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Abstract In contrast to forest trees, trees outside forests
(TOF) often are not included in the national monitoring
of tree resources. Consequently, data about this particu-
lar resource is rare, and available information is typically
fragmented across the different institutions and stake-
holders that deal with one or more of the various TOF
types. Thus, even if information is available, it is diffi-
cult to aggregate data into overall national statistics.
However, the National Forest Monitoring and Assess-
ment (NFMA) programme of FAO offers a unique
possibility to study TOF resources because TOF are
integrated by default into the NFMA inventory design.
We have analysed NFMA data from 11 countries across
three continents. For six countries, we found that more

than 10 % of the national above-ground tree biomass
was actually accumulated outside forests. The highest
value (73 %) was observed for Bangladesh (total forest
cover 8.1 %, average biomass per hectare in forest
33.4 t ha−1) and the lowest (3 %) was observed for
Zambia (total forest cover 63.9 %, average biomass
per hectare in forest 32 t ha−1). Average TOF biomass
stocks were estimated to be smaller than 10 t ha−1.
However, given the large extent of non-forest areas,
these stocks sum up to considerable quantities in many
countries. There are good reasons to overcome sectoral
boundaries and to extend national forest monitoring
programmes on a more systematic basis that includes
TOF. Such an approach, for example, would generate a
more complete picture of the national tree biomass. In
the context of climate change mitigation and adaptation,
international climate mitigation programmes (e.g. Clean
Development Mechanism and Reduced Emission from
Deforestation and Degradation) focus on forest trees
without considering the impact of TOF, a consideration
this study finds crucial if accurate measurements of
national tree biomass and carbon pools are required.
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Introduction

While planning the Global Forest Resources Assess-
ment (FRA) 2000, a programme of the Food and
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Agriculture Organization (FAO) of the United Nations
(UN), the term trees outside forests (TOF) was intro-
duced into global forest monitoring (Pain-Orcet and
Bellefontaine 2004; Nyssönnen and Ahti 1996). TOF
includes all trees that exist beyond the FRA definitions
for forest and other wooded land (FAO 2001), and the
inclusion of TOF can be interpreted as an important
recognition of the national and global relevance of this
resource for human livelihoods, the environment, and
biodiversity (Pain-Orcet and Bellefontaine 2004). How-
ever, interest in TOF has of course a much longer
history. In 1713, Hans Carl von Carlowitz, in addition
to introducing the term “sustainability” in the context of
forest management, referred to non-forest tree resources
several times in his opus Silvicultura Oeconomica
(Carlowitz 1713). Further, people for centuries had
managed various agroforestry systems—e.g. fruit tree
meadows, hedgerows, riparian buffers, or parkland trees
(Boffa 2000; Herzog 2000). In addition, there is a long
history and wealth of literature from agroforestry and
urban planning that emphasise the role of TOF.

TOF and, in particular, agroforestry offers a range of
ecological, economic, and social functions (Auclair
et al. 2000; Bellefontaine et al. 2002; Idol et al. 2011).
These functions include carbon sequestration (Atangana
et al. 2014; Nair 2011; Plieninger 2011) and additional
environmental services, offering a win-win land-use
strategy for climate change mitigation and adaptation
(Leakey 2001; Plieninger 2011). As a result, land-
owners, governmental organisations, and other national
stakeholders may have a need for national-level infor-
mation on TOF. Similarly, the United Nations Frame-
work Convention on Climate Change (UNFCCC), the
Convention on Biological Diversity, the United Nations
Convention to Combat Desertification, and the FRA
require TOF information as it relates to international
reporting obligations. In croplands, grasslands, and set-
tlements, for example, the UNFCCC requires informa-
tion about TOF woody biomass for greenhouse gas
reporting (IPCC 2006). In addition, direct payments to
farmers in the EU will depend, to some extent, on their
ability to use techniques that soften their climate and
environmental impact (European Commission 2011).
Furthermore, rural development plans under the com-
mon agricultural policy of the EU promote the estab-
lishment, conservation, and management of woody veg-
etation structures in the landscape, including farm trees
and hedgerows (Schleyer and Plieninger 2011). To as-
sess the effectiveness of these requirements, agencies

will need to monitor TOF elements such as trees,
bushes, and hedgerows on farmland.

There is, however, little information about TOF
across large areas. A few studies have pointed to
the potentially substantial contribution of TOF to
large-area wood resources (FAO 1998; FSI 2011;
Kleinn et al. 2005; Riemann 2003; Smith and Gil-
bert 2003), although a systematic and comparable
assessment is missing in most countries. In India,
however, systematic TOF inventories were started
in 1991 at the subregional level and for the entire
country since 2002 (Tewari et al. 2013). Some
other countries—UK (Smith and Gilbert 2003),
Switzerland (Brändli 2010), France (Bélouard and
Coulon 2002), and Sweden (Axelsson et al. 2010;
Ståhl et al. 2011)—have started to integrate TOF
into their existing national monitoring systems for
tree resources. Here, either the scope of the national
forest inventories (NFI) was widened to include
TOF or TOF was assessed within coexisting land-
scape inventories. From the first inventory in 2000,
FAO’s programme for National Forest Monitoring
and Assessment (NFMA) included TOF by default
and to date , has assis ted 19 countr ies in
implementing their national forest inventories (see
de Foresta et al. (2013, p.129) for a more detailed
list of countries with some sort TOF assessment at
the national level).

Where TOF is already integrated into national inven-
tory programmes, usually not all TOF types are covered.
For example, trees on agricultural lands are usually
included but urban trees frequently are not. Information
from other sources, such as citywide inventories
(Nowak 2002) and agricultural production statistics
(de Foresta et al. 2013, pp. 94–95) might be used to
develop a more complete picture if these data are avail-
able at a national level. Although TOF information is
often available, it is usually fragmented in terms of
space and time and difficult to aggregate into overall
national statistics. This fragmentation of information is
usually a result of the sectoral jurisdiction where differ-
ent institutions deal with the varying lands on which
TOF grow. Access to the lands for tree mensuration is a
major challenge when the aim is to include TOF in
national “forest” inventories: the NFI mandate usually
ends at the forest edge and inventory teams must seek
permission to measure trees in private gardens or agri-
cultural fields. To extend that mandate may require
lengthy legislative processes.
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In the present study, we use data from countries
that have completed forest resource or landscape
inventories under the NFMA programme (established
in 2000) to study the overall quality of the periodic
FRA reporting on the worlds’ forests. Upon request
from governments of developing countries, the
NFMA programme helps countries install long-term,
methodologically sound, and sustainable forest mon-
itoring systems on a national level. The NFMA ap-
proach, relying heavily on direct observations from
sample-based field inventories, tries to keep the cor-
responding costs low by working with modest sample
sizes in combination with relatively large observa-
tional plots. The NFMA programme has introduced
two innovative components on a systematic basis: (1)
the default integration of TOF as target objects be-
yond “forests”—i.e. the sampling frame is the entire
country and not only forest lands and (2) the assess-
ment of variables beyond biophysical observations—
i.e. interviewing land owners and users of forests and
trees. The national forest monitoring projects that are
assisted by the NFMA programme are strictly in
country ownership and under national funding; they
aim to generate relevant national level data and in-
formation on forests and non-forest trees, focusing on
current state and changes regarding their social, eco-
nomic, and environmental functions (FAO 2012).
The suggested methods, definitions, and classifica-
tion systems are developed together with an interna-
tional team of experts and are adapted to the national
circumstances. This approach offers a unique possi-
bility for a methodologically sound compilation of
the results on TOF across a large number of countries
and continents. The results of these monitoring
programmes should have a high degree of compati-
bility and offer excellent grounds for scientific
comparisons.

By analysing data from countries that had completed
inventories under the NFMA programme, this is the first
study ever that compares national level estimates of
TOF stocks on common methodological grounds, in
the sense that data had been gathered and analysed along
a consistent and transparent methodology. This offers
for the first time a more holistic view onto the national-
level tree resource than would have been possible from a
forest-focused monitoring alone. With the emphasis on
biomass and carbon stock estimates, we provide quan-
titative evidence that TOF constitute a substantial terres-
trial carbon stock in many regions.

Material and methods

Study countries

The selection of the 11 countries included in this study
(Fig. 1) was based on the completion of NFMA-assisted
inventories by July 2011 and that access to the gathered
data was granted by the data owners. The 11 countries
are from three continents, and nine out of these 11
countries are located in the tropics.

Definitions

Land use was assessed according to the global catego-
ries forest, other wooded land (OWL), other land (OL),
and inland water (IW) as defined by FAO’s FRA pro-
gramme (FAO 2010). Forest and OWL are land areas
under tree cover with a size of at least 0.5 ha that are not
predominantly under agricultural or urban land use and
where trees are able to exceed a height of 5 m at maturity
in situ. To qualify as forest land, the tree crown cover
must be at least 10 % (at maturity). For OWL, tree
crown cover must be between 5 and 10 % or the com-
bined tree/shrub cover must be at least 10 %. OL is all
land that does not qualify as forest or OWL, including
tree-covered lands with predominantly agricultural or
urban land use. Finally, IW is composed of major rivers,
lakes, ponds, and reservoirs. TOF concerns the tree
resources on OL and on IW, although the tree resources
in the latter category are typically extremely small. The
major part of TOF is associated with agricultural and
urban land uses, but TOF may also be found as small
wooded areas or tree line formations outside these cat-
egories. Scattered tree formations with very low canopy
densities, typically growing under difficult environmen-
tal conditions, are also considered TOF (de Foresta et al.
2013, p. 31). Some countries reported trees growing on
IW, which are related to river banks and lakeshores. As
this practice was not done consistently over the study
countries and only concerned very few trees, we moved
such trees to OL and consequently report biomass only
for forest, OWL, and OL; however, area estimates were
done including IW.

We use FAO’s definition of a tree (FAO 2010): trees
are woody perennial plants able to reach a height of at
least 5 m in situ. Note that bamboo and palms are
included according to this definition. In our analysis,
however, we excluded bamboo, as the data were
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incomplete for some countries. Furthermore, all dead
trees and stumps were excluded from the analysis.

Inventory design and variables used

The inventory approach of the NFMA programme was
systematic sampling with cluster-plots. The FAO’s tem-
plate manual for integrated field data collection (FAO
2012) provides a detailed description on the procedures
and organisation of the field survey. The final reports
and field manuals of each NFMA project can be found
at FAO’s homepage (FAO 2013). Here, we focus on the
features relevant for the estimation of TOF-related var-
iables. Each cluster-plot consisted of four rectangular
subplots with a size of 20m×250m so that a plot area of
2.0 ha was tallied at each sample location (Fig. 2). The
sampling frame was defined in terms of area and
corresponded to the entire country’s territory so that all
cluster-plots were field-visited regardless of the current
land use: that is, trees were measured wherever they
occurred, and the inventory approach was not restricted
to forest land as is common in traditional forest inven-
tories. For each subplot, land use was recorded. Because
the clusters as a whole and the individual subplots were
relatively large, one cluster-plot often included several
land uses. In such cases, subplots were divided into
different land-use sections. For each land-use section,
the shape and size was recorded, so that the whole
cluster and subplots were mapped in the field according
to actual land use. Diameter at breast height (dbh) and
height were recorded for all trees with a dbh of at least

10 cm. Within forests, smaller trees (dbh<20 cm) were
measured on three evenly arranged micro-plots of
200 m2 per subplot—i.e. 12 micro-plots per cluster-
plot (Fig. 2).

As countries adjusted the basic inventory design
when necessary, we compiled an overview of basic
design characteristics such as the country’s land area,
the total sample size, and the number of strata used for

Bangladesh

CameroonCosta Rica

Guatemala
Honduras

Kyrgyzstan

Lebanon

Nicaragua PhilippinesThe Gambia

Zambia

−50

−25

0

25

50

−100 −50 0 50 100 150
Longitude

La
tit

ud
e

Fig. 1 Map of countries studied

500 m

250 m

25
0 

m

Cluster-plot

S
ub

-p
lo

t

10 m

20 m

Micro-plot

Fig. 2 Basic plot design used in the NFMA programme. Only the
elements necessary for the present analysis are illustrated, a de-
tailed description is given in FAO (2012). The application of
micro-plots is optional and not applied equally by all countries.
For Costa Rica, the subplot length is 150 m
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the implementation of the inventory (Table 1). Stratifi-
cation was used in Cameroon and Guatemala. The land
area of Cameroon was divided into two strata to ensure
more sampling units in the densely forested southern
part of the country. In Guatemala, three strata were
distinguished, dividing the country into a northern, cen-
tral, and southern part, following the natural regions of
Guatemala. A higher sampling density was used for the
central stratum, accounting for an increased variation in
ecosystems, human activity, and land use. The applica-
tion of micro-plots in forests, an optional strategy, was
not used in Bangladesh, Kyrgyzstan, or Lebanon. In
these three countries, all trees above the applied dbh
threshold were measured on the subplots irrespective of
the land use. In addition, Kyrgyzstan and Zambia used
smaller dbh thresholds (Table 1). In the analyses, we did
not correct for this, and results should be interpreted
bearing in mind these relatively minor variations among
countries. Another deviation from the standard design
occurred in Costa Rica, where the very first NFMA
inventory was carried out using subplots only 150 m
long.

Sample sizes (Table 1)—i.e. the number of cluster-
plots distributed over the countries—varied from 40 to
765, largely as a result of differences in country size and
available resources. For some of the clusters, access to
the field was impossible due to topography, vegetation,
owner denial, and restricted areas so that information
was either totally missing or only available for some
parts of a cluster. For some of the inaccessible land, land
use could be observed from a distance; for the rest, it
was completely unknown. The latter case is reported as
a separate category of nonresponse. Thus, some tree
populations and land-use categories, e.g. trees on steep
slopes or remote forest areas, are underrepresented as a
consequence of this nonresponse. However, as we ap-
plied broad land-use categories, the effect should be
minor. In a strict sense, the presence of nonresponse
means that our results are only representative for land
areas to which access was possible during the
inventories.

Estimation framework

The estimation of attributes, such as area proportions or
total biomass, from a mapped plot design, as in our case,
is discussed in detail in Zarnoch and Bechtold (2000).
Briefly, the ratio of means estimator (Cochran 1977,
chapter 6) relates the total biomass observed on a

cluster-plot to the area of that cluster to obtain an aver-
age biomass. For variance estimation, we applied the
respective simple random sampling estimator frame-
work, despite the fact that the sample design is system-
atic. In such cases, random sampling estimators deliver
conservative estimates, so the true error is likely to be
overestimated although the magnitude of overestimation
is unknown (Ene et al. 2012; Gregoire and Valentine
2008, p. 55).

Because we applied a nested plot design to forest
land in some of the countries, an additional step
was required to estimate the forest-related results,
used as a baseline for comparisons with TOF esti-
mates. Instead of one ratio estimator, two were
required—one for the small trees on the micro-
plots and one for the large trees on the subplots.
The two ratios were then simply added, and the
variance of the sum calculated.

Totals (e.g., total forest biomass) were estimated
by multiplying the per hectare estimates with esti-
mates of the total area covered by the respective
land uses. Area estimates were in turn derived by
multiplying estimated area proportions with the
known total land area (Table 1). We do not report
the totals but rather the share each land-use category
contributes to the overall total in a country.

Tree level biomass

Because allometric models specifically derived for TOF
are extremely limited (e.g. McHale et al. 2009), we
needed to resort to models that were derived from forest
trees. To demonstrate the differences caused by uncer-
tainties in existing biomass models, we used three ap-
proaches for biomass estimation (van Breugel et al.
2011).

Approach 1 makes use of the mixed species tree
biomass regression models developed by Chave et al.
(2005) on the basis of a large dataset comprising 2410
trees from 27 study sites across the tropics. The models
were specific to four broad forest types: wet, moist,
moist mangrove, and dry forests. We used the global
ecological zones as defined by FAO (2001) to select the
appropriate set of functions in each case. The
independent variables in the models were diameter
at breast height, wood specific gravity, and tree
height. In our case, tree height information was
available for all recorded trees, either measured

Environ Monit Assess (2015) 187:4197 Page 5 of 18, 4197



with hypsometers or estimated visually. This
approach is denoted here as Chave H.

Approach 2 is equal to approach 1 in all aspects
except that height was not used as an independent
variable. Thus, in this case, we used those models from
Chave et al. (2005) that do not require tree height as an
independent variable. Consequently, approach 2 is de-
noted here as Chave D.

For approach 3, we adopted the methodology
used by the individual countries for their reporting.
Many used the mixed species regression models
described in Brown (1997), which only use diameter
at breast height as an independent variable and
which were developed from rather small datasets.
Other countries used the inventoried tree volume
together with wood specific gravity and biomass
expansion factors to estimate biomass. A more
detailed description of the applied models, wood
specific gravities, and expansion factors is provided
in the Appendix. In the following, we denote this
approach NFMA.

Tropical conifers, as found in Guatemala, Honduras,
and Nicaragua, were treated equally across all three
approaches. We used either the preliminary model
from Brown (1997) or, if available, country-specific
functions for forest trees (see Appendix). For the two
nontropical countries, Kyrgyzstan and Lebanon,
biomass was estimated using biomass expansion factors
as described in the NFMA reports (FAO 2013; IPCC

2006). Specific allometric functions were not available
for these regions.

Because wood density is a fundamental part of
the applied equations, the World Wood Density Da-
tabase (Chave et al. 2009; Zanne et al. 2009) was
used to obtain values for the observed species. Fol-
lowing the approach that Chave et al. (2006) used,
we first tried to find values on the species level. If
no value could be found, genus averages were ap-
plied and subsequently, family averages if the genus
was missing as well. For cases where the species
was completely unknown or neither species nor
genus nor family could be found in the wood den-
sity database, the median of the ten most abundant
species per land-use type was applied as a proxy
(Fischer et al. 2011).

The biomass of palms was estimated with the same
models as those used for trees despite the fundamentally
different allometry and highly variable wood density
within single palm stems (Rich 1987). This approach
was done because of the lack of allometric equations for
biomass estimation of palm trees based on input vari-
ables (diameter and height) available from our forest
inventory data. Models based on trunk height exist for
some Mesoamerican species. However, these palm spe-
cies differ substantially in average size and height from
Asian species. The lack of allometric biomass models
for palms appears to be a major methodological gap for
biomass estimation in tropical regions.

Table 1 Basic characteristics of the sample and plot design used in the single countries

Country Area Sample size Strata dbh limit Micro-plot Year
km2 no. no. cm bin

Bangladesh 147,570 298 1 10 (10) no 2005–2007

Cameroon 475,440 207 (205) 2 20 (10) yes 2003–2004

Costa Rica 51,000 40 (39) 1 30 (10) yes 2001

The Gambia 11,000 144 (129) 1 20 (10) yes 2008–2010

Guatemala 108,899 114 3 20 (10) yes 2002–2003

Honduras 112,492 181 1 20 (10) yes 2005–2006

Kyrgyzstan 199,940 765 (733) 1 8 (8) no 2008–2010

Lebanon 10,452 222 (220) 1 10 (10) no 2003–2005

Nicaragua 130,000 371 (368) 1 20 (10) yes 2007–2008

Philippines 300,000 351 (349) 1 20 (10) yes 2003–2005

Zambia 752,614 238 (232) 1 20 (7) yes 2005–2008

Sample size gives the number of clusters used, in case of inaccessibility, the reduced number of clusters is given in parentheses; dbh limit is
the threshold for measuring trees on forest subplots, with thresholds for trees on rectangular micro-plots and outside forests in parentheses;
the binary variable micro-plot indicates whether micro-plots were used (yes) or not (no)

4197, Page 6 of 18 Environ Monit Assess (2015) 187:4197



Carbon estimation

For a validation of the biomass estimates, results were
compared to national forest carbon stock estimates pub-
lished in Gibbs et al. (2007). For that purpose, biomass
estimates, as calculated from our data, were converted to
carbon applying the Intergovernmental Panel on Cli-
mate Change (IPCC) default carbon fraction of 0.47
(McGroddy et al. 2004) for above-ground forest bio-
mass. As the reported figures refer to above-ground and
belowground forest biomass carbon stocks, results were
additionally expanded with a conversion factor of 1.2 to
account for roots (Gibbs et al. 2007).

Results

Estimated areas by land-use classes

As may be expected from the diversity of countries
involved, cover estimates for the four major land-use
classes vary considerably (Table 2). The three countries
with the lowest forest cover are Kyrgyzstan, Bangla-
desh, and Lebanon. These low values represent the fact
that these countries are mainly covered by OL, the land-
use category where TOF grow. Forest cover of more
than 40 % was estimated for Zambia, Costa Rica, Hon-
duras, and Cameroon. The other countries lie in the
range from 20 to 40 %. OWL is highest in Cameroon,
and most of the other countries have between 10 and
20 % of that land-use category. Except for the countries
with low forest cover, the share of other land ranges
between 35 and 60 %, whereas Cameron and Zambia
only have about 20% of that land-use type. Bangladesh,
Gambia, and Nicaragua have relatively high proportions
of IW. Furthermore, the proportion of land, where land
use is unknown due to inaccessible sample units may
represent up to 8 % of a country’s area. In Table 2, we
provide estimates of forest cover as given in the Global
Forest Resources Assessment 2010 (FAO 2010). Num-
bers differ slightly from our own estimates but are
generally on the same order of magnitude.

Estimated biomass and carbon stocks

The results of living above-ground tree biomass accord-
ing to Chave H are summarised in Table 3, where we
present the average biomass per hectare, its relative
standard error, and the share of the country’s total

biomass. The largest average biomass stocks for TOF
were observed in Cameroon (16.4 t ha−1) and the Phil-
ippines (12.3 t ha−1). The other countries had stocks of
less than 10 t ha−1 and were generally in a comparable
range to the ones found on OWL. Average biomass
stocks in forests were naturally higher and ranged from
21.8 to 159.9 t ha−1.

Forests typically held the major part of the tree
biomass of the inventoried countries. For six of the
11 countries, however, more than 10 % of the total
tree biomass was found outside of forests and OWL.
An exceptional case is Bangladesh, where as much as
75 % of the national tree biomass stocks were esti-
mated to be TOF. This is mainly because OL is by far
the largest land-use class in this country and stocks
on forest land are relatively low (33.4 t ha−1) com-
pared to the ones on OL (9.6 t ha−1). Relating TOF
biomass shares to forest cover, we observed a relative
strong linear correlation of �0:68 : a lower forest
cover implies a relatively large amount of the nation-
al biomass in TOF. Comparing the biomass stocks of
TOF to the ones on OWL, we found that in almost all
cases, more biomass is accumulated in total on OL
than on OWL. The main reason for this is the com-
parably small area of OWL.

Table 4 provides a comparison of total above-ground
tree biomass estimates applying all three estimation
approaches to the same data for the three land-use
types—F, OWL, and OL. We also report published
figures on forest carbon stocks to check our results.
Compared to the models used in the NFMA reports, in
most cases, Chave et al.’s (2005) models produced
lower estimates of total biomass. With the exception of
Gambia, the differences were more pronounced for the
African and Asian countries than for the Central Amer-
ican countries. We further observed a strong effect of
including tree height in the pantropic models, which
resulted in considerably lower estimates. For a more
detailed comparison of biomass estimates, we refer to
Appendix A.1 and Fig. 3, where confidence intervals are
provided.

The last two columns of Table 4 contain estimated
totals of carbon stock. The given numbers refer to
above-ground and belowground tree carbon stocks.
The first of the two columns gives the range of our
estimates from the three approaches of biomass estima-
tion, and the second contains published figures from the
literature (Gibbs et al. 2007). In contrast to our esti-
mates, the literature values are based on land-use
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classification and biome averages and are only available
for forests and tropical countries. The differences are
considerable. In particular, the application of the
equations from Chave et al. (2005) provided much
lower estimates than the ones published in Gibbs et al.
(2007).

Discussion

Relevance of TOF

In many of our study countries, relatively large parts of
the national-level above-ground woody biomass stocks

Table 2 Area estimates for the major land-use classes forest, other wooded land (OWL), other land (OL), and inland water (IW) given in
percent of total land area

Country Forest FRA 2010a OWL OL IW Unknown

Bangladesh 8.1 (18.1) 11 0.7 (62.6) 76.8 (2.9) 13.7 (12.4) 0.7 (70.6)

Cameroon 44.2 (2.6) 42 31.1 (4.2) 23.5 (3.9) 0.6 (0.3) 0.6 (0.8)

Costa Rica 46.7 (10.9) 51 1.8 (73.3) 43.1 (13.2) 4.0 (65.9) 4.4 (53.7)

Gambia 26.6 (11.4) 48 10.9 (18.2) 52.1 (6.5) 10.5 (22.7) n/a

Guatemala 37.3 (4) 34 16.3 (2.4) 42.6 (3.7) 1.8 (1.5) 2.0 (9.5)

Honduras 42.7 (6.9) 46 11.7 (12.1) 34.7 (7.7) 2.9 (34.7) 8.0 (25)

Kyrgyzstan 3.4 (14.2) 5 3.1 (14.3) 88.8 (1.1) 4.7 (15.5) n/a

Lebanon 12.6 (12.9) 13 10.4 (13) 71.7 (3.4) 0.0 (76.7) 5.3 (27.9)

Nicaragua 25 (7.1) 26 17 (7.6) 48.8 (4.1) 9.2 (15.3) n/a

Philippines 23.8 (7.9) 26 12.2 (10.1) 61.3 (3.4) 2.7 (20.6) n/a

Zambia 63.9 (4.2) 67 7.4 (18.9) 19.7 (10.5) 4.2 (29.3) 4.8 (28.9)

The corresponding standard errors are given in parentheses as a percentage of the estimated total. In the column “FRA 2010”, estimates for
forest area as reported by FAO in the Global Forest Resources Assessment 2010 (FAO 2010) are given in percent of the total area
a Estimates of forest area in the FRA 2010 report are related to the total land area excluding IW, whereas we relate to total land area including
IW. Differences are partly explained not only by that but also by slightly differing inventory dates andmethodologies. The large deviation for
Gambia might be a consequence of differing land-use definitions and points to the eternal challenge of compatibility of definitions in global
forest monitoring

Table 3 Estimated above-ground live tree biomass density with the corresponding estimated relative standard error in parentheses and the
share of the country total for the three major land-use classes

Country Forest OWL OL

t ha−1 (%) Percentage t ha−1 (%) Percentage t ha−1 (%) Percentage

Bangladesh 33.4 (21.5) 26.7 7.7 (79.5) 0.5 9.6 (8.6) 72.8

Cameroon 159.9 (2.9) 89.4 14.6 (9.9) 5.8 16.4 (15.4) 4.9

Costa Rica 104.0 (15.4) 93.0 0.0 (n/a) 0.0 8.5 (28.7) 7.0

Gambia 21.8 (10.9) 57.6 8.0 (15) 8.7 6.5 (13.5) 33.7

Guatemala 80.6 (14) 86.0 9.3 (15.6) 4.3 7.9 (16.9) 9.6

Honduras 79.2 (9.3) 91.0 9.3 (16.1) 2.9 6.5 (14.5) 6.0

Kyrgyzstan 30.2 (21.8) 84.2 1.0 (29.8) 2.6 0.2 (22.1) 13.2

Lebanon 24.6 (28.5) 51.6 4.6 (26.5) 7.9 3.4 (26.9) 40.5

Nicaragua 74.1 (6.3) 74.4 12.6 (10.9) 8.6 8.6 (9) 17.0

Philippines 82.6 (8.2) 69.0 10.5 (12.1) 4.5 12.3 (9.2) 26.5

Zambia 32.0 (5.3) 95.1 4.9 (21.2) 1.7 3.6 (16.5) 3.3

The estimated contribution of TOF to the total above-ground tree biomass is very different among the countries and goes from 3.3 %
(Zambia) to 72.8 % (Bangladesh), owing mainly to differences in overall forest cover
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were found in non-forest trees. Similar results have been
obtained in other countries as well. In India, for exam-
ple, 25.6 % of the national growing stock was found
outside of forests (FSI 2011), and in some Indian states,
even the majority of wood supplies come from non-
forest trees (Ahmed 2008; Pandey 2008). For developed
countries, figures on total tree resources that also include
TOF are rare and, if available, usually do not cover all
TOF types. Furthermore, when TOF is assessed, related
figures are either often difficult to extract from the
reports or are not reported at all. However, for Switzer-
land, an estimated 4.1 % of the non-forest area was
covered by trees or shrubs (Brändli 2010), and in Swe-
den, trees growing on farmland and grassland accounted
for an estimated 0.7 % of the country’s growing stock in
terms of stem volume. The latter example shows that
TOF only plays a relatively minor role on the national
scale when forest cover is high, as is the case in Sweden.
Locally, for example in human settlements, TOF might,
however, very well be of high relevance for providing
ecosystem services (Rydberg and Falck 2000). In the
USA, pilot studies indicated that TOF can contribute
considerably to overall tree stocks. For a study region in
Maryland, Riemann (2003) estimated that TOF contrib-
uted 30.2 % to total tree basal area. For Great Britain, it
was estimated that about 123 million trees exist outside
woodlands, which corresponds to a density of 5.4 trees
per hectare. A more comprehensive overview of coun-
tries that have some sort of TOF assessment can be
found in part 2 of de Foresta et al. (2013). Reported
numbers should, however, be interpreted with care as
TOF monitoring is not as harmonised as forest monitor-
ing is. Currently, the European Cooperation in Science
and Technology (COST) action USEWOOD is dealing
with this issue on EU level (COST 2014).

TOF might be seen as an indicator for the state of the
forests in a country, where a high quantity of TOFwould
imply that this resource may be particularly relevant as
compared to forest trees. Countries may have low forest
cover because of climatic and topographic conditions
that do not support a high forest cover as for example in
Kyrgyzstan, or forest cover is low because of human
pressure. According to Gibbs et al. (2010), the expan-
sion of agricultural land to feed an increasing world
population has occurred mainly at the expense of intact
and degraded forests, woodlands, and savannahs.

Our results confirm that TOF constitutes a relevant
tree resource in many developing countries. While we
have not looked into uses and management of TOF, the

variability of TOF stocks suggests that there is room to
increase this resource in all countries. This conclusion is
supported by studies on additional tree plantings in
agricultural and urban landscapes (Reisner et al. 2007)
and by studies that focus on tree planting programmes or
payment schemes for ecosystem services (McPherson
et al. 2011; Schleyer and Plieninger 2011). Systematic
management and fostering of non-forest trees could
considerably contribute to increasing tree carbon stocks
and landscape diversity. A political goal could be to
increase the TOF resources and implement actions that
integrate non-forest trees into international carbon mar-
kets (Atangana et al. 2014; Plieninger 2011).

In comparison to OWL, we showed that the shares
of national biomass stocks are higher on OL in all our
study countries. When it comes to national
programmes to monitor forest and tree resources,
however, OWL is typically included, while only the
NFMA programme and the Indian NFI (Tewari et al.
2013) appear to include TOF in a more comprehen-
sive manner. Given the quantitative relevance of TOF
as illustrated in this comparative study, there seems to
be good reasons to continue fully integrating TOF in
national monitoring programmes.

Biomass estimation

Influence of applied biomass estimation method

For the estimation of TOF biomass, the same chal-
lenges hold as in general for the estimation of tree
and forest biomass, however, aggravated by the fact
that there are hardly any biomass models that were
specifically developed for the particular growth con-
ditions of TOF. Examples of studies, where TOF-
specific models were developed are given in “TOF-
specific issues” section below. Table 4 illustrates that
the three-variable pantropical biomass models (diam-
eter, height, and wood specific gravity) generally led
to the lowest estimates, followed by the two-variable
pantropical models (diameter and wood specific
gravity) and the country-specific models. The highest
estimates within country and land-use category are
1.5 to 6.6 times larger than the lowest estimates,
showing that the method used to estimate biomass
significantly affects the results. The largest differ-
ences were found for countries (Bangladesh, the Phil-
ippines, and Zambia) in which inventoried tree vol-
ume was converted to biomass applying wood
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specific gravity and biomass expansion factors.
Furthermore, differences are often larger for OWL
and OL than for F. As there are no clear guidelines
for the selection of allometric biomass models, van
Breugel et al. (2011) suggest the application of
models from different sources as a means to conduct
sensitivity analyses. In our study, results indicated
that a major part of the uncertainty could be ad-
dressed by the choice of model for biomass estima-
tion, a finding that has been confirmed by several
studies on error propagation (Chave et al. 2004; Mol-
to et al. 2013; van Breugel et al. 2011). In general,
four sources of uncertainty for above-ground biomass
estimation exist (van Breugel et al. 2011): (1) the
sample size used for building the allometric model,
(2) the application of multispecies models, (3) the
selection of models built from data outside the study
area, and (4) the sampling error due to only observing
a part of the population. The first two sources can be
addressed by selecting pantropical, multispecies
models that incorporate wood specific gravity in their
equations. Such models were built from large
datasets covering a wide range of diameters and tree
allometries that may not be present in local models
(Chave et al. 2005; van Breugel et al. 2011). Further-
more, including wood specific gravity accounts for
much of the species’ variability in above-ground
biomass estimates (Chave et al. 2005, 2004; van
Breugel et al. 2011). The inclusion of wood specific
gravity is important for large-area tropical biomass
estimates from national inventory data (as in our
case), where species-specific models are often not
available or valid only for local conditions (Fayolle
et al. 2013). Because of these reasons, we selected the
models from Chave et al. (2005) as these models
include wood specific gravity and are based on one
of the largest datasets of individual tree biomasses
determined from felling of trees. Recent efforts to
expand the dataset even further, in particular, by
accounting for the gap in African data, confirmed
that Chave’s pantropic models provided accurate re-
sults (Djomo et al. 2010; Fayolle et al. 2013;
Vieilledent et al. 2012).

The application of pantropical models including
tree height as a predictor variable consistently deliv-
ered the lowest estimates (Table 4); except for Costa
Rica, where the country-specific model gave lower
estimates of forest above-ground biomass (AGB).
Feldpausch et al. (2012) made a similar observation

after quantifying the effect of excluding height from
biomass estimation based on data from pantropical
permanent plots and destructive sampling. They con-
cluded that the exclusion of tree height frequently
leads to an overestimation of tropical forest AGB, a
finding also reported earlier by Chave et al. (2005).
In light of these results, height should be included as
a predictor variable in biomass estimation models
(Chave et al. 2005; Fayolle et al. 2013; Feldpausch
et al. 2012). Consequently, our confidence is highest
for the estimates provided by the models of Chave
et al. (2005) that include height. If height measure-
ments are unavailable, pantropical models from
Feldpausch et al. (2011) can be used to predict
height.

The example of the NFIs in Bangladesh, the Phil-
ippines, and Zambia showed that the application of
biomass expansion factors and average wood specific
gravities could lead to highly variable results. One
source of uncertainty is the volume models: for all
three countries, simple form factor models of the
form vi ¼ π

4 d
2
i � hi � f were applied. Here, vi de-

notes stem volume of tree i in cubic metres; di, the
diameter at breast height in metres; hi, total tree
height in metres; and f, a dimensionless form factor
to reduce cylinder to stem volume. In the NFIs in
Bangladesh and Zambia, a common form factor was
used across all species, whereas in the Philippines,
the form factors were climate and species specific.
Additional uncertainty comes from regional averages
for wood specific gravity and biomass expansion
factors taken from IPCC tables. The latter was done
in the studies in Bangladesh and Zambia, while in the
Philippines, a function based on the biomass of the
inventoried volume from Brown (1997) was applied.
This function is a negative exponential and prone to
errors when used outside of the data range, which
was the case for stands of low density, with the likely
result of applying expansion factors that were too
high. The application of expansion factors from the
IPCC tables is also somewhat arbitrary as only little
guidance is given on what factor to pick from a range
of values.

There are high uncertainties related to model
choice with respect to biomass estimation. Howev-
er, for reporting carbon emissions within the land-
use, land-use change and forestry sector, the
Reduced Emission from Deforestation and Degra-
dation programme and the Clean Development
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Mechanism, estimates of change rather than of state
are required. Recent studies for permanent monitor-
ing systems of temperate and boreal forests, for
example, have shown that in such cases, the uncer-
tainty related to single-tree biomass models was
reduced drastically (Breidenbach et al. 2014; Ståhl
et al. 2014). These studies, however, are related to
the precision of estimates and not to accuracy. In
contrast, we saw that an application of different
models to the same data might give very different
results. This inconsistency indicates systematic er-
rors, which are hard to quantify without additional
biomass measurements (destructive sampling) to
verify the suitability of a certain model. When
applying the same model and the same inventory
methodology, these sorts of errors may not influ-
ence estimates if the same objects are observed and
the direction of the error does not change. In con-
trast, other approaches to quantify carbon emissions
(e.g. by combining carbon densities with changes in
land cover) might be more prone to errors in state
estimates and thus model choice (Pelletier et al.
2011).

Comparison to other published results

The range of carbon stocks related to the total
above-ground and belowground forest tree biomass
from our estimates differed considerably from the
results published, for example in Gibbs et al. (2007),
yielding much lower estimates. The figures in Gibbs
et al. (2007) are all based on land cover classifica-
tions and biome averages following tier 1 of IPCC
(IPCC 2006), whereas our results are more specifi-
cally based on field-based inventories and thus cor-
respond to tier 2. Sources for the differences include
(1) non-representativeness of the biome averages,
(2) type of method used for predicting AGB, (3)
errors in the land cover maps, and (4) errors related
to sampling. Biome averages are either based on
compilations of plot measurements from ecological
studies or on forest inventory data (Gibbs et al.
2007). Here, systematic deviations may arise from
a poor coverage of the original data from which the
biome averages were calculated, from research plots
that often focus on intact mature forests (Chave
et al. 2004) or from inventories that do not cover
all possible biomes (Gibbs et al. 2007). The second
source of differences, model selection, has already

been addressed above. It is likely that the AGB
estimation method used to calculate biome averages
differs from the ones we used in our study. Related
to land cover maps, it is likely that estimates of
forest area from our study differ from the ones from
the maps. This difference is due to differences in the
inventory period and the data sources used. In our
case, land-use classes were assessed in the field
through direct observations and not through inter-
pretation of remotely sensed imagery. The last
source for differences is the error introduced due to
sampling. The estimators we applied will on average
provide approximately unbiased results, but the in-
dividual results will differ from the true values;
when probability sampling is applied, this variability
can be quantified as the standard error of the esti-
mate. However, sampling errors in our case were
probably overestimated due to the application of
simple random sampling estimators to a systematic
design (Ene et al. 2012).

TOF-specific issues

As the models we applied were all built from data
that were collected in mature forests, the magnitude
of uncertainty when applying these models to non-
forest trees is unknown (Nair 2011). Only a few
studies exist that developed TOF-specific allometric
biomass equations (e.g. Kumar et al. 1998; Kuyah
et al. 2012; McHale et al. 2009; Zhou et al. 2007).
For agroforestry systems, which can be considered a
major part of the TOF areas, three options for above-
ground biomass estimation exist (Nair 2011): (1)
application of multispecies models developed for
forest trees, (2) estimation of stem volume and con-
version to biomass by wood density and an expan-
sion factor of 1.6, and (3) development of site- and
species-specific models. We applied option 1 (multi-
species models developed for forest trees) and argue
that using wood specific gravity, diameter, and tree
height accounts for most of the variation in tree
allometry, an assumption that a recent study on esti-
mating biomass in agricultural landscapes partly con-
firmed (Kuyah et al. 2012). Apart from this, little is
known about TOF-specific tree allometry, so addi-
tional destructive sampling of non-forest trees is ur-
gently required. The second option (stem volume and
conversion to biomass by wood density and an ex-
pansion factor of 1.6) shifts the problem to the
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volume model, and further, the application of a com-
mon expansion factor might lead to highly biased
results. The third option (site- and species-specific
models) is probably the best for local studies, but it is
hardly feasible on a default basis because of financial
restrictions. For large areas (e.g. the country level),
substantial destructive sampling would be required
and the question is whether TOF versions of pantrop-
ic, multispecies biomass models can realistically be
developed. A considerable variation of stand densi-
ties, planting arrangements, and species composition
exists (Nair 2011). In addition, management prac-
tices, such as pruning, alter tree allometry. Generally,
non-forest trees grow in a variety of conditions from
single isolated trees over linear formations to dense
forest-like woodlots of small areal extent. Such trees
are often exposed to significant edge effects and have
relatively simple understory species composition. In
the course of increased radiation, wind speed, and
agricultural residuals, differences in wood specific
gravity and architecture compared to forest trees
may be observed (Zhou et al. 2007). The high varia-
tion of possible TOF-formations could make it nec-
essary to develop specific allometric models for spe-
cific types of TOF (e.g. trees growing in alleys vs.
trees growing in small woodlots). In addition, the
considerable more variable overall growth conditions
of TOF may suggest including additional input vari-
ables into such specific allometric models such as
crown characteristics (e.g. crown length and crown
width) or an upper diameter to better capture varia-
tion in stem shape.

In urban environments, Nowak (1994) found that
forest-based equations overestimate the biomass of
open-grown trees (which may directly be expected
from significantly different height-diameter relation-
ships), and thus, he applied a reduction factor of 0.8;
for trees growing under denser conditions, no correc-
tions were applied. For species growing in shelter-
belts in the Great Plains of the USA, Zhou et al.
(2007) found that trunk wood specific gravity for
open-grown trees is higher than that of forest trees,
leading to an underestimation of trunk biomass when
applying forest equations. By including branches,
they concluded that it is unlikely to overestimate
biomass on a whole tree basis. The possible differ-
ences in wood specific gravity found by Zhou et al.
(2007) are a further possible source of error as we
used wood specific gravities from the Global Wood

Density Database (Zanne et al. 2009) that are actually
compiled from forest measurements. At another
study site in western Kenya, Kuyah et al. (2012)
developed biomass models specific to agricultural
trees. They found that the best local model showed
good agreement with the dry forest model from
Chave et al. (2005). This result, however, is also
difficult to generalise to larger areas without addi-
tional studies. The application of forest-based equa-
tions was further investigated by McHale et al.
(2009) for an inventory of park and street trees; they
identified considerable discrepancies between forest
models and models specifically developed for non-
forest trees. On the other hand, the study also re-
vealed that averaging existing models and including
a diversity of species reduced the variability of
estimates.

Conclusions

This study provides quantitative evidence that TOF
are an important tree resource on the national level.
In many countries, TOF are a substantial part of
national woody biomass and may even be an impor-
tant regional wood resource. Because national forest
monitoring does not account for TOF, such monitor-
ing often misses the possibly large carbon pools
associated with TOF.

This study supports the notion that forest
inventory-related programmes at FAO and forest re-
search institutions in the implementing partner coun-
tries should cooperatively engage more intensively
into the scientific use and analyses of the data gener-
ated under the guidance of the NFMA programme.
Such a cooperative engagement will strengthen re-
search institutions, improve inventory methodology,
and generate better support for informed policy
decisions.
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Appendix

A.1

As a complement to Table 4, we provide confidence
intervals for the total biomass estimates in Fig. 3. The
purpose was to provide evidence that it matters which
biomass estimation approach was used. Intervals were

constructed as bt−1:96
ffiffiffiffiffiffiffiffiffiffi

bV bt
� �

q

;bt þ 1:96
ffiffiffiffiffiffiffiffiffiffi

bV bt
� �

q
� �

,

wherebt is the estimated total and
ffiffiffiffiffiffiffiffiffiffi

bV bt
� �

q

the estimated

standard error. The values �1:96 and 1:96 are the 0:0
25 and 0:975 quantiles of the normal probability
distribution, yielding a 95 % confidence interval under

the assumption of a normal distribution ofbt . Note that

Table 4 National level aboveground tree biomass and carbon stock estimates

Country Land use Biomass in M t Carbon stock in M t

Chave H Chave D NFMA This study Gibbs et al. (2007)

Bangladesh Forest 40.0 66.0 208.5 24–125.1 65–158
Bangladesh OWL 0.8 1.7 3.9 0.5–2.4

Bangladesh OL 108.9 275.6 545.7 65.4–327.4

Cameroon Forest 3358.4 4259.7 5712.0 2015–3427.2 3454–6138
Cameroon OWL 216.1 509.0 367.1 129.7–305.4

Cameroon OL 183.2 298.0 330.3 109.9–198.2

Costa Rica Forest 247.7 337.6 211.9 127.2–202.6 471–704
Costa Rica OL 18.8 36.6 27.6 11.3–22

Gambia Forest 6.4 12.7 11.1 3.8–7.6 6–11
Gambia OWL 1.0 2.4 2.4 0.6–1.5

Gambia OL 3.7 9.4 10.0 2.2–6

Guatemala Forest 327.0 460.1 505.2 196.2–303.1 787–1147
Guatemala OWL 16.5 29.2 36.2 9.9–21.7

Guatemala OL 36.5 69.0 92.9 21.9–55.7

Honduras Forest 347.7 473.6 524.1 208.6–314.5 852–1268
Honduras OWL 11.2 19.9 30.0 6.7–18

Honduras OL 23.1 44.2 53.7 13.9–32.2

Kyrgyzstan Forest n/a n/a 20.4 12.2

Kyrgyzstan OWL n/a n/a 0.6 0.4

Kyrgyzstan OL n/a n/a 3.2 1.9

Lebanon Forest n/a n/a 3.2 1.9

Lebanon OWL n/a n/a 0.5 0.3

Lebanon OL n/a n/a 2.6 1.5

Nicaragua Forest 240.3 332.6 433.2 144.2–259.9 930–1395
Nicaragua OWL 27.9 47.6 70.1 16.7–42

Nicaragua OL 54.8 119.1 153.5 32.9–92.1

Philippines Forest 588.7 897.9 1728.4 353.2–1037 765–2503
Philippines OWL 38.7 65.4 229.0 23.2–137.4

Philippines OL 225.8 380.8 928.1 135.5–556.9

Zambia Forest 1540.9 2796.9 4185.0 924.6–2511 1455–6378
Zambia OWL 27.1 65.3 180.0 16.3–108

Zambia OL 52.8 108.9 292.8 31.7–175.7

Biomass estimates refer to living above-ground biomass (trunk and branches). Carbon stocks are calculated by multiplying the biomass with
a conversion factor of 0.47 and expanding the result with 1.2 to get above-ground and belowground stocks for comparison to published
estimates from Gibbs et al. (2007)
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the coverage of the intervals is probably slightly larger
than 95 % due to the overestimation of the sampling
error that follows from using a simple random sam-
pling estimation framework in combination with

systematic sampling (see “Estimation framework”
section).

InFig. 3, all estimated totals and their corresponding
confidence intervals were related to the corresponding

Fig. 3 Total biomass estimates with 95 % confidence intervals.
The estimates for the three different biomass estimation ap-
proaches described in “Tree level biomass” section are provided.
Pantropic multispecies models from Chave et al. (2005) are indi-
cated by Chave H and Chave D, where H means that height was
used as a predictor variable andD, that height was not used.NFMA

indicates biomass models as used in the original reporting from
FAO. The methods applied vary from country to country; details
are given in Appendix A.1. The Chave H biomass model is the
reference to which all other models are compared. Thus, in the
figure, these estimates are given the relative value 1.0 and, e.g. a
value of 2.0 implies a result twice as large as Chave H
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estimates usingChaveH. This approach for estimating
the biomass of single trees was thus used as a reference
level to which all other biomass estimation approaches
were compared. This standardisation was done to ob-
tain a better comparability across land uses and
countries.

A.2

Here, a summary of the methodology that was orig-
inally applied by each country for its biomass
reporting is given. The background reports can be

found at FAO (2013). In Table 5, the different allo-
metric above-ground tree biomass models as applied
by six countries are listed by species and forest type.
The models provide direct estimates of above-ground
tree biomass in kilogrammes. The remaining five
countries estimated biomass based on tree volume
and an application of wood specific gravities, wd,
and biomass expansion factors, bef. In the NFI in
Zambia, wood specific gravities and biomass expan-
sion factors were combined into biomass conversion
and expansion factors, bcef. The values applied for
wd, bef, and bcef are provided in Table 6. In addition,
the table provides information about volume estima-
tion. In Table 7, it is shown what methods were
applied by the different countries.

Table 6 Factors used when esti-
mating above-ground tree bio-
mass based on expanding
inventoried volume

wd wood specific gravity in total
per cubic metre, bef biomass ex-
pansion factor, bcef biomass con-
version and expansion factor in
tonnes per cubic metre (no wood
density is given if values refer to
bcef), bv biomass of inventoried
volume

ID Wd bef/bcef Volume Source

1 0.57 6 Common form factor Brown (1997)

2 Conifers 0.4 Conifers 1.3 Form factor by
species group

IPCC (2006)
Broadleaves
0.5 (partly
species-specific)

Broadleaves 1.4

3 0.57 24.854×bv
−0.506 if

bv<190t/ha
Form factor by
species group
and climate

Brown (1997)

1.74 if bv≥190 t/ha

4 – Humid tropical 4–0.7 Common form factor IPCC (2006)
Dry tropical 2–0.4

Table 5 Allometric models that were originally applied by coun-
tries for biomass reporting

ID Species Forest
type

Equation Source

1 Broadleaves Dry b=0.136×d2.32 (Brown 1997)

2 Broadleaves Dry b=0.17×d2.25 (Kairé 1999)

3 Broadleaves Moist b=42.69−12.8d+
1.242d2

(Brown 1997)

4 Broadleaves Moist b=0.118×d2.53 (Brown 1997)

5 Broadleaves Wet b=21.297−
6.953d+0.74d2

(Brown 1997)

6 Broadleaves Costa
Rica

b=−136.8+
0.61446d2

Unpublished

7 Pinus oocarpa b=0.11×(d2h)0.85 (Alberto and
Elvir 2005)

8 Conifers b=0.31×d2.119 (Brown 1997)

b above-ground biomass in kilogrammes, d diameter at breast
height in centimetres, h total tree height in metres

Table 7 Country-specific approaches to biomass estimation

Country Allometry (Table 5) Biomass expansion (Table 6)

Bangladesh – 1

Cameroon 1, 3 –

Costa Rica 6 –

Gambia 2, 3 –

Guatemala 3, 8 –

Honduras 4, 7 –

Kyrgyzstan – 2

Lebanon – 2

Nicaragua 1, 4, 5, 8 –

Philippines – 3

Zambia – 4
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