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Abstract Kernel function-based regression models
were constructed and applied to a nonlinear hydro-
chemical dataset pertaining to surface water for
predicting the dissolved oxygen levels. Initial features
were selected using nonlinear approach. Nonlinearity in
the data was tested using BDS statistics, which revealed
the data with nonlinear structure. Kernel ridge regres-
sion, kernel principal component regression, kernel par-
tial least squares regression, and support vector regres-
sion models were developed using the Gaussian kernel
function and their generalization and predictive abilities
were compared in terms of several statistical parameters.
Model parameters were optimized using the cross-
validation procedure. The proposed kernel regression
methods successfully captured the nonlinear features
of the original data by transforming it to a high dimen-
sional feature space using the kernel function.

Performance of all the kernel-based modeling methods
used here were comparable both in terms of predictive
and generalization abilities. Values of the performance
criteria parameters suggested for the adequacy of the
constructed models to fit the nonlinear data and their
good predictive capabilities.

Keywords Kernel ridge regression . Kernel principal
component regression . Kernel partial least squares
regression . Support vector regression . Nonlinearity

Introduction

Predictive modeling has now been considered as an
inherent component of research in science and engineer-
ing. Models are frequently used to perform calculations,
generally of extrapolation type, which prediction is
made to regions where there are no experimental data.
The success of prediction depends both on the proper
form of the model and values of the model parameters,
which are usually estimated from the experimental data
(Ngo et al. 2004). Among various predictive modeling
approaches, the regression techniques have become
very popular and several multivariate linear modeling
methods, such as multiple linear regression (MLR),
ridge regression (RR), principal component regression
(PCR), and partial least squares regression (PLSR), have
widely been used to construct a mathematical model that
relates the response(s) to the set of independent vari-
ables (Cao et al. 2011; Ekinci et al. 2011). However, the
multivariate experimental or the field monitoring data in
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general exhibit nonlinear relationships among the vari-
ables and the linear methods may not be appropriate for
capturing the underlying nonlinear data structure (Cao
et al. 2011; Singh et al. 2009). Therefore, it is very much
desirable to have nonlinear modeling methods which
could capture the complex nonlinearities in the data to
make precise predictions. Since the mathematical form
of the nonlinear relationship between the measured var-
iables in a system is usually unknown, modeling the
nonlinear systems is a difficult task. However, several
nonlinear modeling methods, such as multivariate poly-
nomial regression (MPR), artificial neural networks
(ANNs), kernel ridge regression (KRR), kernel principal
component regression (KPCR), kernel partial least
squares regression (KPLSR), and support vector regres-
sion (SVR)methods are now available for the regression
problems (Singh et al. 2004, 2006, 2009, 2011; Li et al.
2009; Zhang and Ma 2011). The kernel method is a
nonparametric technique where, differently from classi-
cal parametric approach, no assumptions are made on
statistics of the underlying data (Pagnini 2009). MPR is
a low-order nonlinear method which maximizes covari-
ance between response and independent data sets (Singh
et al. 2010). ANNs, although widely used, have some
problems inherent to its architecture, such as
overtraining, over-fitting, network optimization, and
non-reproducibility of the results, due to random initial-
ization of the networks and variation of stopping criteria
(Li et al. 2009). On the other hand, kernel-based model-
ing techniques (KRR, KPCR, KPLSR, and SVR) are
becoming more popular because they allow interpreta-
tion of the calibration models. In these methods, the
calibration is carried out in space of nonlinearly trans-
formed input data, so-called feature space, without ac-
tually carrying out the transformation. The feature space
is defined by the kernel function (Cozzolino et al. 2011).
From all points of view, computational, statistical, and
conceptual, the kernel-based nonlinear methods are very
efficient. The problems of local minima and over fitting
that were typical of ANNs have been overcome.
However, due to the fact that the kernel-based methods
employ kernel transformation, they lose the correlation
between the obtained kernel model and the original
input space (Li et al. 2009). During past few decades,
the kernel-based regression methods have been used in
various research areas (Zhang et al. 2007; Woo et al.
2009; Zhang and Teng 2010; Chu et al. 2011). However,
most studies report application of these methods to
synthetic data (Rosipal and Trejo 2001; Rosipal et al.

2001; Jade et al. 2003). Singh et al. (2011) have recently
applied SVMs to water quality problems; however, to
our knowledge, kernel regression methods (KRR,
KPCR, KPLS) have not been applied to water quality
prediction problems.

Here, we have considered a hydro-chemical dataset
pertaining to the surface water (Northern India) moni-
tored for 20 different variables eachmonth over a period
of 10 years (2002–2011) at 10 different sites in the
northern part of India (Singh et al. 2011). Dissolved
oxygen (DO) levels in surface water were predicted
using the kernel-based regression modeling approaches.
DO is an important water quality parameter determining
the health of a water body (Basant et al. 2010). It plays
an important role in the aquatic eco-system affecting the
flora and fauna (Wang et al. 2003). DO levels lower than
5 mg L−1 may cause detrimental effects on aquatic life
(Thomann and Mueller 1987; Chapra 1997). Hence,
great importance is attached to maintain the DO at
desirable level. The DO in an aquatic system is used
by aquatic plants and animals for respiration and by the
aerobic bacteria which consume oxygen during the pro-
cess of decomposition of organic matter (Shaghaghian
2010). However, oxygen enters the water by direct
absorption from the atmosphere or by plant photosyn-
thesis. Generally, a single point measurement of DO by
the traditional method is not reliable, and sometimes
may be misleading in assessing the state of the water
body. This is due to the fact that it does not reflect the
effect of biological activity and also do not reveal ex-
tremes in DO concentrations (Naik and Manjapp 2010).
In recent years, numerous computational and statistical
approaches have successfully been applied to predict the
DO levels in various aquatic systems using different sets
of input variables (Chen and Liu 2013; Wen et al. 2013;
Evrendilek and Karakaya 2013; Heddam 2013).

Present research focuses on construction of different
kernel-based regression models, such as KRR, KPCR,
KPLSR, and SVR for predicting the DO levels in sur-
face water using a hydro-chemical data set (2002–2011)
exhibiting nonlinear structure. Accordingly, the kernel-
based regression models were developed, validated and
used to predict the DO levels in surface water using a set
of independent water quality parameters. Performances
of these models were evaluated in terms of several
statistical criteria parameters. This study has shown that
the application of kernel methods can be useful in
predicting the water quality successfully for the water
resource management.
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Materials and methods

Dataset

Here, we have considered a hydro-chemical data set
pertaining to the surface water quality of the Gomti
River, India (Singh et al. 2011). The water quality was
monitored each month at 10 different sites on the river
(Fig. 1) over a period of 10 years (2002–2011)
representing large spatial and temporal coordinates and
thus, covering all possible sources of variation in the
region. The first three sites (S1–S3) are located in the area
of relatively low river pollution. Other three sites (S4–S6)
are in the region of gross pollution, and the last four sites
(S7–S10) are in the region of moderate pollution as the
river considerably recovers in the course (Singh et al.
2009). Hydro-chemical parameters (20 numbers) mea-
sured include the water temperature (T, °C), pH, electrical
conductivity (EC, microsiemens per centimeter), total
solids (TS, in milligram per liter), total dissolved solids
(TDS, in milligram per liter), total suspended solids (TSS,
in milligram per liter), total alkalinity (T-Alk, in milligram
per liter), total hardness (T-Hard, in milligram per liter),
calcium hardness (Ca-Hard, in milligram per liter), sul-
phate (SO4, in milligram per liter), nitrate (NO3, in milli-
gram per liter), ammonical nitrogen (NH4–N, inmilligram
per liter), chloride (Cl, in milligram per liter), phosphate
(PO4, in milligram per liter), fluoride (F, in milligram per
liter), potassium (K, in milligram per liter), sodium (Na, in
milligram per liter), dissolved oxygen (DO, in milligram
per liter), chemical oxygen demand (COD, in milligram
per liter), and biochemical oxygen demand (BOD, in
milligram per liter). Detailed analytical procedures are
available elsewhere (Singh et al. 2004).

Initial feature selection and data processing

Since the hydro-chemical data considered here represent-
ed all possible sources of variations, it may be contami-
nated by human andmeasurement errors.Moreover, some
of the features in original data set may have insignificant
or no relevance with the response variable rendering these
useless in predictive modeling; hence, implementing ini-
tial feature selection is necessary (Lin et al. 2008). Here,
the initial feature selection was performed using nonlinear
(MPR) methods (Singh et al. 2012). Variables exhibiting
significant relationship with the response variable were
retained while dropping the others. The insignificant var-
iables then dropped one by one and the prediction error

and correlation coefficient were recorded. Finally the T,
pH, EC, SO4, NO3, Na, COD, and BOD were retained as
independent set of variables andDO as the dependent one.
The basic statistics of the selected measured hydro-
chemical variables is given in Table 1.

The data were partitioned into training, validation, and
test sets using the Kennard–Stone (K-S) approach. The
K-S algorithm designs the model set in such a way that
the objects are scattered uniformly around the training
domain. Thus, all sources of the data variance are includ-
ed into the training model (Daszykowski et al. 2007;
Basant et al. 2010). In the present study, the complete
data set (1,070 samples×9 variables) was partitioned as
training (749 samples×9 variables); validation (161 sam-
ples×9 variables), and test (160 samples×9 variables) set,
thus, comprising of 70, 15, and 15 % samples, respec-
tively. Prior to implement the KRR, KPCR, and KPLS
algorithms, the data were mean-centered (Kramer 1998).
In case of SVR, the raw data were normalized to an
interval by transformation. Here, all the variables were
transformed to the same ground-uniform distributions on
−1, +1. Since the data were pre-processed, these were
transformed back to the original form prior to the post-
modeling computations.

Nonlinearity in data

Nonlinearity in data is an important factor to be consid-
ered prior to the selection of the model. Nonlinearity in
the data was tested using the Brock–Dechert–
Scheinkman (BDS) statistics (Brock et al. 1996). BDS
is a two-tail nonparametric method for testing the serial
independence and nonlinear structure in a data based on
the correlation integral. It tests the null hypothesis of
independent and identically distributed (I.I.D.) data
against an unspecified alternative. For a scalar time
series {xt} of length N, and embed it into m-
dimensional space generating a new series {Xt}, Xt∈
Rm, the correlation integral may be calculated as (Brock
et al. 1996)

Cε; m ¼ 1

Nm Nm−1ð Þ
X

i≠ j
I i; j;ε ð1Þ

where, Ii,j,ε=1 if ‖xi
m−xjm‖≤ε; Ii,j,ε =0 otherwise. The

correlation integral measures the spatial correlation among
the points, by adding the number of pairs of points (i, j),
where 1≤i≤N and 1≤j≤N, in the m-dimensional space
which are “close” in the sense that the points are within a
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radius or tolerance ε of each other. Finally, the BDS
statistics can be defined (Brock et al. 1996) as:

BDSε;m ¼
ffiffiffiffi
N

p Cε; m − Cε; m

� �m� �
σε; m

ð2Þ

where σε, m is the standard deviation of Cε, m. If the
computed BDS statistics exceeds the critical value at the
conventional level, the null hypothesis of linearity is
rejected, which reveals the presence of nonlinear depen-
dence in the data (Anoruo 2011).

Fig. 1 Map showing the network of sampling sites on the Gomti River, India
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Kernel regression modeling

In nonparametric kernel regression, linear regression
model is constructed in a high-dimensional feature
space F to which the d-dimensional input pattern vectors
xi are nonlinearly mapped, φ:x(Rd→φ(x)(F, which
corresponds to a nonlinear regression model in the orig-
inal space.

f xð Þ ¼
XT

i¼1
Biφi xð Þ þ br ð3Þ

where T is the dimensionality size of the feature space,φ
is the nonlinear mapping function, Bi and br are the
regression coefficient vector and residuals, respectively.
In certain feature spaces (reproducing kernel Hilbert
space), the transformed input data φ(x) appear as dot
products <φ(xi), φ(xj)> and it is not necessary to ex-
plicitly define the mapping. Kernel methods can be used
to avoid direct calculation of computationally ex-
pensive nonlinear mapping φ, but rather make use
of the so called kernel-trick which uses kernel matrix
of the training data to achieve nonlinear regression (Cao
et al. 2011).

Since the form of the nonlinear mapping function is
generally not known in advance and is difficult to de-
termine, the feature space is constructed implicitly by
invoking a generic kernel function, operating on two
input vectors as:

K xi; x j

� � ¼ φ xið Þ;φ xj

� �� � ð4Þ

where xi and xj are two objects in the data set, and φ is
the actual nonlinear mapping function. While using a
kernel function, it is not necessary to know the actual
underlying feature map to construct a linear model.

Many different kernel functions can be used in this
context, including the polynomial, Gaussian (radial ba-
sis functions, RBF), and sigmoid (Jemwa and Aldrich
2005). However, the kernel function when applied re-
sults in a square symmetric matrix, the kernel matrixK.
A kernel function transforms the data matrix (n×m) of n
samples andm variables in to a kernel matrix (n×n). The
optimal values of the selected kernel function parame-
ters are determined by optimizing the regression perfor-
mance. A specific choice of kernel function implic-
itly determines the mapping φ and the feature
space F. The selection of kernel function is depen-
dent on the distribution of the data. Research has
shown that RBF is not only theoretically well founded
but also superior in some practical applications (Zhang
et al. 2010). Here in our study, we have used the
Gaussian kernel function.

A conceptual diagram of the feature extraction using
kernel-based algorithms is shown in Fig. 2. It shows the
steps involved in the implementation of kernel methods.
The training samples are firstly represented using a
kernel function to create a kernel matrix, and subse-
quently the kernel matrix obtained is modeled by a
linear algorithm to produce a complex model. The mod-
el is finally used to predict the unseen samples. In the
process, the linear algorithms are naturally combined
with the specific kernel function to produce a more
complex algorithm in a high dimensional feature space.
For a set of vectors, x1, x2, …xn, a kernel method
constructs the kernel or Gram matrix, K. The basic
structure gives all the information about the relation
between the points (Fig. 2a). Thus, kernelizing a given
algorithm amounts to reformulating it in terms of inner
products. Such a matrix is positive, semi-definite, which
means that for every real vector x, the real number xTKx

Table 1 Basic statistics of the
selected hydro-chemical variables
(N=1,070)

SD standard deviation, CoV coef-
ficient of variation

Variable Unit Min Max Median Mean SD CoV

T °C 11.00 36.50 26.00 25.55 5.53 21.65

pH - 6.66 8.99 8.28 8.23 0.36 4.40

EC μS cm-1 65.45 1098.18 445.67 449.70 122.47 27.23

COD mg L−1 4.79 94.72 13.95 15.53 6.87 44.20

BOD mg L−1 0.82 33.67 4.04 5.60 3.78 67.52

SO4 mg L−1 0.00 92.84 16.01 17.03 8.38 49.21

NO3 mg L−1 0.00 27.50 0.87 1.83 2.73 149.16

Na mg L−1 0.00 86.20 31.77 32.55 14.79 45.44

DO mg L−1 0.00 10.10 7.00 6.29 2.05 32.66
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≥0. Now, when a new pattern is presented, we construct
all the inner (kernel) products of the pattern with the
training set objects that are closer to it (Fig. 2b).
The results are afterward combined with the
weights obtained from the training stage and this
sum is fed to the regression function (Taylor and
Cristianini 2004).

Here, we have constructed KRR, KPCR, KPLSR,
and SVR approaches to construct the models to predict
the DO levels in water using set of independent hydro-
chemical variables.

Kernel ridge regression

KRR is an extension of RR to allow for nonlin-
ear prediction function y= f(x). At the same time,
it provides a way to avoid the computational
complication involved in producing the ridge fore-
cast when the number of predictors becomes very
large. Thus, in KRR, the goal is to built a linear
model in the higher dimensional feature space F. and the
matrix productXXT in RR is replaced by the newmatrix
product φ(x)φ(x)T (=K(xi,xj)) using the kernel trick,
which allows for the calculation of dot product in
the higher dimensional feature space using simple
dot product function defined on input pairs (i, j). The

KRR function in a reproducing kernel Hilbert space
(RKHS) can be shown as (Cristianini and Taylor 2000),

f xð Þ ¼ yT K þ λIð Þ−1k ð5Þ

where k=k(xi,x), i=1,2,… n;K is the kernel matrix, λ is
the regularization constant, I is n-dimensional identity
matrix, and y is the response vector. KRR has the major
advantage of obtaining the so-called kernel analytically
and subsequently allows the number of basis functions
to be virtually infinite (Zhang et al. 2007).

Kernel principal component regression

KPCR, a nonlinear regression technique uses the non-
linear kernel principal component analysis (KPCA) to
extract the principal components (PCs) in the indepen-
dent data. In KPCA, the training data X=[x1,x2,….
xn]

T∈Rp is mapped into a high dimensional feature
space F (M=[φ(x1),φ(x2),…,φ(xn)]

T). Use of an ap-
propriate kernel function, provides K=MMT∈Rn×n.
Features of the training and unknown test samples can
be extracted using KPCA through projecting the
mapped samples φ(x) on to the first k projections Pk
(Cao et al. 2011);

Pkφ xð Þ ¼
Xn

i¼1
αk
i < φ xið Þ;φ xð Þ >

¼
Xn

i¼1
αk
i k xi; xð Þ ¼ ktestα

k

ð6aÞ

where ktest=Mφ(x)=[k(x1,x),k(x2,x),… …,k(xn,x)].
Now, the scores vectors of

PCs extracted by the KPCA are regressed with the
dependent variable vector (training data) and the regres-
sion coefficient vector, so obtained, is then used to
predict the responses in unknown samples. The KPCR
model for the prediction of response variable any input
vector x can be expressed as (Rosipal et al. 2001);

f xð Þ ¼
Xp

k¼1
wk

XM

i¼1
αk
i K xi; x

� �þ b ð6bÞ

where, p is number of PCs retained in the KPCR model
and K(xi,x) can be estimated using the kernel function.
The variables αi

k are computed by the diagonalization of
kernel matrix of the input variables and wk are the least
square estimates of regression coefficients. For the cen-
tralized regression model bias, b is zero. KPCR requires
only two parameters (number of PCs and width of the
kernel function) to be tuned for its model selection.

Fig. 2 Schematic diagram of the a general steps for implementing
kernel methods, b feature extraction using kernel-based algorithm
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Kernel partial least squares regression

KPLSR is a nonlinear extension of linear PLSR
(Rosipal and Trejo 2001) in which training samples are
transformed into a feature space F, xi∈Rn→φ(xi)∈F,
where φ(.) is nonlinear mapping function that projects
the input vectors from the input space to F. The dimen-
sionality of the feature space is arbitrarily large, and can
even be infinite. Through the kernel trick, φ(xi)

T,φ(xj)=
K(xi,xj), both the nonlinear mapping and computation
of dot products can be avoided in the feature space.M,
MT represents the kernel matrix,K of the inner products
between all mapped samples. The estimated regression
coefficient, B in KPLSR can be given by (Zhang and
Teng 2010);

B ¼ MTU TTKU
� �−1

TTy ð7Þ
where T and U are the scores and loadings matrices,
respectively. y is the response vector. For an unknown
test data consisted of nt samples, the following equation
can be used to predict the training and test data, respec-
tively:

y ¼ MB ¼ KU TTKU
� �−1

TTy ð8aÞ

ytest ¼ MnewB ¼ KnewU TTKU
� �−1

TTy ð8bÞ
where Mnew is the matrix of the mapped test points and
Knew is the (nnew×n) test kernel matrix whose elements
are k(xi, xj), where xi is the ith test sample and xj is the
jth training sample.

Support vector regression

In SVR approach, the original data points from the input
space are mapped into a high dimensional or even
infinite dimensional feature space using a suitable kernel
function, where a linear regression is performed. For a
training data set, (xi,yi), xi ЄR

n, i=1,..,m, y Є{+1, −1},
where yi denotes the target property of an already known
ith case, the aim is to find the linear function f(x)=wx+
b, wx ЄRn, b ЄR for which the difference between the
actual measured value yi and estimated value f(xi) would
be at most equal to ε or [yi−f(xi)]<ε, where ε is the
insensitive loss function, w is the weight vector and b is
the bias. These parameters define the location of sepa-
rating plain and are determined during the training pro-
cess (Vapnik 1999; Pan et al. 2008). Introducing the
slack variables (ξ, ξ*) to take the error of estimation into

account and the penalty parameter C yields a quadratic
programming problem:

min
w; b; ξ; ξ�

1

2
wTwþ C

Xl

i¼1
ξi þ ξ�i
� �

subject to wT ϕ xið Þ þ b
� �

−yi≤∫þ ξi;
yi− wT ϕ xið Þ þ b

� �
≤ þ ξ�i ;

ξi;ξ
�
i ≥ 0 ; i ¼ 1 ; … ; l :

ð9aÞ

which may be transformed to its corresponding dual
optimization form. With the help of kernel function
nonlinear optimal regression function can be obtained
(Vapnik 1999; Cherkassky and Ma 2004) as;

f xð Þ ¼
XN

i¼1
αi−α�

i

� �
K xi; xð Þ þ B ð9bÞ

where α iα i
* = 0, α iα i

* , ≥ 0, i = 1, . . ,N. α i and
αi
*(with 0≤αiαi

*≥C) are the Lagrange multipliers,
K(xi,x) represents the kernel function, and B are the
coefficients of the linear model. The data points with
nonzero αi and αi

* values are the support vectors (SVs).
The performance of SVR depends on the combina-

tion of several factors, such as the kernel function type
and its corresponding parameters, capacity parameter,
C, and ε-insensitive loss function (Pan et al. 2008). For
the RBF kernel, the most important parameter is the
width σ of the RBF, which controls the amplitude of
the kernel function and, hence, the generalization ability
of SVR (Noori et al. 2011). C is a regularization param-
eter that controls the trade-off between maximizing the
margin and minimizing the training error. If C is too
small, then insufficient stress will be placed on fitting
the training data. IfC is too large, then the algorithmwill
over fit the training data (Wang et al. 2007).

Model selection and optimization of parameters

The generalization performance of the regression
methods depend on proper setting of several model
parameters. In kernel-based methods, choice of kernel
parameters has a crucial effect on the performance.
Moreover, the appropriate numbers of PCs in KPCR
and KPLSR methods and a regularization term in KRR
have to be considered. In SVR, these include the capac-
ity parameter C, the insensitive loss function ε, and the
kernel function-dependent parameter (Ustun et al.
2005). The parameter C determines the trade-off be-
tween the smoothness of the regression function and
the amount up to which deviations larger than ε are
tolerated. The parameter ε regulates the radius of the ε
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tube around the regression function and thus, the num-
ber of SVs that finally will be selected to construct the
regression function (leading to a space solution). A too
large value of ε results in less SVs and consequently, the
resulting regression model may yield large prediction
errors on unseen future data (Singh et al. 2011).

In the present study, a cross-validation (CV) method
based on the predicted mean squared error (MSE) in
training and validation data was used to select the
Gaussian kernel parameter (σ), regularization parameter
(λ) in KRR, and number of PCs for the KPCR and
KPLSR models. MSE was calculated as;

MSE ¼ 1

N

XN

i¼1
ypred;i−ymeas;i

� �2
ð10Þ

where ypred,i and ymeas,i represent the predicted and mea-
sured values of the response variable in ith sample, and
N represents the total number of observations. CV se-
lects the algorithm with the smallest estimated risk.
Compared to the re-substitution error, CV avoids over-
fitting because the training sample is independent from
the validation sample (Arlot and Celisse 2010). In SVR,
the model parameters (C, ε, and σ) were optimized using
the grid and pattern searches over a wide space
employing the V-fold cross-validation (Hsu and Chang
2003). The accuracy of grid search optimization de-
pends on the parameter range in combination with the
chosen interval size. In V-fold cross-validation, the data
in training set are divided into V subsets of equal size.
Subsequently one subset is tested using the model
trained on the remaining V−1 subsets. Thus, each in-
stance of the whole training set is predicted once. The
cross-validation procedure prevents the over-fitting
problem (Hsu and Chang 2003).

Model performance criteria

The performance of each of the models used here was
evaluated using different statistical criteria parameters,
such as the mean absolute error (MAE), root mean
squared error (RMSE), and the correlation coefficient
(R) between the measured andmodel predicted values of
the response computed for all the three (training, vali-
dation, and test) data sets (Singh et al. 2010). The MAE
measured the average magnitude of the error in a set of
predictions, without considering their direction. It is a
linear score which means that all the individual differ-
ences between predictions and corresponding measured
values are weighted equally in the average. The RMSE

represents the error associated with the model. It is a
measure of the goodness-of-fit, best describes an aver-
age measure of the error in predicting the dependent
variable. However, it does not provide any information
on phase differences (Singh et al. 2013). Each perfor-
mance criteria term described above conveys specific
information regarding the predictive performance effi-
ciency of a specific model. Goodness of fit of the select-
ed models was also checked through the analysis of the
residuals.

Results and discussion

Basic statistics of the raw hydro-chemical data used here
is presented in Table 1. Concentration of both the de-
pendent and independent set of variables showed large
variations between the samples, with a high coefficient
of variation (CoV). The CoV, a measure of statistical
dispersion of data, is the mean normalized standard
deviation of the given data set. The hydro-chemical
variables showed a CoV between 4.4 % (pH) and
149.2 % (NO3). The large variation in concentration of
the variables corresponds to the nature and types (point
and non-point) of sources distributed in the large geo-
graphical area of the river basin and large variations in
climate and seasonal influences in the study region. pH
showed lowest variation and it may be due to the buff-
ering capacity of the river. Variables of anthropogenic
origin showed larger variations as compared to those of
the natural origin variables (Table 1). It may be attribut-
ed to the fact that the geogenic processes are almost in
equilibrium state, whereas, the anthropogenic processes
are time-dependent in nature.

The nonlinear dependence of the data was calculated
using the BDS statistics. BDS extracts linear structure in
the data by use of an estimated linear filter. The BDS
statistics was calculated using Eq. 2 (m=2 to 5 and ε=
0.5). In BDS test, the null hypothesis of linearity is
rejected if the computed test statistics exceeds the criti-
cal value at the conventional level. The rejection of the
null hypothesis reveals the presence of nonlinear depen-
dence in the data (Anoruo 2011). In our case, the BDS
statistics exceeded the significance level (p<0.01), thus
suggesting for severe nonlinear data structure and hence
a nonlinear model is required for developing an appro-
priate regression function. Nonlinear kernel-based re-
gression models were therefore constructed here.
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Kernel regression modeling

Model selection and parameterization

For determining the optimum values of various un-
known parameters in different kernel methods used
here, CV technique was employed. Optimum values of
the model parameters were selected on the basis of MSE
values obtained in training as well as validation data.
First, optimal ranges of the model parameters values (λ
and σ in KRR, number of PCs and σ in KPCR and
KPLSR models) were decided by varying them simul-
taneously. Subsequently, these were finely tuned and
finally, values of λ in KRR and number of PCs in
KPCR and KPLSR models were varied keeping the
value of σ constant (close to optimum value). Initially
lower values of λ or PCs were taken which were subse-
quently varied to higher values. For all combinations of
model parameters, corresponding MSE values were cal-
culated both for the training and validation data. An
increase in λ value or number of PCs in respective
models resulted in consistently lowering of MSE values
as well as narrowing the difference between two MSEs
in training and validation data, which afterwards, al-
though continued declining further, their difference wid-
ened. Optimal values of model parameters were finally
determined on the basis of a reasonable difference in
MSE values in two sets. Larger differences in the MSEs
in training and validation sets were considered due to the
over-fitting of the respective model in training set. To
check any over-fitting of these models in the training
data, these were applied to predict the independent test
data. SVRmodel parameters were optimized using a 10-
fold CV. Accordingly, the training data were partitioned
in to 10-folds and iterations of training and validation
were performed such that, within each iteration a
different fold of data held-out for validation while
the remaining 9-folds were used for learning and
subsequently the learned models are used to make
predictions about the data in the validation fold.
Thus, each time, a model was constructed and tested
with an unseen dataset. Model parameters (C and σ)
yielding minimum MSE in training and validation data
were finally selected.

Kernel ridge regression

The regularization term λ and the kernel width σ are two
important model parameters determining the

performance of KRR method. CV procedure applied
to the training and validation data sets yielded the opti-
mum values of 2.5 and 600 for the regularization and
width parameters, respectively. Value of λ modifies the
regression criterion, as the fitting quality is bound within
this predefined threshold (Zhang et al. 2007). Further, it
controls the trade-off between the sum square error
function and a quadratic penalty term. The first term
enforces closeness to the data while the second ensures
smoothness of the solution. The optimal value of σ
depends on the input data variance (Kim et al. 2005).
The selected optimumKRRmodel yieldedMSE of 0.45
and 0.61 in the training and validation sets, respectively.
The model was then applied to the test data (MSE=
0.41) and its performance was evaluated by estimating
various criteria parameters (Table 2). The optimal KRR
model yielded the MAE, RMSE, and R values of
0.53, 0.67, 0.961 in training, 0.60, 0.78, 0.850 in
validation and 0.50, 0.64, 0.655 in test data. From
the model diagnostics, it is evident that KRR predict-
ed the response variable closer to the measured values
(Fig. 3).

Kernel principal component regression

KPCR models were generated using different combina-
tions of PCs and σ parameters. Prior to the regression,

Table 2 Values of the performance criteria parameters for various
kernel regression models

Model Sub-set Mean
(mgL−1)

SD MAE
(mgL−1)

RMSE
(mgL−1)

R

Measured Training 5.94 2.24 – – –

Validation 6.95 1.46 – – –

Test 7.27 0.84 – – –

KRR Training 5.94 1.88 0.53 0.67 0.961

Validation 6.81 1.17 0.60 0.78 0.850

Test 7.22 0.65 0.50 0.64 0.655

KPCR Training 5.94 2.16 0.45 0.60 0.964

Validation 6.91 1.32 0.60 0.79 0.844

Test 7.29 0.68 0.51 0.65 0.647

KPLSR Training 5.90 2.16 0.45 0.58 0.966

Validation 6.87 1.32 0.60 0.78 0.846

Test 7.31 0.71 0.50 0.65 0.659

SVR Training 5.98 2.16 0.39 0.59 0.964

Validation 6.93 1.33 0.47 0.64 0.899

Test 7.29 0.71 0.46 0.61 0.701
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KPCA was used to extract the significant PCs. KPCA
method of feature extraction produce nonlinear PCs

which are substantially higher (up to the number of data
points, n) than the PCA. This is advantageous in
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Fig. 3 Plot of measured and
KRR model predicted values
of the DO in river water in a
training, b validation, and c
test set
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situations where the dimensionality of the input data
points is smaller than the data points and the data struc-
ture is spread over all the eigen directions (Rosipal et al.
2001). The extracted features by KPCA are then
projected on the original training and testing datasets.
For studying the effect of model selection criteria on the
performance of DO prediction, different sets of training,
validation and test data were used. Simulations were
carried out with different model parameters employing
the training data, and the set of parameters that predicted
the least MSE on validation data was selected as the
optimal set of parameters and further used for the pre-
diction of the unseen test data. In the present case, the
optimum number of the PCs and value of σ were 280
and 600, respectively. Comparable values of σ have
been reported in other studies based on kernel regression
methods (Jade et al. 2003; Postama et al. 2011). This
combination of model parameters yielded the lowest
MSE values of 0.36, 0.62 and 0.43 in training, valida-
tion, and test sets. Different performance diagnostic
parameters as obtained for the training, validation, and
test data sets using the selected KPCR model are pre-
sented in Table 2. The optimal KPCRmodel yielded the
MAE, RMSE, and R values of 0.45, 0.60, 0.964 in
training, 0.60, 0.79, 0.844 in validation and 0.51, 0.65,
0.647 in test data. Low prediction errors in all the three
sets suggest for the adequacy of the KPCR in DO level
prediction. Plots of the model predicted and measured
values of DO concentration in training, validation and
test sets are given in Fig. 4, showing a close pattern of
variations.

Kernel partial least squares regression

KPLSR model was developed to predict the DO levels
in water. Both the width parameter σ and the number of
PCs in the feature space were determined to optimize the
KPLSR model using the CV method. The selection of
the optimal number of PCs was either based on the first
increase of the MSE during CV, or if no increase was
observed by the method. Parameter optimization was
performed using the training and validation sets. The
optimal number of the PCs and value of σ were deter-
mined as 11 and 600, respectively. The model yielded
the MSE values of 0.34 and 0.62 in the training and
validation data, respectively. The selected KPLSR mod-
el was then used to predict the unseen test samples
(MSE=0.42). Comparable values of the two parameters
in KPLSR are reported by others (Postama et al. 2011).

For a smaller σ value the input data with greater distance
will be too spread in feature space and intended locali-
zation may be lost. Further, such values of σ will lead to
memorizing of the training data structure. A high noise
level in the input data has the tendency to increase the
optimal value for σ which coincides with the intuitive
assumption about smearing out the local structure. The
performance of the selected KPLSR model was evalu-
ated by several statistical parameters (Table 2). The
optimal KPLSR model yielded the MAE, RMSE,
and R values of 0.45, 0.58, 0.966 in training, 0.60,
0.78, 0.846 in validation and 0.50, 0.65, 0.659 in
test data. A closely followed pattern of variation in
measured and predicted response values (Fig. 5)
and relatively low prediction errors suggest for the
adequacy of the selected model in predicting the
DO levels. KPLSR models have widely been ap-
plied in multivariate data modeling (Rosipal et al.
2001; Zhang and Teng 2010; Postama et al. 2011;
Zhang and Ma 2011). Performance diagnostics for
the KPLSR model (Table 2) suggested for its good
performance in predicting the DO levels. Similar
findings are also reported by other studies (Rosipal
et al. 2001; Postama et al. 2011).

Support vector regression

Cross-validation procedure yielded the optimal values
of the SVR model parameters, C, ε, and σ as 11.13,
0.001, and 1.88, respectively, and the number of SVs
was 669. The selected model yielded MSE of 0.35 and
0.41 in the training and validation data, respectively.
The model was then applied to the test data (MSE=
0.37). Under the assumptions of Gaussian function, the
value of C can be related to the range of the response
values in the training data. From Eq.(9b), the regulari-
zation parameter C defines the range of values
0≤αi,αi*≤C assumed by dual variables used as linear
coefficients in SVR solution. Hence, a good value of C
can be chosen equal to the range of output values of the
training data (Mattera and Haykin 1999). However, such
a selection of C is sensitive to possible outliers in the
training data. Cherkassky and Ma (2004) proposed an
approach to determine value of C based on mean and
standard deviation values of the output variable in the
training data. Optimum value of C in our case coincides
with the one computed using this method (Cherkassky
and Ma 2004). Values of the model performance criteria
parameters as computed for the training, validation and
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test sets are presented in Table 2. The optimal SVR
model yielded the MAE and RMSE values of 0.39,
0.59 in training, 0.47, 0.64 in validation, and 0.46,

0.61 in test data. A reasonably high correlation between
the predicted and measured values of the response var-
iable in training (0.964), validation (0.899), and test set
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Fig. 4 Plot of measured and
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values of the DO in river
water in a training, b valida-
tion, and c test set
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(0.701), and low errors of prediction suggest for the
good-fit of the selected model to the dataset and its

predictive ability for the new future samples (Singh
et al. 2010). SVR also predicted the response variable
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closer to the measured values in the training, validation
and test data (Fig. 6).

The response values predicted by different kernel-
based regression models and the residuals correspond-
ing to the training, validation and test sets show almost
complete independence and random distribution (fig-
ures not shown due to brevity). Residuals versus pre-
dicted value plots can be more informative regarding
model fitting to a data set. If the residuals appear to
behave randomly (low correlation), it suggests that the
model fits the data well. On the other hand, if non-
random distribution is evident in the residuals, the mod-
el does not fit the data adequately (Singh et al. 2010).

From the modeling results (Table 2), it is evident that
the performances of the kernel regression modeling
methods (KRR, KPCR, KPLSR, and SVR) were satis-
factory (Fig. 7). The kernel methods mapped the non-
linear input space into a high dimensional feature space,
where the data structure is likely to be linear (Woo et al.
2009). Moreover, projection of the original data to the
components with higher eigenvalues discards the noise
component in the original data (Rosipal et al. 2001). The
kernel methods could capture the nonlinearities in the
original data space benefitting from the linear data
structure in the feature space. However, the predictive
performance of all the kernel regression methods used
here were comparable. Other study (Rosipal and Trejo
2001) also reported very closely comparable correla-
tions between the measured and model predicted values
obtained by KRR, KPCR, and KPLSR methods. An
equal value (600) of σ was obtained for KRR, KPCR,
and KPLSR models, whereas it was significantly differ-
ent in case of SVR model. It may be probably due to the
normalization of the variables (+1, −1) used in SVR,
whereas in other kernel methods mean-centered data

were used. Similar pattern for σ values in SVR and
KPLSR models has been reported earlier (Postama
et al. 2011). Plot of MSE values as computed for differ-
ent optimal kernel models (Fig. 7) suggests that SVR
model is relatively more robust to over-fitting as com-
pared to other kernel methods. SVR avoids under- and
over-fitting the training data by minimizing the training
error C ∑ i=1

1 (ξi+ξi
*) as well as the regularization term,

½ wTw in Eq. (9a).
From the results, it is evident that the kernel regres-

sion methods used here successfully predicted the de-
pendent variable. These methods intrinsically cope with
nonlinearities in a very flexible way, are robust to un-
certainty and noise, and are effective when dealing with
low numbers of high dimensional samples. The crucial
advantage of KRR is that it requires a single matrix
inversion and deals with multi-collinearity by assuming
linear regressionmodel (Cortes et al. 2005). KPCR has a
priori advantage that it gives the possibility to extract
more PCs than linear PCR.Moreover, it does not require
nonlinear optimization, but just the solution of an eigen-
value problem (Scholkopf et al. 1996). However, its
main drawback is that no simple method is available to
reconstruct patterns from their PCs. The main advantage
of KPLSR is that it avoids nonlinear optimization by
utilizing the kernel function corresponding to the inner
product in the feature space (Rosipal and Trejo 2001).
SVR although, avoids over-fitting of data, it uses limited
data points while building the model. The major disad-
vantage of kernel methods is that the correlation be-
tween the obtained regression model and the original
input space is lost. Therefore, it is not directly possible
to see which variable contribute to the final regression
and a direct interpretation of the model is not straight-
forward (Postama et al. 2011).

Conclusions

In this work, kernel-based regression models, such as
KRR, KPCR, KPLSR, and SVR were constructed and
applied to the nonlinear hydro-chemical data collected
over 10 years for predicting the DO concentration.
Cross-validation method was employed to determine
the optimum values of the model parameters. The kernel
methods mapped the nonlinear input into a high-
dimensional feature space where the data structure is
likely to be linear. These methods require only linear
algebra to develop the process models, whereas other
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Fig. 7 Plot of the MSE values in training, validation and test sets
showing performance of different kernel regression models
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nonlinear modeling methods involve nonlinear optimi-
zation. All the kernel regression models constructed
here performed well with the nonlinear hydro-
chemical data demonstrating excellent predictive and
generalization abilities. A comparable performance of
these models could be attributed to the fact that these
successfully captured the nonlinearities in the data.
Among these SVR approach provided relatively robust
model less prone to over-fitting due to minimized error
and regularization terms. The successful application of
the kernel methods to the nonlinear data of a dynamic
system considered here demonstrated the feasibility and
effectiveness of the kernel-based algorithms in
predicting the response variable. The presented simple
methodologies could be applied to model various chem-
ical, biological, and other such systems
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