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Abstract Drought is an important global hazard, chal-
lenging the sustainable agriculture and food security of
nations. Measuring agricultural drought vulnerability is
a prerequisite for targeting interventions to improve and
sustain the agricultural performance of both irrigated
and rain-fed agriculture. In this study, crop-generic ag-
ricultural drought vulnerability status is empirically
measured through a composite index approach. The
study area is Haryana state, India, a prime agriculture
state of the country, characterised with low rainfall, high
irrigation support and stable cropping pattern. By
analysing the multiyear rainfall and crop condition data
of kharif crop season (June–October) derived from sat-
ellite data and soil water holding capacity and ground-
water quality, nine contributing indicators were gener-
ated for 120 blocks (sub-district administrative units).

Composite indices for exposure, sensitivity and adaptive
capacity components were generated after assigning
variance-based weightages to the respective input indi-
cators. Agricultural Drought Vulnerability Index
(ADVI) was developed through a linear combination
of the three component indices. ADVI-based vulnera-
bility categorisation revealed that 51 blocks are with
vulnerable to very highly vulnerable status. These
blocks are located in the southern and western parts of
the state, where groundwater quality is saline and water
holding capacity of soils is less. The ADVI map has
effectively captured the spatial pattern of agricultural
drought vulnerability in the state. Districts with large
number of vulnerable blocks showed considerably larg-
er variability of de-trended crop yields. Correlation
analysis reveals that crop condition variability,
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groundwater quality and soil factors are closely associ-
ated with ADVI. The vulnerability index is useful to
prioritise the blocks for implementation of long-term
drought management plans. There is scope for improv-
ing the methodology by adding/fine-tuning the indica-
tors and by optimising the weights.

Keywords Agricultural drought . Irrigated agriculture .

Vulnerability .NDVI .Disasters .Composite index .CPC
rainfall

Introduction

The impact of disasters resulting from natural hazards
depends not only on the magnitude and frequency of the
event but also on the vulnerability of the affected area or
social group (Bohle 2001; Birkmann 2008). Vulnerability
is a key link between hazard and risk and forms an
important component of disaster risk reduction
strategies. Joseph (2012) conceptualises vulnerability as
the asymmetric response of disaster occurrences to haz-
ardous events. The need for identification, assessment
and ranking of vulnerabilities is being increasingly
emphasised since it is a key step towards disaster risk
reduction (Maskrey 1993; Bogardi and Birkmann 2004).
Drought is the most significant global hazard followed by
tropical cyclones, regional floods and earthquakes
(Bryant 2005). It is a climatic hazard and is known for
its slow and insidious onset. Agricultural drought, caused
by reduced soil moisture availability to crops, leads to
considerable economic loss worldwide. In the developing
countries, long-term/mitigation programmes of drought
management are given low priority, and hence, succes-
sive droughts are causing serious environmental prob-
lems such as land degradation, loss of top soil and
overgrazing of grasslands (Bryant 2005). Despite techno-
logical developments and achieving self-sufficiency in
food grain stocks, the Indian agriculture continues to be
affected by droughts, threatening the sustainable devel-
opment and food security of the nation (Roy et al. 2006).
The basic geographic units for formulation and imple-
mentation of drought management plans in the country
are the administrative units within the districts, known as
taluks, blocks or mandals (Department of Agriculture and
Cooperation 2009). Drought management includes both
short-term and long-term strategies. Currently available
drought monitoring systems based on meteorological,
hydrological and spectral indices immensely support

short-term or in-season drought management. Long-
term drought management is crucial for building
drought-resilient agriculture.

Development of generic, realistic and quantitative in-
dicators of drought vulnerability and risk at different
scales is an inevitable requirement towards reducing
drought risk (UNISDR 2011; Birkmann et al. 2006).
Agricultural drought vulnerability is a measure of the
capacity of the agricultural area of an administrative unit
to cope up with the drought situation. The degree of
vulnerability is not uniform within region or district. In
India, 120 million ha of geographic area, spread across
1173 blocks, 185 districts and 13 states, was notified as
drought-prone, based on slightly revised criteria in 1994
(www.dolr.nic.in). The drought-prone area classification
is based on climatic parameters and percent irrigated area.
Since there are no parameter-related soils and crops in the
classification, the derived drought proneness does not
truly reflect the agricultural drought proneness. Climate
variability and irrigation infrastructure developments in
the recent past have changed the drought vulnerability
status of the country strongly suggesting the need to
revisit the drought vulnerability classification.

Many techniques have been evolved to quantify haz-
ard, vulnerability and risk related to drought and other
natural disasters. Tsheko Rejoice (2003) developed
drought risk and vulnerability indicators using rainfall
probabilities derived from long-term rainfall data for
selected stations. Drought risk is defined as the proba-
bility that a given dryness, expressed as accumulated
potential evaporation deficit, exceeds in any year
(Mullan et al. 2005). Metrics derived from time series
Normalised Difference Vegetation Index (NDVI) were
used to map drought vulnerability in India (Murthy et al.
2010). Harikishan et al. (2013) analysed crop-specific
drought vulnerability at district level through empirical
relations between maize yield reduction and
Standardised Precipitation Index (SPI). All these studies
have been based on a limited number of parameters.
Early work on agricultural drought vulnerability assess-
ment using multiple indicators was reported by
Wilhelmi and Wilhite (2002). They used four parame-
ters related to climate, soil, land use and irrigation
support and evolved a numerical weighing scheme to
generate agricultural drought vulnerability index.
Eriyagama et al. (2010) carried out preliminary analysis
of vulnerability mapping to study the impact of climate
change on water resources and agriculture in Sri Lanka,
by assigning weights to multiple parameters at district
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level. Mrutyunjaya and Mamata (2011) analysed
drought vulnerability, coping ability and residual risk
in the selected blocks of Bolangir district, Odisha state,
India, using a set of bio-physical and socio-economic
indicators. Ravindranath et al. (2011) adapted index-
based approach for assessing agricultural vulnerability
at district level in the NE region of India using the
secondary data. The fourth assessment report of IPCC
on climate change has envisaged vulnerability assess-
ment should encompass exposure, sensitivity and adap-
tive components (IPCC 2007). The three-dimensional
model of vulnerability to natural hazards was imple-
mented by Xiaoqian et al. (2013), in China.

Existing studies on agricultural drought vulnerability
have been based on a limited number of indicators
applied at macro and meso scale (Jülich 2015), and
hence, the multidimensional nature of agricultural
drought has not been effectively addressed. A composite
index derived from multiple parameters provides a ro-
bust and scientific approach for mapping agricultural
drought vulnerability. Further, vulnerability information
is required at disaggregated level for developing effec-
tive drought management measures. Since vulnerability
to disasters is specific to the resources and environment
of the area, the need for measuring vulnerability at local
level is strongly advocated (Hinkel 2011; Garcia and
Fearnley 2012; Vincent 2007). Vogel and O’Brien
(2004), observe that disaster vulnerability is multidi-
mensional, scale-dependent and time-specific.

The current study is on the development of a quanti-
tative multidimensional index to represent the current
status of agricultural drought vulnerability at sub-district
level. A composite index is formed by synthesising the
individual indicators. Construction of composite indices
for disaster vulnerability and risk is widely recommend-
ed (OECD 2008; Jülich 2015). The specific objectives
of the study are (1) to generate a composite index of
crop-generic agricultural drought vulnerability based on
exposure, sensitivity and adaptive capacity indices by
using a set of contributing indicators at disaggregated
level and (2) to study the current status of agricultural
drought vulnerability in the study area using the com-
posite index.

Composite indices are used to classify the regions/sub-
regions based on a set of multivariate data to bring out the
subtle variations in the vulnerability. Construction and
use of composite indices from multidimensional data
for measuring spatial differentials in social and economic
development issues have been widely practiced (Iyengar

and Sudarshan 1982; OECD 2008). In this study, a com-
posite index of agricultural drought vulnerability was
constructed and used to categorise the blocks of the state
on the basis of vulnerability score. Analysis of drought
events and yield reduction is outside the scope of the
current paper. There is no vulnerability function. The
composite index of vulnerability is a blended product of
many input indicators, and hence, its relationship with
any one of the inputs, say, crop yield alone, does not
determine its accuracy.

.

Study area

The study was conducted in Haryana state. Located in
the northwest of India (Fig. 1), it is an important agrarian
state of the country. The state has 20 districts and 120
blocks within the districts. The state stands second in
food grain production in the country. With highly pro-
ductive lands and dense irrigation network, the state has
a very stable agriculture. The state has contributed sig-
nificantly to the ‘Green Revolution’ and the nation’s
self-sufficiency in food grain production. Most of the
agricultural land is cultivated in two seasons a year,
namely kharif (June–October) and rabi (November–
April). The total geographical area of the state is 4.42
million ha; the cultivable area is 3.6 million ha. The
gross cropped area of the state is 6.51 million ha and net
cropped area is 3.6 million ha with a cropping intensity
of 184.91 % (www.agriharyana.nic.in). About 80 % of
agricultural area is irrigated. Surface water is the major
source of irrigation in the state, followed by
groundwater. The surface irrigation network in the
state has two main systems—the Bhakra system and
Western Yamuna canal—both getting water from
snow-fed river systems; hence, these irrigation supplies
are not monsoon-dependent. The quality of groundwater
varies significantly from marginal to saline, across the
state, restricting the supplementary use of groundwater
with canal water. In the monsoon season, rainfall sup-
plements the irrigation water requirements to some ex-
tent. With arid-semiarid climate, the state receives an
average rainfall of about 400 mm.

Major crops in the kharif season are rice, jowar, bajra,
cotton and guar, and those in the rabi season are wheat,
mustard and gram. Rice-wheat cropping system is domi-
nant in the state. Paddy is the main crop in all the northern
districts of Ambala, Yamunanagar, Kurukshetra, Kaithal,
Karnal, Panipat and Sonipat. In these districts, the surface
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irrigation supplies are supplemented by groundwater.
Because of good quality of groundwater, the cropping
pattern in these districts is dominated by high water con-
suming crops, such as paddy and sugarcane. Insufficient
canal supplies and poor quality of groundwater have
resulted in the cultivation of low water requirement crops
such as bajra, guar and cotton in the southern districts like
Bhiwani, Jhajjar, Mahendragarh, Rewari and Jind
(Murthy et al. 2009). Although, cropping pattern is less
diversified in Haryana state, significant variability in
groundwater quality, soils and crop condition makes it
relevant to undertake the drought vulnerability study.
Some of the blocks of the state located in the western
and southern sides were notified as drought-prone in the
country by the Drought Prone Area Programme launched
in 1970s and revised in 1990s (www.dolr.nic.in).

Methodology

Exposure, sensitivity and adaptive capacity are the three
components of vulnerability. Studies on index-based
vulnerability measurements related to disasters and cli-
mate change have effectively incorporated these three

components (Birkmann 2008; Xiaoqian et al. 2013;
Ahsan and Warner 2014). Crop areas are exposed to
hazardous weather like low rainfall and high tempera-
ture. The sensitivity and coping ability of the agricultur-
al area, when exposed to drought situation or potentially
harmful crop stress situations, determine the vulnerabil-
ity of the area. Exposure, sensitivity and adaptive ca-
pacity together determine the agricultural drought vul-
nerability which is a relative term and can be represented
in a predefined scale. The approach of the current study
includes generation of composite index for each of the
three components of vulnerability and integration of the
individual indices in to a single vulnerability index as
shown in the broad outline of methodology in Fig. 2.
Selection of indicators is guided by their ability to
capture the essence of the respective component, data
availability, accuracy of the data, etc. Justification for
selecting the indicators under each component is de-
scribed in this section.

The list of input parameters and derived indica-
tors employed in the study is presented in Table 1.
Time series data of last 12 years (2001–2012)
pertaining to kharif season and map data on soil

(a) India with state boundaries 

(b) Study area state – Haryana 

with district and block boundaries 

Fig. 1 Study area
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depth and texture and groundwater quality area
were analysed. Since Moderate Resolution
Imaging Spectroradiometer (MODIS) data is avail-
able for 12 years, Center for Climate Prediction
(CPC) rainfall data was also taken for the same
period to have the same length of time series.

Exposure indicates the nature, extent, duration and
frequency of drought conditions on the agricultural
areas of a region. Meteorological drought is the primary
cause of agricultural drought occurrence and its progres-
sion in the season over agricultural areas. Xiaoqian et al.
(2013) used SPI derived from rainfall time series to
represent drought exposure. Ravindranath et al. (2011)
used rainfall variability index as proxy to climate change
exposure. Satellite-based rainfall estimates are becom-
ing increasingly important due to inadequate network
and measurement errors associated with surface gauges
(Africa Water Atlas 2010). These spatial rainfall data
sets from satellites certainly complement the surface
gauge data for early warning on water availability
(Verdin et al. 2005).

The US Center for Climate Prediction (CPC) based
on several types of satellite measurements merged with
ground-based gauge data generates rainfall products.
The algorithm used for rainfall estimation is called
Rainfall Estimation Algorithm Version 2.0, and the
products are called RFE 2 estimates (Love et al. 2004;
Hermance and Sulieman 2013). CPC rainfall data dur-
ing the southwest monsoon season (June to September)
of the last 12 years (2001 to 2012) was analysed to
generate different indicators of exposure. Along with
rainfall, data on rainy days was also considered to ac-
count for the distribution of rainfall. The definition of a
rainy day is adapted from India Meteorological
Department (IMD) which considers any day with

Agricultural Drought Vulnerability Index (ADVI) 

ADVI = EI+SI-AI 

• Identification of parameters 

• Data preparation 

• Generation of indicators 

• Normalisation of indicators 

• Construction of Composite Index 

Exposure Index (EI) Sensitivity Index (SI) Adaptive capacity Index (AI)

(b) Sensi�vity

Components of vulnerability 

Fig. 2 Study approach

Table 1 Parameters and indicators of different vulnerability
components

Parameter Indicator

A. Exposure component

1. Total season rainfall Mean

Coefficient of variation (CV)

Drought frequency

2. Total season rainy
days

Mean

CV

Drought frequency

B. Sensitivity component

1. Season’s Integrated
NDVI (SIN)

Range

CV

Drought frequency

C. Adaptive capacity component

1. Soil (depth and
texture)

Mean value of soil water holding
capacity

2. Groundwater quality % area under fresh and marginal
groundwater quality
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greater than or equal to 2.5 mm of rainfall as a rainy day
(www.imd.gov.in).

Derivatives from rainfall and rainy days data in-
clude mean, coefficient of variation (CV) and
drought frequency. The mean and CV of rainfall
and rainy days from time series data better represent
the average situation of the recent past than that of
any single year. Drought frequency indicating the
number of years under drought conditions during
the 12-year period was computed for both rainfall
and rainy days of the season separately. Less than
75 % of normal rainfall was considered as drought
situation, as followed by India Meteorological
Department (www.imd.gov.in) for computing
drought frequency. The Same criteria were extended
to rainy days to generate drought frequency based on
rainy days. Thus, based on rainfall and rainy days,
six indicators of exposure were generated.

Sensitivity is the degree to which the crops are affected
by moisture stress due to drought conditions. Sensitivity
of crop growing environment to agricultural drought
conditions is the strong determinant of the vulnerability
of an agricultural area. Sensitivity component in this
study is represented by the satellite-derived agricultural
vegetation condition during the season. Satellite-derived
Normalized Difference Vegetation Index (NDVI) has
been successfully used for crop/vegetation monitoring,
crop discrimination, stress detection and crop yield esti-
mation. NDVI is widely used for operational drought
assessment because of its simplicity in calculation, ease
in interpretation and its ability to partially compensate for
the effects of atmosphere and illumination geometry
(Bannari et al. 1995). Some of the proven examples for
successful application of satellite remote sensing for op-
erational drought assessment are Drought Monitor of
USA using NOAA-AVHRR data (www.cpc.ncep.noaa.
gov), Global Information and Early Warning System
(GIEWS) and Advanced Real Time Environmental
Monitoring Information System (ARTEMIS) of FAO
using Meteosat and SPOT-VGT data (www.fao.org),
International Water Management Institute (IWMI)’s
drought assessment in Southwest Asia using MODIS
data (Thenkabail et al. 2004) and NADAMS drought
monitoring in India with IRS–WiFS/AWiFS and
NOAA-AVHRR (www.nrsc.gov.in; Murthy et al. 2007)
data.

Derivatives from times series NDVI—range, CVand
drought frequency, based on standardised NDVI—were
used to represent sensitivity component in the current

study. NDVI-derived phenological metrics were used to
evaluate the terrestrial ecosystems (Myneni et al. 1997;
Lee et al. 2002; Sakamoto et al. 2005; Bradley et al.
2007). Wu et al. (2008) investigated the phenology over
crop lands in China using time series NDVI data sets
and concluded that significant changes took place in the
start of growing season in the past 20 years. Time series
phenological parameters over agricultural areas repre-
sent the impact of inter- and intra-seasonal variations of
climate. Phenological observations measure the re-
sponse of vegetation to meteorological and environmen-
tal factors. Phenological data series indicate the evi-
dence of vulnerability. Chen et al. (2014), using annual
mean and standard deviation from NDVI time series,
detected the changes in vegetation photosynthetic activ-
ity and its trends across the Asia Pacific region.

Terra MODIS 250 m NDVI monthly composites, ap-
plied with kharif season agricultural area mask, generated
under National Agricultural Drought Assessment and
Monitoring System (NADAMS) project of National
Remote Sensing Centre (NRSC) (www.nrsc.gov.in), were
used.MonthlyNDVI composites from fourmonths—July,
August, September and October—representing active
growing and peak vegetative phase of kharif season, for
the time series period of 2001–2012, were analysed.
Season’s Integrated NDVI (SIN) image was derived for
each year by summation of 4-monthNDVI. SIN represents
cumulative biomass and vigour over the agricultural area.
The 4-month period in the summation corresponds to
active growing and peak growing periods of standing
crops. Using the SIN images of the time series and block
boundary vector layer, the block-wise average SIN values
were extracted for different years. From the time series SIN
data of blocks, two metrics were derived—(a) range and
(b) CV. Range is the difference between maximum and
minimum SIN values during the time series period. It
signifies the amplitude of NDVI change. A higher range
indicates more agricultural drought vulnerability and vice
versa. CV indicates the average inter-annual variability
during the time series. CVis also directly related to drought
sensitivity. Both range and CV represent the variability of
cumulative biomass/crop vigour between the years.
Haryana state has a stable and monotonous cropping pat-
tern, and hence, it is assumed that the changes in NDVI
during the time series period are largely attributed to
weather effects rather than cropping pattern changes.

SIN-based drought frequency was computed by gen-
erating standardised SIN for each year. Based on
standardised vegetation index concept of Peters et al.
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(2002), Z-scores of SIN distribution were used to esti-
mate the probability of occurrence of SIN for a given
block, relative to the possible values of SIN. Through
standardisation, SIN deviations were normalised for
mean and standard deviation, so that the deviations are
comparable across space. Standardised SIN of <0.25,
following Peters et al. (2002), for any year in the time
series was regarded as agricultural drought, and the
number of such drought years was taken as drought
frequency. More details on standardisation are available
in Peters et al. (2002).

The coping ability of a block to agricultural
drought is explained by soil and groundwater quality
parameters. Since more than 80 % of crop area is
covered by surface irrigation, the irrigated area factor
does not show much variability between blocks and
hence not included in the current analysis.
Supplementary use of groundwater is widely prac-
ticed in the state, and hence, groundwater quality
plays a critical role in meeting the crop water re-
quirements (Sakthivadivel et al. 1999). The districts
with high irrigation support (surface water plus good
quality groundwater) were not influenced by severe
meteorological drought of 2002 (Murthy et al. 2009).
Therefore, in this study, percentage area under fresh
and marginal groundwater quality in each block was
taken as adaptive capacity indicator. The groundwa-
ter quality map on 1:500,000 scale prepared by
Haryana State Ground Water Board was analysed
to generate block-wise statistics on percentage area
under fresh and marginal groundwater quality.

Soil is an important link between weather and
crops and strongly determines the occurrence of
agricultural drought. Soil Water Holding Capacity
(SWHC) determines the amount of water that can
be accommodated in the soil column, and hence, it
is directly related to adaptive capacity to drought
conditions. Wilhelmi and Wilhite (2002) used
SWHC as a drought vulnerability indicator in their
study. SWHC in the current study was computed
from 1:250,000 scale soil map, by using soil depth
and soil texture information under NADAMS pro-
ject of NRSC (www.nrsc.gov.in). The soil map
was originally prepared by National Bureau of
Soil Survey and Land Use Planning, Government
of India. Using the 1-km-resolution SWHC layer
of the study area state, block-wise average AWC
values were generated and used as an indicator of
adaptive capacity.

Data analysis

The input indicators of the vulnerability model include
six indicators of exposure component, three indicators
of sensitivity component and two indicators of adaptive
capacity component. The data matrix comprising 11
indicators and 120 blocks was prepared for further anal-
ysis which includes data normalisation, weights compu-
tation and construction of composite indices.

The indicators of the model are in different units, and
their functional relationship with respective component
index is either positive or negative. Data normalisation
was done to normalise the differences in the units of
input indicators and their functional relationships with
respective component index. Min-max approach was
adopted for this purpose (OECD 2008). In case of the
indicators that have positive relationship with its respec-
tive component index, the normalisation was done using
the following formula:

An indicator X over j number of blocks, which is
positively related to respective component index, was
normalised using the formula

X i−normalised value ¼ X i−Xmin

Xmax−Xmin
ð1Þ

If X has a negative relationship with the resulting
component index, then its normalised values are

X i−normalised value ¼ Xmax−X i

Xmax−Xmin
ð2Þ

After normalisation, all the indicators were ranging
from 0 to 1 and their direction of change is the same.

Assignment of weights to the selected indicators is a
key issue in the generation of composite indices (Brooks
et al. 2005). Wilhelmi and Wilhite (2002) selected
weights based on relative contribution of each factor to
vulnerability. Li et al. (2006) used principal component
analysis to generate weights for the variables. Brooks
et al. (2005) assigned equal weights to each indicator in
their study on vulnerability and adaptive capacity
assessment at national level. The method of simple
averaging gives equal importance for all the variables/
indicators which is not necessarily correct. In this study,
the method given by Iyengar and Sudarshan (1982) to
construct a statistically sound composite index from
multivariate data was used. Hiremath and Shiyani
(2012) used this method for evaluating vulnerability to
climate change.
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It is assumed that there areN blocks,K indicators and
xi j, I=1, 2,….N; j=1, 2,…. K are the normalised scores.
The composite index of ith block yi, is assumed to be a
linear sum of xi j as

yi ¼
X K

j¼1
wjxi j ð3Þ

Where w’s (0<w<1 and ∑j=1
K wj=1) are the weights.

Here, the weights are assumed to vary inversely as the
variance over the blocks in the respective indicators.
That is, the weight wj is determined by

wj ¼ cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var xi j

� �q ð4Þ

Where c is a normalising constant such that

c ¼
X K

j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vari xi j

� �q

2
64

3
75

−1

ð5Þ

By assigning the weights in this manner, the large
variation in any of the indicators will not unduly dom-
inate the contribution of the rest of the indicators or
distort inter-regional comparisons. The resulting index
was rescaled to 0 and 1 for easy interpretation.

Using this method, three composite indices, namely
exposure index (EI), sensitivity index (SI) and adaptive
capacity index (AI), were computed. Agricultural
Drought Vulnerability Index (ADVI) was computed as
under

ADVI ¼ EIþ SI−AI ð6Þ
The ADVI and component indices reflect relative

differences among the blocks, rather than representing
specific conditions of a crop growing environment.

The composite vulnerability index thus computed
would range from 0 to 1, indicating minimum and
maximum vulnerability respectively. Based on the inter-
vals of composite index, blocks are characterised with
different levels of agricultural drought vulnerability as
shown in Table 2.

Results

Spatial maps of all the 11 contributing indicators scaled
between 0 and 1 were generated, though not presented
here for the sake of brevity. The distribution of these

indicators in the study area reveals certain interesting
patterns. Both rainfall and rainy days are relatively
higher in the northeast and southeast part of the state.
The western part of the state shows low rainfall, high
inter-annual variability and more frequent drought com-
pared to the rest. Rainy days also depict the same trend.
Range values of integrated NDVI are more in the blocks
of western and southwestern parts of the state signifying
higher sensitivity to weather variations. CV of SIN
shows lower values in majority of the blocks except in
isolated blocks of some of the southern/western districts.
Drought frequency based on SIN shows more frequent
drought in a few blocks that are not contiguous and
located mostly in southern and western parts of the state.
SWHC values are relatively higher in the northern and
central part of the state. In the southern districts of
Bhiwani, Mahendragarh, Rewari, Gurgaon and Jhajjar,
lower values of SWHC are dominant. Percent area
under fresh and marginal groundwater is significantly
more in the northern half of the state. Again, in the
southern districts—Bhiwani, Mahendragarh, Rewari,
Gurgaon and Jhajjar, the percentage area under fresh
and marginal groundwater is less, and this forms a
serious limitation for supplementing with canal water.

Composite indices were constructed for each compo-
nent, and their distribution in the study area state was
analysed (Figs. 3, 4 and 5). Distribution of EI (Fig. 3)
shows typical pattern with many of northwestern and
some of the central districts showing significantly higher
exposure levels compared to the rest of the districts.
Blocks of Sirsa and Fatehabad districts have higher
exposure levels followed by Bhiwani and Hissar dis-
tricts. High exposure to agricultural drought (EI >0.6) is
found in 14 blocks followed by lower exposure (EI <0.4)
in 79 blocks and moderate exposure (EI 0.4–0.6) in 26
blocks. Sensitivity to agricultural drought vulner
ability also shows skewed distribution to lower side

Table 2 Vulnerability categorisation based on ADVI

Range of ADVI Vulnerability class

0–0.2 Less vulnerable

0.2–0.4 Moderately vulnerable

0.4–0.6 Vulnerable

0.6–0.8 Highly vulnerable

>0.8 Very highly vulnerable

ADVI Agricultural Drought Vulnerability Index

140 Page 8 of 14 Environ Monit Assess (2015) :140



similar to exposure (Fig. 4). Most of the blocks have
shown less sensitivity to agricultural drought in the state.
The crop condition, crop vigour and its variability be-
tween years are stable in many of the blocks. Only 28
blocks are under moderate to very high sensitivity (SI
>0.4) category, and these blocks are distributed in the
southern and western parts of the state. Adaptive capac-
ity distribution is skewed towards higher side indicating
that the coping ability to agricultural drought conditions
is more in majority blocks of the state (Fig. 5). About 76
blocks have higher adaptive capacity (AI >0.6) to agri-
cultural drought. There are 19 blocks with less adaptive
capacity (≤0.4), and these are distributed in the southern
districts. In 24 blocks, adaptive capacity (0.4–0.6) is

moderate, and these are located in the southern and
western part of the state.

ADVI was generated using the three composite indi-
ces, and the blocks of the state were categorised based
on ADVI class intervals (Table 2) as shown in Fig. 6, to
study the current status of agricultural drought vulnera-
bility in the state. District-wise distribution of blocks
under different vulnerability classes is depicted in Fig. 7.
It was found that in 51 blocks, the vulnerability status
ranges from ‘vulnerable to very highly vulnerable’, of
which 17 blocks are under highly and very highly
vulnerable situation. Bhiwani district was found to be
the most agriculturally vulnerable in the state, with nine
blocks under vulnerable to very highly vulnerable

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

Fig. 3 Distribution of exposure
index

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

Fig. 4 Distribution of sensitivity
index
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status, followed by Sirsa (nine blocks), Jhajjar,
Fatehabad, Mahendragarh (five blocks in each),

Rewari (four blocks), Gurgaon, Hissar and Rohtak
(three blocks in each) andMewat (two blocks). All these

0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0

Fig. 5 Distribution of adaptive
capacity index

 Less vulnerable
 Moderate 
 Vulnerable
 High vulnerable
 Very high vulnerable

Fig. 6 Spatial distribution of agricultural drought vulnerability based on ADVI
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districts are located in the western and southern side of
the state. The rest of the districts with 69 blocks together
were found to be less vulnerable. Bhiwani district with
four blocks under vulnerable and five blocks under
highly and very highly vulnerable status became the
most vulnerable in the state. Although Sirsa district
has nine blocks under vulnerable status, there are no
blocks under very highly vulnerable status in the dis-
tricts, thereby making it less vulnerable compared to
Bhiwani and Rewari. Districts in the northern part of
the state, namely Ambala, Yamunanagar, Kurukshetra,
Karnal, Kaithal, Panipat and Sonipat, are dominated by
less vulnerable blocks.

There is no straightforward procedure to validate the
composite indices made up of dissimilar indicators
(Vincent 2007). Ahsan and Warner (2014) developed
socio-economic vulnerability index and opined that in
the absence of direct methods of validation of such
composite index, selection of indicators and assignment
of weights are the strong determinants of the composite
index. The ADVI-derived vulnerability map in this
study was validated through an indirect approach by
analysing the time series yield data of principal crops
at a slightly coarser scale. Empirical evidence on the
effects of drought on crop yield and its variability re-
ported by Zhao et al. 2011 and BoubacarInoussa 2012
provide the basis for indirect validation here. In this
study, the validation of ADVI map of blocks was done
by verifying the association between agricultural

drought vulnerability and crop yield variability. Due to
non-availability of crop yield data at block level,
district-level yield data was used for validation, and this
is the limitation of this indirect approach. The kharif
season yields of four principal crops, namely rice, bajra,
cotton and guar, at district level for the time series period
of 2000–2011 were analysed. Trend analysis of yield
was performed by fitting a linear trend for each principal
crop in each district separately. After removing trend
component, yield figures were computed for each year.
The procedure for trend fitting and trend removal was
adapted from Cooper and Weeks (1983). The CVof the
de-trended yield data was computed for the principal
crops in each district. Drought vulnerability and the CV
values are assumed to be directly related. Districts dom-
inant with vulnerable blocks—Bhiwani, Sirsa,
Fatehabad, Mahendragarh, Rewari, Gurgaon and
Hissar—were identified, and their CV values of de-
trended yields of cotton, bajra and guar range from 20
to 40 %. The districts dominant with less vulnerable
blocks—Ambala, Yamunanagar, Panipat, Jind,
Kurukshetra, Karnal, Sonepat, Fatehabad and
Kaithal—have CV of <10 %. Thus, the districts domi-
nant with vulnerable blocks showed considerably large
variability of de-trended yields of principal crops, and
the districts dominant with less vulnerable blocks
showed lesser variability of de-trended yields of princi-
pal crops. This is only an indicative and not a straight-
forward method of validation. Another limitation of the
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method is that the yield variability need not be entirely
due to agricultural drought.

Discussion

The study area experiences lower rainfall at 600 mm per
annum compared to many other states in the country
(www.rainwaterharvsting.org). The inter-annual vari-
ability of rainfall is also less. Relative variations of
rainfall among the blocks are not significant.
Therefore, drought exposure does not reveal large vari-
ability. Only about one third of blocks have relatively
higher exposure level. A sharp decline in exposure from
west to east side of the state is evident. The cropping
pattern is stable, with rice-wheat cropping system being
practiced largely. The yield variability is also less. With
stable cropping pattern and higher yield levels, sensitiv-
ity to agricultural drought is also less in most of the
blocks. Only 15 % of blocks are found to be relatively
more sensitive to agricultural drought. These blocks are
located in the southern part of the state. Adaptive capac-
ity shows more spatial variability with 36 % of blocks
having less adaptive capacity, and these blocks are lo-
cated mostly in western and southern parts of the state.

The index-based agricultural drought vulnerability
status can be summarised that majority blocks in the
study area are less vulnerable. Out of 51 blocks ranked
as vulnerable, only 18 blocks are highly vulnerable. The
vulnerable blocks are located on the west and south side
of the state. Bhiwani, Mahendragarh, Rewari, Hissar
and Sirsa are the prominent districts with more number
of vulnerable blocks. All these blocks are dominant with
saline groundwater that is not fit to supplement with
canal water and the water holding capacity of soils is
less. The ADVI map has captured major patterns of
vulnerability. It provides objective information on the
current status of agricultural drought vulnerability and
serves multiple purposes besides aiding vulnerability
reduction plans. Correlation between ADVI and con-
tributing indicators revealed that CV of SIN has the
highest correlation (0.81) with ADVI followed by
groundwater quality (0.69) and SWHC (0.57). Thus,
crop condition variability, groundwater and soil-related
indicators play a more important role in determining the
agricultural drought vulnerability status of the spatial
units.

Sakthivadivel et al. (1999) carried out a study on the
performance evaluation of the Bhakra irrigation system

which covers much of the northern half of Haryana state
with 1.3 million ha of command area. The results indi-
cate that groundwater quality is a crucial factor deter-
mining the agricultural performance of the system. Poor
quality of groundwater and insufficient canal water
supplies caused crop yield reduction as well as large
spatial differences in the yields in parts of Sirsa, Hissar
and Bhiwani districts. The study byMurthy et al. (2009)
in Haryana state revealed that in the districts like
Bhiwani, Mahendragarh, Sirsa and Rewari, where canal
supplies are insufficient and groundwater quality is poor
for supplementary use, the NDVI-based metrics show
poor crop condition, signifying the impact of severe
drought conditions of kharif 2002. It is interesting to
learn that the results of the current study also pointed out
the same districts as vulnerable and further reinforced
the problem of groundwater quality and its conjunctive
use with canal water.

Diagnostic analysis of vulnerable blocks needs to be
performed to develop possible action plans. Since
groundwater quality and water holding capacity of soils
cannot be improved in the immediate future, the possi-
ble option is to address the crop and surface irrigation
related issues. Improving the distribution of surface
water and bringing possible change in cropping pattern
and crop calendars could be immediate practical inter-
ventions to reduce the agricultural drought vulnerability
and to improve the agricultural performance of this
largely irrigated and intensely cropped state.

Conclusion

The current study has adopted a three-dimensional mod-
el for measuring agricultural drought vulnerability in a
highly fertile and a largely irrigated Haryana state of
India. The contributing indicators and the composite
index of agricultural drought vulnerability are generated
at disaggregated level, thereby adding further strength to
the study. The spatial information on crop condition,
which is closely related to drought sensitivity of crops,
is represented by moderate resolution satellite data. The
response of agricultural area to drought could be mea-
sured objectively by engaging the well-known spectral
index NDVI. Rainfall data is also obtained from
satellite-derived estimates instead of using manually
measured, subjective and inadequately covered conven-
tional rain gauge data. Soil- and groundwater-related
indicators are not dynamic, and hence, the recently
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available data is chosen. Thus, the input data was se-
lected in a systematic way, and the chances of errors are
minimised. The weights of the indicators are generated
with recommended procedures in the composite data
analysis. The multidimensional composite index thus
generated has measured the agricultural drought vulner-
ability quantitatively, captured the relative differences at
disaggregated level and ranked the sub-district level
administrative units objectively. The vulnerability map
is useful in prioritising the blocks for implementation of
drought management programmes. The current study is
important to all the drought relevant agrarian countries
because (1) drought vulnerability indexing has multiple
uses—long-term drought management, crop insurance,
climate change, etc.—(2) tools and techniques for vul-
nerability assessment are available to a limited extent
compared to that of operational drought monitoring; (3)
the methodology of the study has been demonstrated
over a fairly larger geography characterised with con-
siderable variability in respect of soils, groundwater and
crop condition, making it fit to other geographies; and
(4) it enables the decision makers to measure the vul-
nerability status from time to time objectively.

The vulnerability index, to be versatile and robust,
should be applicable to different agro-ecological regions
and crop growing environments such as arid, semi-arid,
purely irrigated, purely rain-fed, mix of irrigated and
rain-fed, etc. Therefore, extending the study to other
agricultural situations is very essential to evolve a sound
methodology. There is scope to improve the methodol-
ogy by increasing the contributing indicators and by
exploring the data mining techniques to generate more
robust weights to the input indicators. The present study
could certainly be an attempt towards evolving an inte-
grated and geospatial approach for making agricultural
drought vulnerability assessment more exhaustive, ra-
tional, scientific and practical.
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