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Abstract Percent tree cover is the percentage of the
ground surface area covered by a vertical projection of
the outermost perimeter of the plants. It is an important
indicator to reveal the condition of forest systems and
has a significant importance for ecosystem models as a
main input. The aim of this study is to estimate the
percent tree cover of various forest stands in a
Mediterranean environment based on an empirical rela-
tionship between tree coverage and remotely sensed
data in Goksu Watershed located at the Eastern
Mediterranean coast of Turkey. A regression tree algo-
rithm was used to simulate spatial fractions of Pinus
nigra, Cedrus libani, Pinus brutia, Juniperus excelsa
and Quercus cerris using multi-temporal LANDSAT
TM/ETM data as predictor variables and land cover
information. Two scenes of high resolution GeoEye-1
images were employed for training and testing the mod-
el. The predictor variables were incorporated in addition
to biophysical variables estimated from the LANDSAT
TM/ETMdata. Additionally, normalised difference veg-
etation index (NDVI) was incorporated to LANDSAT
TM/ETM band settings as a biophysical variable.
Stepwise linear regression (SLR) was applied for
selecting the relevant bands to employ in regression tree
process. SLR-selected variables produced accurate re-
sults in the model with a high correlation coefficient of

0.80. The output values ranged from 0 to 100 %. The
different tree species were mapped in 30 m resolution in
respect to elevation. Percent tree cover map as a final
output was derived using LANDSAT TM/ETM image
over Goksu Watershed and the biophysical variables.
The results were tested using high spatial resolution
GeoEye-1 images. Thus, the combination of the RT
algorithm and higher resolution data for percent tree
cover mapping were tested and examined in a complex
Mediterranean environment.
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Introduction

Greenhouse gases in the atmosphere play an important
role over the climate change. Regarding greenhouse
dynamics, carbon dioxide (CO2) has a vital importance
and it contributes significantly to global warming
(Hansen and DeFries 2004). The growing trees remove
CO2 from the atmosphere through the process of pho-
tosynthesis and store the carbon in plant structures
(Dixon et al. 1994). Different forest stands store differ-
ent amounts of carbon, and their storage capacity is
tightly linked to tree cover. Tree cover is the percentage
of the ground surface area covered by a vertical projec-
tion of the outermost perimeter of the natural spread in
the plants’ foliage (Rokhmatuloh et al. 2005). Changes
in forest cover affect the delivery of important ecosys-
tem services, including biodiversity richness, climate
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regulation, carbon storage, and water supplies (Hansen
et al. 2013). Changes in forest cover are highly relevant to
the global carbon cycle, changes in the hydrological
cycle, an understanding of the causes of changes in
biodiversity and in understanding the rates and causes
of land use change (Townshend et al. 2012). However,
spatially and temporally detailed information on local and
global-scale forest cover is limited, and comprehensive
information is needed for making better decision-making.

The annual changes of carbon are calculated within
the changes in tree cover using different modelling
techniques. In the past decade, several efforts to estimate
percent tree cover as a continuous variable have been
made by utilizing multiple linear regression (MLR)
(Zhu and Evans 1994; DeFries et al. 2000), linear mix-
ture modelling (LMM) (Iverson et al. 1989) and regres-
sion trees (RT) (Herold 2003; Sá et al. 2003; Hansen
et al. 2003, 2005). Among these techniques, the regres-
sion tree technique is well suited for percent tree cover
mapping because, as a non-parametric classifier, it re-
quires no prior assumptions about the distribution of the
training data (Berberoglu et al. 2009).

Recently, there has been increasing emphasis on the
need for products derived from Landsat resolution data
to integrate into the sophisticated modelling techniques
for tree cover estimations (Townshend et al. 2012.).
Classifications in Landsat resolution are essential for
detecting the tree cover because of the fine scale of many
such changes especially those resulting from anthropo-
genic factors. A substantial proportion of the variability
of land cover change has been shown to occur at resolu-
tions below 250 m (Townshend et al. 2010).

Previously, global-scale analysis using Landsat data
was generally regarded as not feasible because of the
absence of multi-temporal data sets, measurement data
derivation for accuracy assessment and the large com-
putational and storage demands in carrying out the
analysis (Hansen et al. 2013).

Landsat data have primarily been used at relatively
local scales for tree cover estimation. DeFries et al.
(2000) calculated global tropical forest change based
on advanced very high resolution radiometer
(AVHRR) data along with regional rates of changes
estimated from Landsat data (Townshend et al. 2012).
More recently, Landsat samples have been used to pro-
vide estimates of forest loss and changes at regional
scale (Hansen et al. 2008) and, subsequently, for the
globe (Hansen et al. 2010; Townshend et al. 2012).
Although recent studies utilized the use of selected

Landsat imageries, they were not used to integrate into
the numerical modelling techniques at local scale.
Integrating Landsat and other high resolution data into
the modelling processes is still a research need for
estimating tree cover. Combining fine resolution data
and numerical models will assist to reveal the spatial
distribution of local forest species and their dramatic
changes at local scale to provide comprehensive infor-
mation for decision-making. This is especially true for
Mediterranean ecosystems where the vegetation species
show reasonable variations.

The objective of this study was to estimate the
percent tree cover of various forest stands in Goksu
Watershed located in the Eastern Mediterranean part
of Turkey based on an empirical relationship be-
tween tree coverage and fine-scale remotely sensed
data established by the RT technique. Modelling the
percent tree cover has a significant importance for
decision-making in such complex Mediterranean
ecosystems, where the monitoring of the climate
change effects is essential due to diversity in vege-
tation and topography.

The RT algorithm was used to estimate percent tree
cover at global and regional scales using coarse spatial
resolution remotely sensed data derived from different
sensors ranging between 250 m and 1 km (Berberoglu
et al. 2007). In this study, Landsat TM/ETM images
with 30 m spatial resolution provided greater spectral
and spatial resolution. This data set integrated into the
RT algorithm. The capability of the RT algorithm was
evaluated together with high resolution data to derive
percent tree cover mapping in a complex Mediterranean
environment.

Study area and data

Goksu River Watershed is located at the Central
Eastern Mediterranean Basin in Turkey and was
selected to model the percent tree cover. Location
of the study region is shown in Fig. 1. The area of
the basin covers approximately 10,500 km2. The
basin has a very high local variability in terms of
forest species. It comprises pure and mixed conifer
forests, including Pinus nigra, Cedrus libani, Abies
cilicica, Pinus brutia, Juniperus excelsa and
Quercus cerris. The prevailing climate is character-
ized by Mediterranean with mild and rainy winters
and hot and dry summers with a mean annual
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precipitation of approximately 800 mm. The mean
annual temperature is 19 °C (Donmez et al. 2013).

Data acquisition

Twenty scenes of multi-spectral LANDSAT TM/ETM
imagery representing the five different dates of the study
area from October 1999 to June 2007 were used to
estimate the percent tree cover. The list of the
LANDSAT images used in the regression tree model is
given in Table 1.

These images were obtained from the US Geological
Survey (USGS) Earth Resource Observation Systems
(EROS) data centre. The selected images were relatively
free of haze and cloud. The model results were evaluat-
ed using high resolution GeoEye-1 scenes. The
GeoEye-1 sensor provides high resolution images at
0.41 m (panchromatic) and 1.84 m (multi-spectral). It
has four spectral bands that ranges between 450 and
920 nm in its standard band settings (Digital Globe
2013). The multi-spectral GeoEye-1 scenes used in this

study were recorded in June 2012 with 1.84 m spatial
resolution.

Other data utilized in the analysis included 1:25,000
scale Government Forestry Department and topographic
maps and aerial photographs.

Data processing

The Landsat TM/ETM images used in this study
were geometr ica l ly recorded in Universa l
Transverse Mercator (UTM) projection system and
WGS 84 datum with paths 176–177 and rows 34–
35. These images were processed to develop a
percentage tree cover grid layer. Normalised differ-
ence vegetation index (NDVI) maps were produced
by means of the spectral data to derive additional
metrics for the RT model. The NDVI function uses
ratios of bands 3 and 4. It ranges between 0 and 1.
Higher values indicate the greater amount of green
leaf vegetation (Koy et al. 2005).

Testing data were produced using very high
resolution GeoEye-1 scenes. These scenes were

Fig. 1 Study area
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classified using supervised classification algorithm
and maximum likelihood method. The images were
classified as “tree” and “non-tree” areas in combi-
nation with the ground data. The classified
GeoEye-1 images were used for training and test-
ing the model results.

The tree canopy spectral characteristics are de-
viating considerably from the shadowed spatial
neighbourhood for forest area. Thus, the amount
of shadow is quite important for such modelling
studies. Shadow index (SI) technique was used
through extraction of the low radiance of visible
bands that indicated as the vegetation quantity
increases. It is formulated as (Rikimaru 2000;
Tateishi et al. 2008):

SI ¼ 255−Bð Þ � 255−Gð Þ � 255−Rð Þ½ �1=3

B is blue band, G is green band, and R is red
band responses.

Methods

Regression tree

This study utilized the commonly applied technique,
RT model, to predict percent tree cover within a
Mediterranean type forest using LANDSAT TM/
ETM data. The regression tree algorithm produces
a rule-based model for predicting a single continu-
ous response variable from one or more explanatory
variables. RT is a piecewise constant or piecewise
linear estimate of a regression function constructed
by recursively partitioning the data (Loh 2002).
Regression trees are built through a process known
as binary recursive partitioning, which is an iterative
process of splitting the data into subsets called
nodes. At each node, the algorithm investigates all
possible splits of all explanatory variables (Tottrup
et al. 2007). Partitioning the data is based on reduc-
ing the deviance from the mean of the target vari-
ables (Ybar). Yi is the target variable of each data. A
search is conducted over all predictors and possible
split points such that the reduction in deviance,
D(total), is maximized (Breiman et al. 1984).

D totalð Þ ¼
X

Y i− Y barð Þ
2

The cut point, or value, splits the data into two
mutually exclusive subsets, left and right subsets. The
reduction in deviance is expressed as follows
(Rokhmatuloh et al. 2005):

Δ j total ¼ D totalð Þ– D Lð Þ þ D Rð Þð Þ
where D(L) and D(R) are the deviances of the left and
right subsets. The algorithm first searches maximized
(△j, total) over all predictor variables and possible cut
points subject to the constraint that the number of mem-
bers in the left and right subsets is larger than some
minimum value or user-defined value (Borel and Gerstl
1994; Rokhmatuloh et al. 2005).

Modelling

The methodology for deriving percent tree cover with
RT consisted of five steps for this study (Donmez et al.
2011):

i) Generate reference percentage tree cover data
ii) Derive metrics from LANDSAT data

Table 1 The list of the LANDSAT images used in the Regression
Tree Model

Months Frame code Date

May 176/34 22 May 2001

176/35 22 May 2001

177/34 29 May 2001

177/35 29 May 2001

June 176/34 16 June 2007

176/35 16 June 2007

177/34 28 June 2003

177/35 28 June 2003

July 176/34 25 July 2001

176/35 25 July 2001

177/34 14 July 2003

177/35 14 July 2003

August 176/34 13 August 2002

176/35 13 August 2002

177/34 01 August 2001

177/35 17 August 2001

October 176/34 25 October 1999

176/35 25 October 1999

177/34 24 October 2002

177/35 24 October 2002
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iii) Select predictor variables
iv) Fit RT models
v) Accuracy assessment and final model and map

production

i) Modelling percent tree cover relies on the quality of
training and testing data. Digital multi-spectral
GeoEye-1 images with a spatial resolution of
1.84 mwere used to derive reference percentage tree
cover data needed to train the model.

ii) Normalised difference vegetation index (NDVI) that
was derived is a ratio of the difference and total in
reflectance between near-infrared (band 4) and visible
red (band 3) of the LANDSAT standard band setting.

iii) Predictor variable selection involved feature selec-
tion for the most relevant input variables for the
percent tree cover modelling. This was accom-
plished using the stepwise linear regression (SLR)
method from S-PLUS (Insightful Corp 2001), which
also provides classification and regression tree soft-
ware. The SLR method selects the best subset of
predictor variables to be employed in regression tree
modelling using a stepwise procedure, which repeat-
edly alters the model at the previous step by adding
or removing predictor variables (Helsel and Hirsch
2002). The Cp statistic is expressed as:

Cp ¼ pþ
n−pð Þ s2p−o0

2
� �

o02

where n is the number of observations (number of
training data), p is the number of coefficients

(number of predictor variables plus one), sp
2 is the

mean square error (MSE) of the prediction model

and o02 is the minimum mean squared error (MSE)
among the possible models (Rokhmatuloh et al.
2005). The Cp statistic for each variable was
examined. The Cp statistic provides a conve-
nient criterion for determining whether a model
is more accurate by adding or removing the
predictor variables. The Cp statistic specifies
which predictor variables are significantly re-
lated to percentage tree cover prediction.

iv) Validation of the model results is one of the most
important steps in modelling process. The results of
the RT algorithm were evaluated through a cross-
validation (CS) technique. Sample data were divid-
ed into complementary subsets, performing the
analysis on the first subset called the training set
and validating the analysis on the other subset called
the validation set or testing set. For each split, the
model is fit to the training data, and predictive
accuracy is assessed using the validation data. The

Geoeye-1     

(MS, 0.41m)

16 scenes

LANDSAT Images    

(5 scenes, 30m,     

6 bands)

Training Set (%80)

Testing Set (%20)

Stepwise Regression 

(Selecting Variables)

Creating 

Regression 

Tree Model

Metrics derived 
from LANDSAT
- NDVI

Prediction of Percent 

Tree Cover

Accuracy 

Assesment

Percent 

Tree Cover 

(30m)

Percent Tree Cover

Fig. 2 Summary of percentage tree estimates using regression tree
method

Table 2 Predictor variables derived from LANDSAT ETM +
images (band 1: blue (0.45–0.52 μm), band 2: green (0.52–
0.60 μm), band 3: red (0.63–0.69 μm), band 4: near-infrared
(0.77–0.90 μm), band 5: short wave infrared (1.55–1.75 μm),
band 6: short wave infrared (2.09–2.35 μm))

Months Band settings

May Band 1–6, band 7 (NDVI)

June Band 8–13, band 14 (NDVI)

July Band 15–20, band 21 (NDVI)

August Band 22–27, band 28 (NDVI)

October Band 29–34, band 35 (NDVI)

Table 3 Themost four contributed predictor variables in each rule
for estimating percent tree cover

Rule
number

Training
cases

Predictor variables Range Prediction
error

Rule 1 19,504 Band 24, band 25, band
2, band 26, band 5

0–92 3.8

Rule 2 9142 Band 24, band 28, band
25, band 26, band 10

0–92 4.8

Rule 3 3293 Band 24, band 25, band
10, band 14, band 11

0–84 5.9

Rule 4 5332 Band 27, band 06, band
05, band 32, band 12

0–78 5.9

Rule 5 1998 Band 24, band 28, band
09, band 27, band 17

0–74 6.5
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results are then averaged over the splits. Cross-
validation estimated the expected level of fit of a
model to a data set that is independent of the data
that were used to train the RT model. The most
relevant input variables are selected using the SLR
method, and the available trainingwith the reference
data derived from high resolution images, relation-
ships between tree cover density and LANDSAT
spectral values that were modelled using RT tech-
nique were fitted in model evaluation. A total of
20 % cells was separated from the predictor

variables in order to validate the model. Summary
of percentage tree estimates using regression tree
method is shown in Fig. 2.

Results

Overall results of this study comprise three parts, includ-
ing generating the predictor variables, model validation
and spatial composition of the percent tree cover.
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Fig. 3 Correlation between
modelled and observed tree cover

Fig. 4 Location of the test sites in study region
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Predictor variables from LANDSAT data

NDVI bands were used as a biophysical variable
in addition to the LANDSAT standard band setting
to increase the accuracy of the model results. A
total of five NDVI maps including different
months were produced and used as biophysical
variables. These NDVI images were combined
with the spectral bands of LANDSAT TM/ETM
images to carry out the RT model. Predictor vari-
ables derived from images are shown in Table 2.

In the RT modelling process, a total of 30
spectral bands and five NDVI images were utilized
as predictor variables to derive percentage tree
cover map of the study area. The RT were carried
out by approximately 100 rules. Each rule com-
prised various number of training cases. Most rel-
evant and contributed predictor variables in the RT
model for estimating percentage tree cover are
shown in Table 3.

Among the all predictor variables, the RT required
only a few bands as critical inputs that were used in the
production rules. The most four contributed of

predictors are Red, Near-Infrared and NDVI bands for
each LANDSAT TM/ETM image. The maximum range
of the tree cover was varied between 74 and 92 for those
predictors.

Model validation

Validation of the regression tree map derived from the
RT model was carried out using 1654 validation pixels
in total derived from high resolution images. Sixteen
scenes of the GeoEye-1 data were selected from most
green season for the area with representative tree stands
such as Evergreen Needle Leaf as testing data. The

Sample GeoEye scene, 2012, with 2 m spa�al 
resolu�on

Classified and resampled GeoEye scene (30 m)

Sample GeoEye scene, 2012, with 2 m spa�al 
resolu�on

Classified and resampled GeoEye scene (30 m)

(a): RGB color composite images (b): tree extraction as tree/non tree using maximum 
likelihood algorithm

Km

Non-tree areasTree covered areas

Fig. 5 Extracting percent tree
cover from very high-resolution
GeoEye images. a RGB color
composite images, b tree
extraction as tree/non-tree using
maximum likelihood algorithm

Table 4 Accuracy of the RT model

Data
type

Training
cases

Average
error

Relative
error

Correlation
coefficient

Total
number
of rules

Training
data

108,679 7.9 0.26 0.80 100

Testing
data

108,679 8.3 0.27 0.80 100
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random pixels were selected from the test data and
ground truth based on a random sampling method. It
contained percent tree cover values ranging from 0 to
100 %. The model derived from SLR-selected variables
produced a reasonable prediction error with 5.50%. The
model results were represented with a high correlation
coefficient of 0.80 (Fig. 3).

Two sub-scenes of GeoEye-1 images representing
different forest cover types were classified and recorded
to tree and non-tree pixels at 1.84 m spatial resolution.
Location of these images in the study region is shown in
Fig. 4. This data set covered an area of 210 km2. The
classification results were then resampled to estimate
percentage tree cover at the LANDSAT TM/ETM spa-
tial resolution (Fig. 5).

Maximum likelihood algorithm captured the tree-
covered areas as testing and training data. These data
sets included highland areas to include high variability
of the vegetation cover within the area.

Accuracy of the RT model was evaluated by means
of correlation coefficient for training and testing data
sets (Table 4). The model application showed a strong
agreement between modelled and observed tree cover
data. There is a strong relationship between the predict-
ed values and the validation cases within each terminal
node.

In total, the RT model was based on 108,679 training
cases. Average error was varied between 7.9 and 8.3 for
training and testing data by 100 total rules. Standard
deviation (STD) and root mean square errors (RMSE) in
various tree cover strata are also shown in Table 5.

STD values are varied between 4 and 10 in different
tree cover percentages. In terms of its deviation and
RMSE, the model showed a good performance to esti-
mate the tree cover lower than 30 %. It has also good
agreement with over 76 % of percentage tree cover.

Spatial composition of percentage tree cover

A percentage tree cover map layer was produced for
Goksu Watershed by integrating remotely sensed data
into the RT model (Fig. 6). It was resulted that SLR-
selected variables estimated the tree cover within the
range of 0 and 100 %.

This map provided the tree cover representing the
Mediterranean forest with a higher spatial detail
emphasizing the tree cover distribution of different
forest stands. The zero percent tree cover areas are

Table 5 Standard deviation and RMSE in tree cover strata

Tree cover strata Standard deviation RMSE

0–15 4.72 8.06

16–30 7.39 11.23

31–45 9.44 12.4

46–60 10.04 13.2

60–75 8.91 11.8

>76 6.78 9.11

Fig. 6 Percent tree cover map of Goksu watershed (map projection: UTM, WGS 1984)
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widely located in central parts of the region. In
contrary, 80–100 % tree cover took part in south-
eastern and south-western areas.

Tree coverage of each forest stand was also de-
rived using land cover map and the percent tree cover
map derived from the RT model (Fig. 7). The tree
cover grid cells of each forest stand were extracted
from the percent tree cover map and shown in Fig. 8.
J. excelsa, P. brutia, P. nigra, C. libani and Q. cerris
stands were mapped for the study area.

The maps of forest stands showed the exact locations
of the forests and their coverage. There is a strong
influence towards the valley regions. Significant
amounts of forest are located in the eastern part of the
region towards the Goksu River Delta. A small forest
patch is located in the lowland plateaus.

The major forest stands in the region showed a
great variation in terms of their percent tree cover
distribution. The tree cover of Juniper and Turkish
Pine stands mostly ranged between 20 and 60 %.

Fig. 7 Percent tree cover maps of different forest stands in Goksu Watershed
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Turkish pine has also a significant amount of tree
cover over 80 %.

Discussions

A comprehensive percent tree cover map showing forest
distribution of the Goksu Watershed is the main output
from the RT modelling process applied in this study.
Percent tree cover map is a key component to be used in
combination with various data sets in spatially distrib-
uted models for estimating carbon distribution and po-
tential for a subsequent year. The approach of this study
includes the coupled analysis of high resolution images
and ground information to derive spatially explicit and
internally consistent forest cover map.

This study contains a large amount of uncertainty due
to various data sources and model structures. The results
produced by the RT model should not be considered as
precise predictions due to various factors in evaluation
process. Accuracy of the estimated percent tree cover
map was evaluated by incooperating ground-based in-
formation, land cover map and model outputs. The
comparison of these maps at randomly sampled sites
revealed that the agreement with land cover data set was
relatively similar with percent tree cover map. However,
the existing grasslands in the output had tree coverage,
which overestimated tree cover at open forests and
croplands.

The large degrees of uncertainty in the different parts
of the modelling process limit the final output. This
study indicated that a precise estimation is not possible
due to the limited capability of the models at local scale.
To cope with this issue, simplified versions of the spa-
tially distributed models should be developed to esti-
mate existing forest cover at local scale. Additionally,
using various high resolution spatial data for training
and testing the model performance will tend to reduce

uncertainty. This will enable more accurate determina-
tion of forest extent where the species diversity is high.

Conclusions

A new approach for mapping percentage tree cover
across the Eastern Mediterranean part of Turkey using
regression tree model and multi-temporal LANDSAT
TM/ETM data with a 30-m spatial resolution was pre-
sented in this study. The results were reasonable with a
correlation coefficient of 0.80 and prediction error of
approximately 5.0 %. This approach provided a signif-
icant potential for forest cover mapping and monitoring
in a watershed scale by means of high resolution remote
sensing data adaptation into its processes.

The use of high resolution remotely sensed data in
the RTalgorithm caused high computing power require-
ments. With respect to data processing steps, some
refinements are recommended to facilitate the simula-
tion process by sub-dividing the data inputs into smaller
portions. Hence, the algorithm was adapted to divide the
data set by 100 parts and the simulation was carried out
with those portions. The outputs of these subsets were
combined, and percent tree cover map of Goksu
Watershed was derived.

The spatial composition of the forest stands was also
delineated by integrating the percent tree cover and land
cover maps of the region. The fractional maps of
Juniper, Taurus Fir, Turkish Pine, Crimean Pine, Cedar
and Oak were produced that revealed a significant im-
provement in the spatial representation of the landscape.
These maps clearly showed that the lower lands of the
watershed are still forested, although anthropogenic ef-
fects on the natural vegetation are threatened by large
spatial patterns of agricultural areas and settlements.

The spatially distributed results showed that most of
the forests are located in central highlands of semi-
natural areas where strong linkage to ecosystem
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variability exists. High spatial resolution output maps
for each forest stand are especially important to reveal
the level of human disturbances on forest areas that can
guide the decision-makers at local scale.

Single-year results were presented within this paper.
However, the approach used in this study might also
provide an opportunity to simulate the tree cover dy-
namics for a longer term of monitoring. Annual time
series of input data could provide a significant option for
local and regional monitoring of vegetation patterns.
Thus, our understanding of the complex vegetation dy-
namics and their interactions between humans will be
improved by combining the high resolution remotely
sensed material and geo-spatial modelling techniques.

LANDSAT data provided a great potential to derive
percent tree cover within its spatial resolution and spec-
tral variability. Its combination with very high resolution
GeoEye-1 images showed good performance as training
and testing data sets in the RT model. The cloud cover
and its partly shades on the region were a problem. This
was resolved by a simple technique based on surface
reflectance values from other cloud-free months. This
technique provides an advantage for the temporal
modelling of percent tree cover in complex regions to
monitor forest change studies with RT modelling.
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