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Abstract For the evaluation of seasonal and spatial
variations and the interpretation of a large and com-
plex water quality dataset obtained during a 7-year
monitoring program of the Sava River in Croatia, dif-
ferent multivariate statistical techniques were applied
in this study. Basic statistical properties and correla-
tions of 18 water quality parameters (variables) mea-
sured at 18 sampling sites (a total of 56,952 values)
were examined. Correlations between air temperature
and some water quality parameters were found in
agreement with the previous studies of relationship
between climatic and hydrological parameters. Princi-
pal component analysis (PCA) was used to explore the
most important factors determining the spatiotempo-
ral dynamics of the Sava River. PCA has determined
a reduced number of seven principal components that
explain over 75 % of the data set variance. The results
revealed that parameters related to temperature and
organic pollutants (CODMn and TSS) were the most
important parameters contributing to water quality
variation. PCA analysis of seasonal subsets confirmed
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this result and showed that the importance of param-
eters is changing from season to season. PCA of the
four seasonal data subsets yielded six PCs with eigen-
values greater than one explaining 73.6 % (spring),
71.4 % (summer), 70.3 % (autumn), and 71.3 %
(winter) of the total variance. To check the influ-
ence of the outliers in the data set whose distribution
strongly deviates from the normal one, in addition to
standard principal component analysis algorithm, two
robust estimates of covariance matrix were calculated
and subjected to PCA. PCA in both cases yielded
seven principal components explaining 75 % of the
total variance, and the results do not differ signifi-
cantly from the results obtained by the standard PCA
algorithm. With the implementation of robust PCA
algorithm, it is demonstrated that the usage of standard
algorithm is justified for data sets with small numbers
of missing data, nondetects, and outliers (less than
4 %). The clustering procedure highlighted four dif-
ferent groups in which the sampling sites have similar
characteristics and pollution levels. The first and the
second group correspond to relatively low and mod-
erately polluted sites while stations which are located
in the middle of the river belong to the third and
fourth group and correspond to highly and moderately
polluted sites.

Keywords Principal component analysis (PCA) ·
Cluster analysis (CA) · Robust PCA · Surface water
quality
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Introduction

Surface water quality is very important and very sen-
sitive issue. It is determined by natural processes such
as dissolution of geological deposits, biological degra-
dation of organic matter, and atmospheric deposition.
In addition to natural sources, urban and industrial
development, farming, building of dams, and diver-
sion of flow and other human activities within the
aquatic environment alter the physical and chemical
composition of water (Meybeck 1998; Malmqvist and
Rundle 2002; Mayer et al. 2002). Since degradation
of water quality can result in altered species diversity,
decrease the overall health of aquatic ecosystem, and
cause a serious harm to human heath and the envi-
ronment, it is necessary to monitor the water quality
regularly. Long-term water quality monitoring pro-
grams (Dixon and Chiswell 1996) often provide large
sets of data which are difficult to interpret. In attempt
to draw meaningful conclusions and achieve better
understanding of water quality, different multivari-
ate techniques, such as principal component analysis
(PCA), factor analysis (FA), or cluster analysis (CA),
have been applied to these complex data matrices
(see, e.g., Vega et al. 1998; Simeonov et al. 2003;
Bouza-Deano et al. 2008; Li et al. 2011; Pinto and
Maheshwari 2011; Olsen et al. 2012; Wang et al. 2012;
Mei et al. 2014).

PCA is widely used technique in science. It was
often applied to exploratory data analysis in water
quality research as has been recently summarized by
Olsen et al. (2012). PCA is the simple non-parametric
method which can be used to reduce a complex data
set to a lower dimension and capture sometimes hid-
den, underlying patterns present within the original
data (Wold et al. 1987). It is optimal in terms of
mean squared error, and the model parameters can
be computed directly from the data. Despite these
attractive features, PCA models have several short-
comings. First, it is not obvious how to deal properly
with incomplete data set (what is often the case).
Second, the standard PCA algorithm is based on the
assumption that data are not spoiled by outliers. In
case of outliers, robust version of PCA has to be
developed (Ruymgaart 1981; Maronna et al. 2006;
Stanimirova et al. 2007). To account for outliers,
the most commonly used approach is to replace the

standard estimation of the covariance matrix with a
robust one (Campbell 1980; Croux and Haesbroeck
2000; Hubert et al. 2002).

The main goal of this study is to determine the state
of the Sava River in the transition period between the
end of the war in Croatia and the adjustment of its
legislation to the European standards. Therefore, the
results of this study can be used as ‘baseline’ condition
when examining the impacts of those changes. For this
purpose, different multivariate statistical approaches
were applied to the data matrix obtained during the
7-year water quality monitoring of the Sava River
in Croatia with the goal to detect and quantify the
water quality trends. Pearson correlation coefficient,
PCA, and CA were used to obtain the information
about the latent factors explaining the data set, to
describe the seasonal and spatial variations, the influ-
ence of possible sources (natural or anthropogenic)
on the parameters, and the similarities between sam-
pling sites. Robust PCA algorithm was used to check
the influence of the outliers in the data set on the
results. All mathematical and statistical computa-
tions were made using MATLAB version 7.7.0.471
(R2008B).

Materials and methods

Study area

Water samples used in this work were collected from
the Sava River in Croatia. The river is located in
Southeast Europe. It has its source in Slovenia, flows
through Croatia, Bosnia and Herzegovina, and on to
Serbia where it joints, as side tributary, river Danube
in Belgrade. It is suitable for navigation downstream
of Sisak, Croatia. The river is 945 km long; in Croatia,
it flows in the length of 510 km and for the most part
constitutes the border with Bosnia and Herzegovina
(313 km). The average flow of the Sava River at its
entry into Croatia (Jesenice) and at its exit from Croa-
tia amounts to 300 and 1200 m3/s, respectively. The
main tributaries in this segment of the basin are Kupa,
Una, Vrbas, Sutla, Krapina, Lonja, Ilova, Orljava, and
Bosut. Major towns along the river that have consider-
able industrial capacities are Zagreb, Sisak, Slavonski
Brod, and Županja. The main sources of pollution
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come from untreated wastewaters discharged from
municipalities and industries along the Sava River as
well as the tributaries.

In its middle course, downstream of Zagreb, Sava
becomes a very large lowland river; it is unique
example of a river with flood plains that are still
intact and support flood alleviation and biodiver-
sity. It has been considered as one of the key
areas in the Pan European Biological and Landscape
Diversity Strategy (PEBLDS) of the Council of
Europe. The Lonjsko Polje Nature Park and Special
ornithological reserve Crna Mlaka (Crna Mlaka Fish-
ponds) have been included on the Ramsar List of
Wetlands of International Importance and on the list
of internationally Important Bird Areas. The Lonsko
Polje has also been included in the ecological network
in its entirety as an area important for the conserva-
tion of species and habitats. In the Sava River Basin
in Croatia, almost entire public water supply has been
based upon groundwater exploitation. Since the water
of the Sava River is in the hydraulic connection with
groundwater, the quality and the quantity of the Sava
River are very important.

Monitoring sites

In Croatia, the water quality monitoring network is
operated primarily by Croatian Waters. The Sava
River monitoring system covers 18 sample sites

(Fig. 1) where the water quality is tested twice per
month. Water quality monitoring stations are located
upstream and downstream of the tributaries, developed
areas and inputs from drains. The first and the last sta-
tion (S1, S18) are located just downstream/upstream
of the international border with Slovenia/Serbia. Sta-
tions S6, S8, S10, and S14 are located upstream while
the stations S7, S9, S11, and S15 downstream of the
right tributaries Kupa, Una, Vrbas, and Bosna, respec-
tively. Stations S6 and S7 are also covering an area of
Sisak. Stations S2, S12, and S16 are located upstream
while the stations S3, S4, S5, S13, and S17 down-
stream of Zagreb, Slavonski Brod and Županja. Sta-
tion S4 is located downstream from the mouth of the
Main Drainage Channel of Zagreb, where the impact
of discharged Zagreb wastewaters was significant.
Twelve Trans National Monitoring Network (TNMN)
stations are operating in the Sava River Basin, among
them three stations are on the Sava River in Croatia
(S1, S8, and S17).

Sampling and chemical analysis

Water quality of the Sava River is monitored regularly
in accordance with national regulations. In this study,
18 physico-chemical parameters obtained at each sta-
tion were used for analysis. Data for the sampling
period from 01 January 2000 to 31 December 2006
are presented when samples were collected twice per

Fig. 1 Map of the sampling
site locations
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month (every other week). Sampling, preservation,
and chemical analyzes were performed according to
standard analytical methods for the examination of
surface waters (ISO; APHA 1995; EPA 1999) which
are routinely applied in the water quality monitor-
ing laboratories. Air and water temperatures were
measured on the site while pH, electrical conduc-
tivity, and dissolved oxygen were measured both
on the site (by using standard electrochemical tech-
niques; portable pH, dissolved oxygen and conductiv-
ity meters, HANNA instruments) and in the labora-
tory. For meaningful data interpretation, water quality
parameters measured at various temperatures need to
be transformed to values corresponding to a stan-
dard temperature (Hayashi 2004). Therefore, only data
measured in the laboratory were used here. Unless oth-
erwise specified in the methods, water samples were
collected in 3–5 L polyethylene containers, stored in
the dark at 4 ◦C, and analyzed within 24 h. For the total
suspended solids determination, samples were filtered
through 0.45 cellulose nitrate membrane filter (What-
man, Springfield Mill, England). The water quality
parameters, their units and abbreviation and methods
of analysis are summarized in Table 1.

Although at most stations, samples have been col-
lected over 30 years and there are more than 50 water
quality parameters available (including detergents,
pesticides, and other organic parameters, biological
and microbiological parameters, heavy metals, etc.),
only 26 parameters have been selected due to the con-
tinuity in measurement at all water quality monitoring
stations. Constituents that were not routinely ana-
lyzed and/or analyzed at all stations were excluded.
This data set was further refined by retaining only
18 parameters; highly redundant constituents (such as
multiple forms of nitrogen) and constituents that have
nearly constant concentrations over the entire water-
shed were excluded. Finally, we have 18 parameters at
18 locations over the 7-year period.

Data and statistical methods

Data set

The data set used in this work consisted of 3164 sam-
ples by 18 variables. This rather large set of data (a
total of 56,952 values) contained only eight missing
data (0.01 %) which were replaced with median values

Table 1 Determined water quality parameters and analytical methods used in the study

VARIABLE ABBREVIATION UNITS METHODS

Air temperature A-TEMP ◦C

Water temperature W-TEMP ◦C SM 2550

pH pH ISO 10523:1998

Electrical conductivity EC μS/cm ISO 7888:1985

Total suspended solids TSS mg/L ISO 11923:1997

Alkalinity ALK mgCaCO3/L ISO 9963-1:1994

Dissolved oxygen DO mgO2/L ISO 5813:1983

Oxygen saturation OS %

Permanganate index CODMn mgO2/L ISO 8467:1993

Chemical oxygen demand CODCr mgO2/L ISO 6060:1989

5-d biological oxygen demand BOD5 mgO2/L ISO 5815:1998

Ammonium NH+
4 mgN/L ISO 7150-1:1984

Nitrite NO−
2 mgN/L SM 4500-NO2

Nitrate NO−
3 mgN/L SM 4500-NO3

Kjeldahl nitrogen TKN mgN/L SM 4500-Norg

Total phosphorus TP mgP/L SM 4500-P

Total oil TO mg/L EPA 1664∗

Mineral oil MO mg/L EPA 1664∗

*modified
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of appropriate variables (Olsen et al. 2012) and 234
data (0.4 %) which were found to be below detection
limit and were replaced with half of the detection limit
value (Farnham et al. 2002). Basic statistical proper-
ties of the data set used are summarized in Table 2.
Along with the distribution of missing data (MD) and
the data below the detection limit (DL), the moments
of the data distributions are given. The values of
skewness and kurtosis of all variables but A-TEMP,
W-TEMP, EC, and DO depart significantly from the
normal distribution. Hence, to describe the distribution
of the data in this work, the robust statistic, median,
and interquartile range (IQR) are used (right hand-side
of the Table 2). All data whose values lay outside the
interval (Q1 − 3·IQR, Q3 + 3·IQR), where Q1 and Q3

are the first and third quartile, respectively, were con-
sidered as outlying. According to this criterion, there
were 1.7 % univariate and 3.8 % multivariate outliers
in the data set. The number of multivariate outliers
was determined by applying described criterion on
the distribution of Mahalanobis distances from com-
mon center (Mahalanobis 1936). We do not want to
suggest that those values are indicative of measure-
ment errors or bias in the data but to emphasize that

populations have skewed and heavy-tailed distribu-
tions and that tools that assume a normal distribution
should be used with caution.

Principal components analysis (PCA)

PCA is a mathematical procedure that uses orthog-
onal transformation to convert a set of observations
into a set of linearly uncorrelated variables called
principal components. Due to the quadratic error cri-
terion, standard PCA algorithm is very sensitive and
its output can change dramatically in the presence of
only a few outliers (Maronna et al. 2006). The data
set used in this work contained variables whose dis-
tributions strongly deviate from normal distribution,
with some having strongly skewed and heavy tailed
distributions and/or non negligible number of out-
liers (see Table 2). Therefore, in addition to standard
algorithm, the robust PCA algorithm was used. The
PCA was performed on covariance matrix that was
calculated by weighting the mean and the products
which form it. The data were weighted with respect
to their distance from the center. Two ways of weight-
ing were used: univariate where the variables were

Table 2 Descriptive statistics of the water quality parameters

Variable MDa DLb Mean Variance Skewness Kurtosis Median IQRc OPd

A-TEMP 4 14.3 92.6 −0.231 2.46 15.0 14.5 0

W-TEMP 14.2 50.8 0.160 1.97 13.6 12.0 0

pH 7.89 0.077 −0.694 4.04 7.90 0.320 0

EC 407 3005 0.243 3.07 402 75.0 0

TSS 1 21.9 2121 11.2 196 12.0 14.0 5.31

ALK 1 213 2837 2.35 8.80 200 33.0 7.93

DO 1 8.75 3.68 −0.191 3.70 8.80 2.75 0

OS 83.8 287 2.04 16.7 82.9 13.3 2.75

CODMn 4.22 4.17 9.21 193 3.80 1.54 1.30

CODCr 1 13.3 41.9 3.26 31.8 12.3 6.20 0.88

BOD5 2.73 1.69 1.80 9.36 2.50 1.40 0.88

NH+
4 4 0.175 0.034 3.01 21.1 0.120 0.170 1.52

NO−
2 0.030 0.0006 7.27 121 0.024 0.018 1.96

NO−
3 1.34 0.253 1.08 8.41 1.30 0.600 0.35

TKN 0.738 0.319 2.06 11.4 0.590 0.650 0.54

TP 1 0.193 0.020 3.15 19.6 0.160 0.120 2.05

TO 14 0.170 0.047 6.43 69.6 0.130 0.149 2.53

MO 215 0.052 0.009 21.8 719 0.040 0.041 1.68

anumber of missing data, bnumber of data below the detection limit, cinterquartile range, doutliers percentage (univariate)
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weighted independently and multivariate where all
variables were weighted simultaneously. In the first
case, the weight of each data point was calculated
as inverse value of absolute distance from median in
the units of median of absolute distances for a given
variable:

wi = median(|xi − median(xi)|)
|xi − median(xi)| (1)

where wi is the weight, xi are measurements of given
variable, and || denotes absolute value. In this way,
matrix of weights wij of the same dimension as the
data matrix was obtained. In the multivariate case,
the data were weighted with the normalized reciprocal
value of Mahalanobis distance. In this way, obtained
vector wi obtained in this way was used in calculation
of covariance matrix.

Cluster analysis (CA)

CA is a common technique for statistical data analy-
sis and exploratory data mining used in many fields
as well in water quality assessment (Shrestha and
Kazama 2007; Kazi et al.2009). With the aim of exam-
ining spatial variability (grouping similar sampling
sites and spreading them over the river), in this study,
hierarchical agglomerative clustering was performed
on the normalized data set by the Ward’s method of
linkage with squared Euclidean distances as a mea-
sure of similarity. Unlike PCA which uses a number of
principal components for display purposes, CA uses
all the information contained in the original data set.

Results and discussion

Correlation

The correlation matrix of the 18 variables was calcu-
lated. The obtained correlation coefficients should be
interpreted with caution because they reflect both spa-
tial and temporal variations (see Fig. 2). Strong cor-
relations between A-TEMP and W-TEMP (R = 0.89),
CODMn and CODCr (R = 0.71), TSS and both CODs
(R = 0.70, R = 0.54), as well as DO and OS (R=0.69)
and DO and temperatures (R=-0.60, R = -0.51) can be
observed. Somewhat weaker correlations are observed
between both CODs and BOD5, TO and MO, NH+

4
and TKN, and NO−

3 and temperatures.The obtained
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Fig. 2 Temporal and spatial variations of DO

results are expected and consistent with the fact that
these variables are dependent on each other.

The relationship between climatic, hydrological,
and water quality parameters was recently studied by
other authors. Most of them analyzed influence of air
temperature on river water quality. Our results match
well with the results of those studies. Analyzing mete-
orological and river water quality data Ozaki et al.
(2003) found that an increase in A-TEMP resulted in
rises in BOD and SS and a drop in DO. From the ana-
lyzes of the four seasons, the gradients differed signif-
icantly over the seasons for W-TEMP, BOD, DO, DO
saturation ratio, SS and pH, and enhanced dependen-
cies were observed in summer. In our work, enhanced
A-TEMP dependencies of W-TEMP and BOD are
observed in spring and DO and OS in autumn. It
should be mentioned that Ozaki et al. (2003) used
slightly different boundaries for seasons than the ones
used here. Studying the lower Mekong River Prathum-
ratana et al. (2008) found positive correlation between
A-TEMP and TSS, NO−

3 , TP and COD and negative
correlations with DO and ALK. Similar results were
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obtained in this paper except for the negative correla-
tion between A-TEMP and NO−

3 . However, studying
climate-water quality relationships in large rivers on a
global scale by investigating the climate elasticity of
river water quality Jiang et al. (2014) concluded that
some parameters can be site specific (in their work
NO−

2 and ortho-P). They also showed that elasticity
is basically consistent with the results of statistical
correlation on the direction of response. Correlations
obtained here are in the same direction as the elasticity
obtained by Jiang et al. (2014).

Multivariate analysis of the entire data set

Prior to PCA, data were normalized to have zero
means and unit variances to account for different
measurement units and to equalize the impact of
all variables on the total variance in the data set.
Seven principal components having eigenvalues larger
than one were obtained explaining over 75 % of the
total variance (with individual components explaining
20.0, 13.4, 13.1, 8.8, 7.7, 6.4, and 6.2 %). To sim-
plify the structure of the obtained solution, varimax
rotation of the seven component subspace was per-
formed and the resulting variable loadings are given in
Table 3.Simultaneously with simplifying the loadings

structure of the components, varimax rotation equal-
izes their variances making previously more important
components less important and vice versa. The per-
cent of total variance explained by first and seventh
component changed from 20.0 and 6.2 % to 14.3 and
8.3 %, respectively.

The first rotated component (VF1) is responsi-
ble for 14.3 % of the total variance and has strong
(Liu et al.2003) negative loadings for air and water
temperatures and moderate positive loadings for DO
and NO−

3 suggesting a physico-chemical source of
variability. This varifactor can be explained that tem-
perature increase leads to decrease the amount of DO
and acceleration of nitrification in water. It also indi-
cates that the most of the variability in the data is
due to the temperature changes. VF2 accounts for
14.2 % of the total variance and is correlated primar-
ily with TSS, CODMn, and CODCr. This component
represents influences from organic pollutants related
mostly to human activities, such as domestic and
industrial discharges, and also to decaying plant and
animal matter. VF3 accounting for 10.9 % of the total
variance is largely contributed by DO and OS and
represents physico-chemical source of the variability
and influences from natural inputs. The total explained
variance of VF4 is 10.8 %. It has a strong loading

Table 3 Loadings of 18 variables on Varimax rotated principal components

1 2 3 4 5 6 7

A-TEMP −0.924 −0.018 −0.046 0.014 −0.067 0.053 −0.040

W-TEMP −0.937 −0.001 −0.044 0.111 −0.046 0.042 -0.018

pH −0.129 0.164 0.434 0.014 0.224 0.568 0.138

EC −0.052 0.412 0.121 0.768 −0.056 0.202 −0.001

TSS 0.069 −0.921 −0.018 −0.229 −0.031 −0.056 0.039

ALK 0.012 0.085 0.167 0.215 0.057 −0.859 0.048

DO 0.549 −0.009 0.773 −0.018 −0.060 −0.015 −0.022

OS −0.162 −0.030 0.917 0.067 −0.113 0.004 −0.042

CODMn −0.060 −0.884 −0.018 0.162 −0.089 −0.056 0.011

CODCr −0.010 −0.709 0.040 0.171 0.102 0.356 −0.022

BOD5 −0.077 −0.384 0.196 0.456 0.166 −0.046 −0.099

NH+
4 0.287 0.091 −0.229 0.264 0.675 −0.020 0.025

NO−
2 −0.068 0.009 −0.208 0.693 −0.105 −0.102 0.033

NO−
3 0.610 −0.035 −0.368 0.254 −0.235 0.283 −0.141

TKN −0.113 −0.030 0.029 −0.146 0.916 0.074 −0.055

TP 0.052 −0.241 0.070 0.572 0.118 −0.115 0.039

TO −0.077 −0.015 0.086 −0.111 0.165 −0.333 −0.759

MO 0.029 0.052 −0.035 0.064 −0.110 0.248 −0.926
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of EC and moderate of inorganic nutrients (NO−
2 and

TP). This inorganic nutrient-type component could
be interpreted as representing the influences from
agricultural chemical application (excessive use of
fertilizers), domestic and industrial discharges, and
the erosion of natural deposits. VF5 (8.6 % of the
variance) that is weighted on water-soluble nitrogen
species (TKN and NH+

4 ) is likely to represent the
sewage and manure discharges to water bodies, influ-
ences from agricultural runoff and byproducts from
the industrial manufacturing processes. VF6 (8.5 % of
the variance) is negatively loaded on ALK and pos-
itively on pH, representing physico-chemical source
of the variability (mineral component of the water).
VF7 explaining 8.3 % of the total variance is corre-
lated with oils. This component could be interpreted as
representing influences from municipal and industrial
sewage, runoff from roads and municipal areas. Also,
ships and motorboats might contribute significantly to
water pollution with oils.

These results are consistent with the results of other
authors which have used PCA for water quality inves-
tigations. In order to characterize the nature of the
water quality impairment in the Wen-Rui Tang River
watershed (China) and the relationships among the
water quality parameters, Mei et al. (2014) selected
the ten correlated parameters for FA. FA identified
three factors with eigenvalues >0.96 (1) summing
to 70.9 % of the total variance in the water qual-
ity dataset. Results revealed that parameters related
to organic pollutants (VF1), nutrients (VF2), and salt
concentration (VF3) were the most important param-
eters contributing to water quality variation. Pinto
and Maheshwari (2011) employ FA to considerably
reduce the number of variables obtained in a rou-
tine monitoring program in the Hawkesbury-Nepean
River system in New South Wales, Australia and
identify the latent factors relative to river health in
peri-urban landscapes. Out of 40 water quality vari-
ables measured on monthly basis during 2008 and
2009 included in the analysis, the FA identified nine
key variables, under three varifactors (VFs), explain-
ing 50 % of the variance in the river water qual-
ity. Anaerobic fermentation, microbial pollution, and
eutrophication are three key environmental problems
faced by peri-urban rivers. In an attempt to differen-
tiate between sources of variation in the water quality
of the Ebro River (Spain), Bouza-Deano et al. (2008)
carried out exploratory analysis of data by CA and

PCA. In their study, PCA has allowed the identifica-
tion of the following factors: geologic (VF1 and VF2),
climatic (VF3), and anthropogenic (VF4). Simeonov
et al. (2003) employed PCA for the interpretation
of a large and complex data matrix (21 parame-
ters determined at 25 sampling sites for a period of
36 months) obtained during a monitoring program of
surface waters in Northern Greece. Six principal com-
ponents were obtained. VF1, VF2, and VF3 represent
organic, nutrient, and physico-chemical source of the
variability and are similar to components obtained
in our study. Similar results were obtained by other
authors which were studying surface water quality
using multivariate techniques (Ouyang et al. 2006;
Fan et al. 2010; Razmkhah et al. 2010; Nasir et al.
2011).

In the Fig. 3, the VF1/VF2 scores plot is given.
Individual scores (a) as well as sampling stations (b)
and seasonal (c) medians are shown. The variances of
the VFs are denoted with the white ellipse in the panel
(a) whose semimajor axes are equal to standard devi-
ations of VFs. It can be noted that all of the points are
located roughly within 3σ in the VF1 direction while
this is not the case in the VF2 direction. This reflects
the structure of those components: VF1 is composed
from variables whose distributions are close to nor-
mal distribution, while VF2 contains variables whose
distributions differ significantly from the normal one.
More negative values of VF1 indicate higher temper-
ature, while more negative values of VF2 represent
higher organic pollution. It can be readily seen that S4
has highest organic pollution. As already mentioned,
station S4 is located downstream from Zagreb, the
largest municipal center in the watershed. The temper-
atures and the organic pollution are higher in summer
and spring than in autumn and winter, as expected. It
can be noted on the figure that upper stations (S1–S4)
have higher values of VF1 than the downstream sta-
tions indicating lower temperatures at those stations.
This can be explained by the fact that samples from the
stations near Zagreb have been collected in the morn-
ing while the stations downstream have been sampled
mostly in the afternoon when the air temperature is
higher. Stations S1–S4 have higher NO−

3 values and
stations S1, S2, and S3 additionally higher DO median
what also leads to increased VF1 median for these
stations.

On the banks of the Sava River and its tribu-
taries are located cities with developed industries
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Fig. 3 VF1 versus VF2 scores for the Sava River: (a) individual scores, (b) sampling stations, and (c) seasonal medians

such as Zagreb - capital city of Croatia with sig-
nificant population and diverse industry, Krško -
nuclear power plant, Sisak - river port, refinery, food
factory, factory of alcoholic beverages, Kutina - petro-
chemistry, Slavonski Brod - food processing, metal
processing, Bosanski Brod - oil refinery, Županja -
sugar factory, wood industry, food industry, etc. Also,
agriculture and animal breeding followed by food
industry are well developed especially in the middle
and lower part of the Sava watercourse. The main
sources of organic and nutrient pollution come from
untreated wastewaters discharged from municipali-
ties and industries along the Sava River as well as
the tributaries. For the year 2007, in Croatia, 104
agglomerations ≥2000 PE in the Sava River Basin
were present out of which 89 agglomerations emit-
ted wastewaters into the environment without any
treatment.

Examination of spatial changes of rotated com-
ponents reveals that all VF, except VF1, have large
extreme values at station S4 which in most cases
approach median through station S5 and S6. There-
fore, we can conclude that the only notable (signif-
icantly above the error) source of pollution is Main
Drainage Channel of Zagreb and its untreated wastew-
aters. All other changes of VF are of the order or below
the error level so the impact of corresponding sources
of pollution cannot be undoubtedly identified in our
results.

To further analyze spatial variations of water qual-
ity and the similarity of the sampling sites, data were
subjected to CA. The dendrogram obtained by Ward’s
method is shown in Fig. 4. The resulted dendrogram
grouped all 18 sampling sites into four statistically sig-
nificant clusters at (Dlink/Dmax)·100 < 70%. As in
the work Wang et al. (2012), Li et al. (2011), Bouza-
Deano et al. (2008), and Shrestha and Kazama (2007),
the clustering procedure highlighted groups in which
the sites have similar characteristics and natural source
types. The cluster I (stations S10–S18) is situated at
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Fig. 4 Dendrogram obtained by cluster analysis
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the most downstream site of the river and corresponds
to relatively low polluted regions. On the other hand,
cluster II is situated at the most upstream site of the
river; it covers an area upstream of Zagreb (S1 and
S2) and Zagreb (S3) and corresponds to moderately
polluted region. Cluster III, i.e., station S4 where the
impact of discharged Zagreb wastewaters were sig-
nificant, corresponds to the lowest water quality site.
Cluster III is associated with cluster IV (sites S5–
S9) suggesting the impact of pollution on downstream
stations. The cluster IV corresponds to moderately
polluted sites and represents stations which are influ-
enced by upstream pollution and also by the pollution
of the city of Sisak.

The results obtained in this section can be used to
reduce the number of variables and/or stations in order
to reduce the number of analyzes and the costs. For
rapid quality assessment studies, number of the sam-
pling sites could be reduced and only representative
sites from each cluster identified by CA could be used.
The same was already suggested by, e.g., Simeonov
et al. (2003) and Bouza-Deano et al. (2008).

The PCA combines variables of ’similar’ patterns
into groups indicating that those variables are depen-
dent on each other or may have the same background.
For each group of variables, the key or principal vari-
able can be chosen as an representative. In this way,
the number of variables could be reduced. In our case,
we can identify pairs: CODMn and CODCr, TO and
MO, and DO and OS. One member could be used
as representative for each pair, so we could try to
omit CODCr, TO, and OS. However, one has to be
very careful when applying this procedure because
the variables with different causes may be combined
in a single group as pointed out by Weilguni and
Humpesch (1999).

Multivariate analysis of the seasonal subsets

To further examine the influence of seasonal changes
of water quality parameters, the above described anal-
ysis was repeated for each season separately. Similar
analysis was performed by Wang et al. (2012), Li
et al. (2011), Ouyang et al. (2006), and Razmkhah
et al. (2010). Ouyang et al. (2006) who investigated
the seasonal variations in water quality of the lower
St. Johns River in Florida, USA using the PCA and
PFA techniques found that water quality parameter
that is most important in contributing to water quality

variation for one season may not be important for
another.

The data set was divided into four subsets (spring,
summer, autumn, and winter) which were again nor-
malized to have zero mean and unit variance. PCA
was performed and, most probably due to smaller data
set size, only six PCs had eigenvalues greater than
one explaining 73.6 % (spring), 71.4 % (summer),
70.3 % (autumn), and 71.3 % (winter) of the total
variance.

The results for individual seasons are similar to
those obtained for the whole data set. The most impor-
tant parameters of varimax rotated solutions in all
seasons are TSS and CODs (see Table 4) in contrast
to the temperatures which were the most important
parameters for the whole data set. The decrease of
contribution of physical factor to the total variance in
season subsets is expected as the temperature changes
are significantly smaller within seasons (during spring
or summer) than between the seasons (summer and
winter). On the other hand, the importance of other
parameters (TKN, NH+

4 , and TP) has increased.
Furthermore, the results for seasonal subsets are

qualitatively similar with the results recently obtained
by Wang et al. (2012) who used PCA to explore the
most important factors determining the spatiotempo-
ral dynamics of water quality in Xiangxi River. They
analysed a 5-year (2002–2006) continual monitoring
data (14 parameters at 12 sites). PCA of the four
data sets yielded six PCs for spring and autumn and
five PCs for summer and winter with eigenvalues >1,
explaining 74.70, 74.47, 71.02, and 69.86% of the
total variance in respective water quality data sets. The
VFs obtained from the PCs suggested that the parame-
ters responsible for water quality variations are mainly
related to the dilution of salt (natural), the point source
pollution of phosphorus and the non-point pollution of
nitrogen (anthropogenic).

To investigate water quality in the rivers along
the water conveyance canal of the Middle Route of
China’s interbasin South to North Water Transfer
Project and to assess the spatial and temporal patterns
of water quality in the rivers Li et al. (2011) used mul-
tivariate statistical analyses. PCA extracted four, five,
five, and three principal components (PCs) for the
measurement data in September, December, April, and
June, respectively, and these PCs with eigenvalue>1
explained 79, 83, 88, and 83% of the total variance
in the respective data sets. Seasonal FA/PCA allowed
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Table 4 Rotated factor correlations with water quality parameters for whole dataset, univariate and multivariate weighted data and
for seasonal subsets

Data Correlation VF1 VF2 VF3 VF4 VF5 VF6 VF7

All High TEMP TSS,CODMn DO,OS EC TKN ALK MO,TO

Moderate DO,NO−
3 CODCr NO−

2 ,TP NH+
4 pH

Univ. High CODMn,CODCr, TEMP DO,OS ALK TKN,NH+
4 EC,TSS TO,MO

BOD5

Moderate NO−
2 DO,NO−

3 pH,NO−
2 ,NO−

3 CODCr,NO−
3 pH,TO NO−

2 ,pH,NO−
3 pH

Multiv. High CODMn,CODCr, TEMP DO,OS EC ALK TKN,NH+
4 TO,MO

BOD5

Moderate TSS,TP DO,NO−
3 TSS,NO−

2 pH,CODCr pH

Spring High TSS,CODMn DO,OS TEMP MO ALK

Moderate CODCr,BOD5, NO−
3 TO,NH+

4 TO,pH EC,TKN,NO−
2

Summer High TSS,CODMn, EC DO,OS NO−
2 MO

CODCr

Moderate TEMP NH+
4 pH,ALK, TKN,NO−

3 TO

BOD5,TP

Autumn High CODCr,CODMn, TEMP TKN,NH+
4 EC TO,MO pH

TSS

Moderate BOD5 DO OS NO−
2 ALK

Winter High TSS,CODMn OS,NH+
4 ,TKN TEMP TO,MO ALK

Moderate CODCr,TP DO DO EC,NO−
2 ,NO−

3 NO−
3

four categories of parameters such as mineral com-
position (primarily natural), toxic metals (industrial),
nutrients (agricultural, domestic, and industrial), and
organic pollutants (domestic, municipal, and industrial
sources).

Robust PCA

To investigate the influence of the skewed, heavy
tailed data distributions containing outliers on the
results, the robust PCA algorithm was applied. This
was performed by calculating the robust estimates of
covariance matrix which were then subjected to PCA.
Since covariance and correlation differ by the factor
1/(σx · σy ), and the data set was normalized to have
unit variances (and therefore standard deviations), the
calculated covariances can be compared to the corre-
lations obtained earlier and examined for the effects
of weighting. The largest differences are in correla-
tions between TSS and both CODs which decreased
for about 0.2 in all cases. The decrease is more pro-
nounced in the case of univariate weighting with
maximum near 0.3 for the correlation between TSS

and CODMn. Similar but somewhat smaller change
of correlation (about 0.1 decrease) is observed for
correlation between CODMn and CODCr. The corre-
lation between DO and temperatures and correlation
between NH+

4 and TKN increased for about 0.1 with
the increase more pronounced in the multivariate case
for the former and in the univariate case for the
later correlation. Other significant correlations remain
unchanged.

The PCA yielded seven principal components
explaining 75 % of the total variance, with individ-
ual components explaining 21.6, 14.1, 11.6, 8.3, 7.5,
6.8, and 5.7 % (univariate weighting) and 20.4, 14.6,
11.5, 8.1, 7.5, 6.7, and 6.2% (multivariate weight-
ing). These results are the same as the result obtained
by standard PCA algorithm. Again, the varimax rota-
tion of seven component subspace was performed.
Correlations between obtained rotated varifactors and
water quality parameters are given in Table 4. Figure 5
shows the PC1 versus PC2 variable loading vectors
(prior to varimax rotation) for data without weights
(a), univariate (b), and multivariate (c) weighted data
and for the spring data subset (d). The results of
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Fig. 5 PC1 versus PC2 loadings for the Sava River (see Table 1 for acronym identification); a) data without weights, b) univariate
and c) multivariate weighted data, d) spring data subset

standard and robust PCA are fairly similar. Actually,
the differences between the standard and robust PCA
algorithm (univariate or multivariate weighting) are
smaller than the differences between any of them and
spring subset.

Conclusion

In this study, surface water quality data for 18 param-
eters collected from 18 monitoring stations along the
Sava River in Croatia from 2000 to 2006 were ana-
lyzed using multivariate statistical techniques.

Most of the variables were found to have skewed
heavy tailed distributions containing outliers. It should
be emphasized that the standard statistical methods
assume normal distribution and should be used with
caution when analysing the data whose distributions
are significantly departing from normal distribution.

When analysing the correlations between variables,
correlations between air temperature and some water
quality parameters were found in agreement with
the previous studies of relationship between climatic
and hydrological parameters. Further significant cor-
relations between TSS and CODs were found but
they are diminishing when the weighting procedure is
applied.

PCA has determined a reduced number of seven
principal components that explain over 75 % of the
data set variance. Varimax rotation of the seven com-
ponents subspace resulted in simpler structure of
rotated components each of them related to small
group of measured water quality parameters.

Cluster analysis has found similarities in sampling
stations across the river. All 18 sampling sites have
been grouped into four statistically significant clus-
ters. The first group is located at the end and the
second group at the top of the river. These two groups
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correspond to relatively low and moderately polluted
sites. The third and fourth group which correspond to
highly and moderately polluted sites are located in the
middle of the river.

The PCA analysis of the seasonal subsets showed
that the importance of the parameters is changing from
season to season and that the parameters which are
contributing most to the water quality variation in
one season could be contributing less (or not at all)
in another season. However, no significantly differ-
ent results were found for any season when compared
with the results for the whole data set. Changes of
order or sign in some components like the increased
importance of organic component and the decrease of
the physical component in all seasons does not rep-
resent significantly different result. Therefore, these
results give rise to the reliability of the obtained
results.

Those results are similar to those obtained by other
authors who applied statistical analysis techniques
such as Pearson’s correlation, PCA, and CA for the
analysis of the data obtained in the water quality
monitoring programs.

The temperatures and CODs are found to be the
parameters which are responsible for most of the vari-
ance in the data set indicating that the physical- and
organic-related sources contribute mostly to the water
quality variations.

Finally, to check the influence of the outliers in the
data set whose distribution strongly deviates from the
normal one, two robust estimates of covariance matrix
were calculated and subjected to PCA. Again, no sig-
nificant differences between the obtained results were
found. Hence, in the case of the data set with small
number of missing data, non-detect values and outliers
(less than 4 %), the usage of standard PCA algorithm
is justified.
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