater in agriculture. Reuse
criteria can be relaxed somewhat when using drip irri-
gation (DI) and primarily subsurface drip irrigation
(SDI) because the soil acts as a complementary biofilter
hence reducing soil contamination (Oron et al. 1999).
Heidarpour et al. (2007) demonstrated that concentra-
tions of chemical constituents in soil layers were influ-
enced by water movement patterns, chemical concen-
trations in irrigation water, and plant uptake. Drip irri-
gation applies water precisely and distributes it uniform-
ly in comparison with furrow and sprinkler irrigation
resulting in potential reduction of subsurface drainage,
controlled soil salinity, improved water and nutrient
management, and potentially improving yields and crop
quality (Ayars et al. 1999; Hanson and May 2004).
Other researchers showed that this irrigation system
could reduce water losses to evaporation, runoff, and
percolation; decrease weed growth and pollution of soil,
water, and plants, improve control of irrigation delivery
systems; and reduce physical contact between farmers
and wastewater (Gushiken 1993; Oron et al. 1999).

As contaminants enter into the human body through
the food chain, accumulation of heavy metals in soil and
plants has become an important issue for human health.
Heavy metals in contaminated water and soil could
increase the potential risk of cancers (He et al. 2014).
Several researchers reported that contaminated water
and food could even increase the morbidity and
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mortality of cancers, especially digestive cancers (Sun
et al. 2014; Zhang et al. 2014; Zhao et al. 2014). Factors
such as efficiency of uptake of given heavy metals
which is plant species dependent, and soil characteristics
need to be considered to evaluate this phenomenon
(Rattan et al. 2005). Mn, Cu, and Zn are non-protein
substances of a large number of enzymes, and show
toxic effects on human body when their concentration
exceeds given thresholds. Cu surplus had been associ-
ated with liver damage, and Zn may produce adverse
nutrient interactions with Cu. Other metals like Pb and
Cd are toxic even at low concentrations. Cereals, which
are the main source of food inmost countries, are also an
important source of these metals. An increased metal
uptake by food crops, vegetables, and fruits grown on
soils contaminated with these metals has been widely
observed (Iyengar and Nair 2000). When critical levels
of heavy metal intake are exceeded over time, various
harmful effects can be discerned, which are responsible
for some refractory diseases, disorder in immunological
defenses, fetal defects, disabilities, and different kind of
cancers (Iyengar and Nair 2000; Turkdogan et al. 2003).

Regarding these effects, international organizations
such as the Organization for Economic Co-operation
and Development (OECD), the European Union (EU),
and the US Environmental Protection Agency (EPA)
recommend guidelines, and suggested procedures and
regulations of risk assessment (Gushiken 1993; Adams
and Chapman 2003). Besides that, the Food and
Agriculture Organization (FAO), the World Health
Organization (WHO), the EPA, and other regulatory
bodies of various countries strictly regulate the allow-
able concentrations or maximum permitted concentra-
tions of toxic heavy metals in foodstuffs (FAO/WHO
1984; USEPA 2000; US-EPA 2012).

In order to assess health risks, it is necessary to
identify the potential of a heavy metal source for
introducing risk agents into the environment, to
estimate the amount of risk agents exposed to the
human–environment boundaries, and to quantify the
health consequence of the exposure (Ma and Chen
2007; Zhi-Fan et al. 2010). The objective of this
study was therefore (i) to investigate the effect of
emitter depth in (subsurface) drip irrigation with
treated wastewater on the extent of soil contamina-
tion with heavy metals, (ii) to assess the heavy
metal uptake by wheat and corn, and thus their
accumulation in (consumable) grains, and (iii) to
evaluate the potential health risks associated with

human consumption of food crops grown under the
above conditions.

Material and methods

Field site characteristics

The study area was located on the border of the city of
Esfahan, Iran (32° 37′ N 51° 43′ E and 1590 m above
sea level). Esfahan is situated on the semi-arid plateau of
central Iran, with dry and hot summers and mild winters.
Mean annual rainfall is about 123mm, mean annual ET0

is 1547 mm, and mean monthly temperature ranges
from 3.4 to 28.9 °C. During the study period, from
February 2010 to October 2011, the temperature varied
from −6 to 41 °C and relative humidity from 3 to 100 %.
The soil was a sandy loam Calcic Argigypsids (NRCS
2014) with 60 % sand, 25 % silt and 15 % clay,
12 g kg−1 organic carbon, and an overall ECe of
2.5 dS m−1 in the top 50 cm at the beginning of the
experiment (Table 1). The water table at the experimen-
tal site was at more than 2 m below the soil surface.

Experimental setup

Twenty-four 3 m×3 m plots were laid out according to a
split block design with two treatments and three sub-
treatments in four replicates. A two-crop rotation of
wheat (Triticum aestivum L.) and corn (Zea mays) was
established on each plot with wheat growing from
February to June and corn from July to September.
This rotation was repeated in the second year. A recom-
mended amount of 150 kg of urea fertilizer (based on
soil analysis) was evenly distributed manually over the
land before plowing. A plant distance of 3 and 30 cm
was used for wheat and corn, respectively. Row distance
was 30 and 60 cm, respectively. The fields were irrigat-
ed with an irrigation system installed at the border of the
farm. The system included one electromotor for trans-
ferring wastewater from the channel passing besides the
farm, one sand filter to segregate large suspended solids
from TWW, and one disk filter for small solids. All plots
were under drip irrigation with inline emitters (Iran
Dripper Co., Esfahan, Iran). A supply rate of 4 L h−1

was used based on an irrigation schedule following the
ET-HS model (Najafi and Tabatabaei 2007).

The treatments were irrigation water quality with
dripper depth as sub-treatment. Emitters were
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positioned at the soil surface (DI0), at 15 cm depth
(SDI15), and at 30 cm depth (SDI30). Irrigation water
was freshwater (FW) and treated wastewater (TWW).
FW was taken from an urban water supply network,
whereas TWW came from the Esfahan wastewater
plant.

Sampling and analysis

To evaluate the irrigation water quality, 20 mL was
collected at every irrigation time. pH and electrical
conductivity EC of the samples were immediately de-
termined after which they were frozen (−5 °C). At the
end of each farming season, all water samples were
defrosted and mixed, and the elemental concentrations
were determined using an atomic absorption spectro-
photometer (PerkinElmer, USA) (Table 2).

Soil samples were collected in June after harvesting
wheat and in September after harvesting corn in each
year (2010 and 2011). In each plot, three separate sam-
ples were taken at depth of 0–50 cm with an auger
(20 cm diameter) and mixed to have a composite sam-
ple. They were transported to the laboratory in air-tight
bags, air-dried and sieved through a mesh (<2 mm), and
then sealed in envelopes until analysis. Samples were
used to measure pH, ECe, and heavy metal concentra-
tion according to standard procedures (Carter and
Gregorich 2007). The measurement of soil pH H20
was done by means of a glass electrode and a calomel
electrode as reference (pHmeter, Model CorningM220,
USA). Before the measurements, the pH meter was
calibrated using standard solutions of pH 4 and pH 7.
ECwas measured in 1:5 soil water extract by means of a
conductivity meter (Istek, Model 915PDC, Korea)
(Sonmez et al. 2008). The determination of soil organic
carbon was based on the Walkley-Black (Walkley and
Black 1934) chromic acid wet oxidation method. To
determine total concentrations of Cd, Cr, Cu, Ni, Pb,
and Zn in the soil, immediately after each soil sampling
time, 0.100 g of air-dried soil was digested and the
elemental concentrations were determined using an
atomic absorption spectrophotometer (PerkinElmer,

USA). All determinations were repeated three times to
minimize the risk of error.

Edible grain samples of corn and wheat were collect-
ed at harvest from two to three randomly selected plants
within each plot. The grains were properly washed with
deionizedwater to remove all dust and surface pollution,
dried at 65 °C for 24 h and then reduced to a fine powder
in a porcelain mortar. Precisely weighed quantities of
0.2000 g were digested with a mixture of nitric acid and
hydrogen peroxide, and analyzed as above. All analyses
were made at the Khorasgan University reference labo-
ratory (Isfahan, Iran), which follows quality manage-
ment procedures according to international standards.

Data analysis

As a measure for the degree of soil pollution by each
metal, we used the widely used pollution load index
(PLI) (Liu et al. 2005):

PLI ¼ CWW=C FW ð1Þ
where CWWand CFW represent the heavy metal concen-
trations in the TWW- and FW-irrigated soils,
respectively.

A plant concentration factor (PCF) was calculated as
follows (Cui et al. 2004):

PCF ¼ Cplant=Csoil ð2Þ
where Cplant and Csoil represent the heavy metal concen-
tration in extracts of plants and soils on a dry weight
basis, respectively.

The daily intake of metals (DIM) was estimated as:

DIM ¼ Cmetal � Cfactor � Dfood intakeð Þ=Baverage weight

ð3Þ
where Cmetal represents heavy metal concentrations in
plants (mg kg−1), Cfactor is a conversion factor, Dfood

intake is daily intake of vegetables, and Baverage weight is
average body weight. A conversion factor of 0.085 was
used to convert fresh green vegetable weight to dry
weight as described by Rattan et al. (2005). The average

Table 1 Initial physicochemical properties of the soil at the experimental site in the top 50 cm

pH ECe
(dS/m)

OC
(g/kg)

Sand
(%)

Silt (%) Clay
(%)

Cu
(mg/kg)

Zn
(mg/kg)

Cd
(mg/kg)

Pb
(mg/kg)

Cr
(mg/kg)

Ni
(mg/kg)

8.1 2.5 12 60 25 15 27.85 81.9 2.3 7.45 13.8 18.65
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daily intakes for adults and children was considered to
be 0.345 and 0.232 kg per person per day, respectively,
while the average adult and child body weights were
considered to be 55.9 and 32.7 kg, respectively, as used
in previous studies (Ge 1992; Wang et al. 2005; Khan
et al. 2008; Zhi-Fan et al. 2010).

The health risk index (HRI) for the local population
through the consumption of contaminated grains was
calculated using DIM and reference oral dose (RfD) for
each metal:

HRI ¼ DIM=RfD ð4Þ
An HRI <1 means that the exposed population is

assumed to be safe (US-EPA 2012). The data were
statistically analyzed using the package STATISTICA
10 (StatSoft 2011). Statistical significance was detected
using the independent samples t test and analysis of
variance at α=0.05. Values shown are averages over
two farming seasons.

Results and discussion

Physicochemical properties and heavy metal
accumulation in soil

Table 3 shows the basic physicochemical soil properties
and heavymetal concentrations under the different treat-
ments and crops. pH was not significantly (p>0.05)
affected by the quality of irrigation water, depth of
emitter or type of crop. ECe under TWW irrigation
was significantly higher (p<0.01) than under irrigation
with FW, with the first showing values approaching
4 dS m−1, above which soils are expected to experience
salinity problems according to USDA criteria (Corwin
and Lesch 2013). Mohammad and Mazahreh (2003)
stated that the increase in EC for soil irrigated with
TWW compared with soil irrigated with freshwater
originates from the high level of totally dissolved solids
in TWW. Similarly, our study showed that reuse of

TWW leads to a significant (p<0.05) increase of Na
and K in soil. This observation was confirmed by Khai
et al. (2008) and Mojiri and Abdul Aziz (2011). They
reported that higher concentration of cations as Na and
K in TWW led to an increase in EC and exchangeable Na
and K in soils irrigated with TWW. Depth of emitters did
not result in significant differences (p>0.05). In addition,
differences between wheat and corn, though showing a
different irrigation schedule with corn receiving water at
higher frequency, were not significant (p>0.05).

With values below 4 g kg−1, soil organic carbon
(SOC) content was low. This is to be expected because
of rapidmineralization of SOC under semiarid conditions
(Giongo et al. 2011) and intensive use of these soils. No
significant differences in SOC (p>0.05) were found
when comparing water quality or emitter depth. Adding
wheat straw during crop maturity of wheat slightly in-
creased SOC compared to corn (p<0.05). Long-term
planting of crops with residue remaining on the field after
harvesting could gradually increase the amount of SOC
in soils that have low amounts of it (Jin et al. 2008).

Regarding heavy metal concentration, no significant
differences (p>0.05) were observed between emitter
depth. The high frequency of irrigation needed to ad-
dress the excessive crop water requirement in our arid
study area leads to similar wetting patterns in soil, which
could explain the minor effect of emitter depth.

Although the used TWW showed concentrations that
were for several heavy metals much higher as compared
to FW (Table 2), differences in heavy metal concentra-
tions in the soil were not significant across the water
qualities. Recent studies (Asgari et al. 2007a, b) showed
higher production of total dry mater in TWW-irrigated
plots compared with FW-irrigated plots. Consequently,
higher amounts of nutrient were taken up by plants and
overall low concentrations of heavy metals were ob-
served in sampled soils in TWW-irrigated plots. Crop
type did play a role for Cd (p<0.01), Pb (p<0.01), and
Ni (p<0.05), but not for Cu, Zn, and Cr (p>0.05). The
findings showed that each crop has the ability to take up
specific heavy metals from soil. Several studies

Table 2 Chemical properties of the treated wastewater and the freshwater

Water Source pH EC (ds/m) Cu (mg/kg) Zn (mg/kg) Cd (mg/kg) Pb (mg/kg) Cr (mg/kg) Ni (mg/kg)

Freshwater 7 1.2 0.07 0.06 0.010 0.01 0.010 0.010

Wastewater 7.5 1.4 0.13 0.37 0.012 0.02 0.013 0.022

Values shown are means (n=45)
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confirmed different phytoextraction ability of heavy
metal fractions by different plant species (Van
Ginneken et al. 2007; Wang et al. 2009; Bieby Voijant
et al. 2011).

Overall, mean values of Cu, an essential element for
living organisms, were 58.9 and 60.5 mg kg−1 under
wheat and corn, respectively. These concentrations were
below the Environmental Quality Standards set by the
US Environmental Protection Agency for soil samples
(US-EPA 2012). Zn and Ni are also essential elements,
and their mean values were 162.8 and 27.4 mg kgsoil

−1

for wheat and 206.3 and 30.5 mg kgsoil
−1 for corn,

respectively, i.e., below the EPA standards. The
mean values of Cd were 5.3 and 3.9 mg kgsoil

−1

for wheat and corn, respectively. In spite of its low
values, Cd concentrations at much lower levels
create toxicity compared to the other elements an-
alyzed in this study, and its concentration was
higher than the EPA standard in all treatments.
Finally, Pb and Cr are not essential elements for
plants and are toxic. Their mean values were 29.7
and 19.6 mg kgsoil

−1 for wheat and 34.1 and
44.1 mg kgsoil

−1 for corn, respectively, and lower
than the EPA standards.

Table 3 Basic properties and total metal concentration in the top 50-cm soil after drip irrigation DI of wheat and corn with wastewater
(WW) and freshwater (FW).

Property and element in soil Wheat Corn EPA soil, MCL

WW-irrigated FW-irrigated WW-irrigated FW-irrigated

DI0 DI15 DI30 DI0 DI15 DI30 DI0 DI15 DI30 DI0 DI15 DI30

pH 8.2 8.2 8.1 8.3 8.2 8.3 8.2 8.2 8.2 8.3 8.2 8.2 –

EC (ds/m) 3.7 4.0 4.3 2.1 2.5 2.2 3.7 3.1 4.2 2.0 2.7 2.3 –

OC (g/100 g) 3.9 3.8 3.5 3.8 3.7 3.7 2.6 2.6 2.8 2.5 2.6 2.9 –

Cu (mg/kg) 57.7 60.0 60.4 64.5 54.0 57.1 63.6 57.3 51.9 61.5 64.3 64.3 170

Zn (mg/kg) 161.1 190.1 160.7 156.8 153.7 154.6 197.3 230.2 238.9 146.1 227.6 197.7 350

Cd (mg/kg) 5.5 5.4 4.9 5.3 5.5 5.0 4.1 3.8 4.0 3.9 3.8 4.0 3

Pb (mg/kg) 20.2 19.8 20.8 18.9 17.5 20.2 46.4 47.3 46.9 41.6 37.5 44.8 250

Cr (mg/kg) 29.1 26.8 27.2 29.3 33.9 31.9 28.4 23.8 35.3 45.3 27.0 44.7 100

Ni (mg/kg) 25.6 23.5 24.6 25.0 25.4 24.2 30.0 29.8 34.8 28.9 29.0 30.3 100

Emitters were located at the surface (DI0), 15 cm depth (DI15), and 30 cm depth (DI30). MCL is a maximum concentration level (US-EPA
2012)

Fig. 1 Pollution load index (PLI) in wastewater-irrigated and freshwater-irrigated soils of wheat and corn. Emitters were located at the
surface (DI0), 15 cm depth (DI15), and 30 cm depth (DI30). (N=96)
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The PLI indices in Fig. 1 show that there was no
substantial buildup of heavy metals in the TWW-
irrigated soils compared to FW-irrigated soils. No sig-
nificant differences (p>0.05) were found between crop
and emitter depth. Continuous irrigation with TWW
containing heavy metals is expected to increase their
total concentration in soil. However, this study showed
PLI values near 1 for most treatments and elements.
Furthermore, no significant differences between soils
irrigated with TWW and FW were found. This could
be partly explained by the subsurface drip irrigation
system with higher water use efficiency, limited wetted
soil volume, and concentration of roots within the drip-
per’s bulb (Coelho and Or 1999;Wang et al. 2006). As a

result, less irrigation water was needed to achieve sim-
ilar yields as compared with other irrigation systems
(Najafi and Tabatabaei 2007; Asgari and Najafi 2008).
Because of lower water usage, fewer amounts of heavy
metals were added to the soil through irrigation with
TWW. To the best of our knowledge, specific studies on
the effect of emitter depth on accumulation of heavy
metal released from TWW under subsurface drip irriga-
tion in grain crops have not been reported so far. Kabata-
Pendias and Pendias (2001) show that both roots and
leaves absorbed a significant amount of Cd. Hinesly
et al. (1984) reported that soil pH had great influence
on Cd transport in corn (Z. mays L.). In studies related to
water and solute transport, the Hydrus model was used

Table 4 Heavy metals concentration in wheat and corn seeds grown under wastewater WWand fresh water FW drip irrigation

Element in seeds Wheat Corn EPA crop,MCL

WW-irrigated FW-irrigated WW-irrigated FW-irrigated

DI0 DI15 DI30 DI0 DI15 DI30 DI0 DI15 DI30 DI0 DI15 DI30

Cu (mg/kg) 11.7 12.8 13.8 12.5 12.4 13.5 3.7 3.9 3.1 4.5 3.5 3.3 20

Zn (mg/kg) 32.7 34.8 39.2 28.0 29.6 27.7 43.2 42.7 36.2 42.0 37.0 41.2 50

Cd (mg/kg) 1.1 1.1 0.9 1.2 1.0 1.2 0.2 0.3 0.3 0.4 0.3 0.1 0.1

Pb (mg/kg) 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.2

Cr (mg/kg) 0.1 0.0 0.0 0.0 0.0 0.0 1.0 0.4 0.6 1.4 1.9 0.6 1

Ni (mg/kg) 2.3 3.0 3.2 2.9 3.3 3.4 1.8 2.2 1.6 1.5 1.7 2.0 0.04

Emitters were located at the surface (DI0), 15 cm depth (DI15) and 30 cm depth (DI30). MCL is a maximum concentration level (US-EPA
2012). Values shown are means (n=96)

Fig. 2 The plant concentration factor (PCF) in edible seeds of wheat and corn grown in wastewater (WW)-irrigated and freshwater (FW)-
irrigated soils. Emitters were located at the surface (DI0), 15 cm depth (DI15), and 30 cm depth (DI30). (N=96)
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to simulate soil water and solute transport under subsur-
face drip irrigation (Kandelous and Šimůnek 2010;
Kandelous et al. 2011; Shan and Wang 2012). Cote
et al. (2003) indicated that in highly permeable coarse
textured soils, water moved quickly downwards from
the dripper. Skaggs et al. (2004) demonstrated that for
drip tape irrigation the soil water distribution predicted
with Hydrus-2D agreed well with experimental obser-
vations. Globally, recent studies demonstrated that the
number of drippers, discharge rate, and the irrigation
frequency of a drip irrigation system could adopt wetted
soil volume as close as possible to the crop-rooting
pattern (Wang et al. 2006; Kandelous et al. 2011).

Heavy metals in seeds

Concentrations of heavy metals in the edible seeds of
wheat and corn are shown in Table 4. No significant
differences were found between water source and emit-
ter depth (p>0.05). Because of the high frequency of
irrigation as well as roots growing primarily in the
wetted zone near the emitters, emitter depth did not
affect the level of absorbed heavy metals for a given
crop. Our results (not presented here) show that because
of the high amount of nutrients, especially nitrogen and
phosphorus in TWW, the wheat and corn seed dry
matter per unit area under TWW drip irrigation was
higher than under FW use, which is consistent with
other studies (Asgari and Najafi 2008; Zema et al.
2012). These higher seed dry matter with TWW might
compensate for the higher uptake hence resulting in
non-significant differences. Crop type on the other hand
did significantly affect concentrations of Cu, Cd, Pb,
and Ni in wheat seeds being significantly higher than in
those of corn (p<0.01), whereas Zn and Cr concentra-
tions were larger in corn (p<0.01). This could be as-
cribed to the plant-specific ability to absorb trace ele-
ments from soil (Van Ginneken et al. 2007; Wang et al.
2009; Bieby Voijant et al. 2011).

The maximum permissible limit of Pb, Cd, Cu, Zn,
Cr, and Ni are respectively 0.2, 0.1, 20, 50, 1, and
0.04 mg kg−1 dry seed based on a dry weight (US-
EPA 2012). Mean values of Cu, Zn, and Cr elements
were below the EPA limits and appear to be safe.
However, concentrations of Cr, Cd, and Ni did exceed
standard limits. Both wheat and corn were heavily con-
taminated with Ni and Cd, and corn was contaminated
with Cr. The mean values of Cd in wheat and corn were
10.5 and 2.7 times the EPA standard limits, respectively. T
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For Ni, concentrations were even 75 and 45 times higher
than the EPA limits for wheat and corn, respectively.
These concentrations are of serious concern owing to
the potential public health impacts.

Several researches also showed that irrigating rice
fields using TWW increased the accumulation of heavy
metals in plants as compared to FW irrigation resources
(Chung et al. 2011; Jung et al. 2014). Li et al. (2012)
confirmed that heavy metals (Cd, Cr, Cu, Zn, and Ni)
from soil are transferred to edible seeds such as of rice
and to root of vegetables. Some studies in contaminated
mining areas showed that Zn and Cu concentration
exceed the maximum allowable limit in parsley and
carrot roots (Harmanescu et al. 2011), and roots of other
vegetables compared with those grown in clean refer-
ence areas (Lacatusu and Lacatusu 2008). Cd is a mobile
element, easily absorbed by roots and transported to
shoots where it is uniformly distributed in plant
(Sekara et al. 2005). Several studies observed high
concentrations of Cu in seeds (Fytianos et al. 2001;
Sridhara Chary et al. 2008; Olawoyin et al. 2012;
Khan et al. 2013b; Liu et al. 2013). In some studies
related to soil and crop pollution, average level of heavy
metals, such as Cd and Pb were more than 0.2 mg kg−1

in vegetables (Arora et al. 2008; Zhuang et al. 2009;
Singh et al. 2010; Huang et al. 2014). Pandey et al.
(2012) studied dietary intake of heavy metals via vege-
tables. The results indicated substantial accumulation of
heavy metals in vegetables, which was found to be
maximum in leaves (spinach) followed by fruits

(tomato) and roots (radish). They determined concentra-
tions of Cd, Ni, and Pb in vegetables exceeding the safe
limits of prevention of food adulteration and the values
recorded were 5.36 mg g−1 for Cd, 13.77 mg g−1 for Cr,
27.46 mg g−1 for Cu, 5.94 mg g−1 for Ni, and
19.77 mg g−1 for Pb.

The plant concentration factor (PCF) values were not
significantly different (p>0.05) among the two water
qualities and three depths of emitters. Higher wheat and
corn yields with TWW drip irrigation resulted in similar
PCF values as compared to FW irrigation. Overall, there
was a great variability in PCF values for each heavy
metal per treatments and sub-treatments. The mean
values of PCF for heavy metals including Cu, Zn, Cd,
Pb, Cr, and Ni were respectively 0.07 to 0.32, 0.17 to
0.36, 0.0 to 0.28, 0.0 to 0.01, 0.0 to 0.13, and 0.03 to 0.32
(Fig. 2). On the other hand, PCF values of Cu and Pb
were significantly different (p<0.01) between crop type.
For Pb and Cu, the values of PCF in corn seeds were
lower than those in wheat, while the PCF values of other
elements in corn seeds were comparable to the levels
found in wheat seeds. Some studies (Jan et al. 2010)
showed that Cd and Cr had higher value of PCF than
other elements, which was not confirmed in our study.

Human health risks resulting from daily intake of heavy
metals through food consumption

There are various exposure pathways of pollutants to
humans, such as the food chain, dermal contact, and

Fig. 3 The health risk index (HRI) for children and adults of heavy metals associated with wheat and corn grown in wastewater drip-
irrigated soils. Emitters were located at the surface (DI0), 15 cm depth (DI15), and 30 cm depth (DI30). (N=96)
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inhalation. Compared to oral intake, all other pathways
are negligible. The daily intake of heavy metals was
assessed according to average consumption estimations
(Table 5). DIM was significantly higher when consum-
ing food crops grown in TWW-irrigated soils. The
highest intake of Cd, Cu, Ni, and Pb were observed for
wheat consumption, and of Zn and Cr for corn
consumption for both adults and children. For adults,
the contribution of seeds to dietary intake of Cu, Zn, Cd,
Pb, Cr, and Ni per individual per day was respectively
36.5, 101.7, 2.9, 0.2, 0.09, and 8.1 μg for wheat, and
10.2, 116.49, 0.7, 0.01, 1.9, and 5.3 μg for corn. For
children, the related contribution per day was 53.1, 174,
4.97, 0.3, 0.17, and 0.13.8 μg for wheat, and 17.5, 199,
1.3, 0.03, 3.2, and 9 μg for corn. However, these values
are still below the tolerable limits recommended by the
FAO/WHO in the study area. Khan et al. (2013b) studied
the effects of irrigation with TW for some crops includ-
ing wheat and corn. They estimated values of DIM for
both crops in the same ranges as those observed in the
current study. Several studies indicate a wide variation
in daily intake of trace elements via grain crop and
vegetables, which often depends on variation in crop
ability, as well as element content, growth period and
seasonal influences (Khan et al. 2013a, b; Liu et al.
2013; Wang et al. 2013; Wongsasuluk et al. 2014;
Huang et al. 2014).

The HRI ofmetals through the consumption of edible
seeds for both adults and children is given in Fig. 3. HRI
is usually adopted to assess the health risk to hazard
materials in foods (Chen et al. 2011; Osman et al. 2011).
HRI more than 1 is considered not safe for human health
(USEPA 2000; US-EPA 2012). Results show that Cu
intake through the consumption of edible wheat seeds
posed a relatively high potential health risk to children,
and it is also somewhat dangerous for adults, irrespec-
tive of emitter depth. For corn, HRI always remained
<0.5. Values of Zn, Pb, Cr, and Ni also remained below
1 (except for Cr under corn with surface emitters). Cd,
however, showed a high potential health risk, particu-
larly for wheat, with HRI values far above 1. Similar
findings have been observed in Nanning, China (Cui
et al. 2004), Boolaroo, Australia (Kachenko and Singh
2006), Swat District, Pakistan (Khan et al. 2013b), and
Zhejiang, China (Huang et al. 2014).

Jan et al. (2010) reported that some vegetables irri-
gated with TWW have high HRI of Mn, which was also
observed by Singh et al. (2010) in rice and wheat grains,
whereas Chen et al. (2010) reported safe HRI (<1) in

edible seeds of plants grown in sewage-irrigated soils.
Wang et al. (2013) studied thallium (Tl) contamination in
soils and reported that HRI values were generally higher
than 1, indicating that health risks associated with Tl
exposure are significant and assumed to be dangerous
to the health of local villagers. Pandey et al. (2012) found
that HRI for Cd and Pb exceeded EPA’s safe limits.

Conclusion

Several studies reported that irrigation of agricultural
lands with TWW has caused a substantial buildup of
heavy metals in soils compared to background values
and control soils. In contrast to this, we found that
irrigation of wheat and corn with TWW did not signif-
icantly elevate the concentration of heavy metals com-
pared to the FW-irrigated soils. This could be attributed
to less usage of water and higher uptake of nutrients due
to higher dry matter production under drip irrigation.

The concentration of heavy metals in wheat grains
were significantly higher than those of corn except for
Zn, illustrating that wheat had a higher ability to take up
heavy metals from soil as compared with corn.
Therefore, wheat production in contaminated soil seems
to lead to higher health risk for humans as indicated by
the HRI values of heavy metals. It is worth to mention
that crops grown in arid or semi-arid region naturally
suffer from Zn and Cu deficiency. Therefore, HRI ex-
pedience of Zn and Cu in crops may not be taken as
seriously as other nonessential trace elements.

Based on our results, drip irrigation system could be a
potential solution for reducing the metal contamination
of edibles crops irrigated with TWW and cultivated in
contaminated soils. The depth of the emitters though did
not play a significant role. The results suggest that more
attention should be directed toward cultivation of other
crops with drip irrigation system for a safe and more
productive use of TWW for irrigation.
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