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Abstract The identification of contamination “hotspots”
are an important indicator of the degree of contamination
in localized areas, which can contribute towards the re-
sampling and remedial strategies used in the seriously
contaminated areas. Accordingly, 114 surface samples,
collected from an industrially contaminated site in north-
ern China, were assessed for 16 polycyclic aromatic hy-
drocarbons (PAHs) and were analyzed using multivariate
statistical and spatial autocorrelation techniques. The re-
sults showed that the PCA leads to a reduction in the
initial dimension of the dataset to two components,
dominated by Chr, Bbf&Bkf, Inp, Daa, Bgp, and Nap
were good representations of the 16 original PAHs;
Global Moran’s I statistics indicated that the significant
autocorrelations were detected and the autocorrelation
distances of six indicator PAHs were 750, 850, 1,200,
850, 750, and 1,200 m, respectively; there were visible
high–high values (hotspots) clustered in the mid-bottom
part of the site through the Local Moran’s I index
analysis. Hotspot identification and spatial distribution

results can play a key role in contaminated site investi-
gation and management.
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Abbreviations
PAH Polycyclic aromatic hydrocarbon
Nap Naphthalene
Acy Acenaphthylene
Ace Acenaphthene
Fle Fluorine
Phe Phenanthrene
Ant Anthracene
Fla Fluoranthene
Pyr Pyrene
Baa Benzo(a)anthracene
Chr Chrysene
Bbf&Bkf Benzo(b,k)fluoranthene
Bap Benzo(a)pyrene
Daa Dibenzo(a,h)anthracene
Bgp Benzo(g,h,i)perylene
Inp Indeno(1,2,3-c,d)pyrene
PCA Principal component analysis

Introduction

Soil contamination of industrially contaminated sites
has received wide attention in China in recent years
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(Luo et al. 2009; Wang et al. 2010). The process of
industrial production and anthropogenic emissions is
the major source of PAHs in the atmosphere and
contaminated soils seriously in sites (Wang et al.
2003). It has been confirmed that soils in large-scale
coking contaminated sites have been severely contam-
inated by PAHs (Wang et al. 2012). The PAHs present
in contaminated sites not only directly affects soil
physicochemical properties and the environment, but
also threaten human health in the contaminated area
(Blake et al. 2007; Mostert et al. 2012). The aims of
removing PAHs from contaminated soils are urgently
required in the risk management and remediation of
contaminated sites. In some large-scale abandoned
industrially contaminated sites in China, the historical
production layout, storage, management, and other
factors have led to extreme contamination values,
and they have varying levels of contamination across
the sites. Industrial site contamination of PAHs is
typically characterized by significant variability in
contaminant concentrations. This means that it is often
difficult to describe spatial patterns and identify pol-
lution hotspots.

Following remedial investigations of contaminated
sites, hotspots of serious contamination have been found
and these have an important role in the formulation of
remediation strategies (Sinha et al. 2007). Hotspot areas
also need to be identified in order to develop effective
management practices for soil contamination (Zhang et
al. 2008). There are many definitions of what is meant by
“hotspots” (Cressie 1991; Komnitsas et al. 2009) and
several methods have been proposed to identify hotspots
(Kulldorff 1997; Carson 2001; Patil et al. 2001). Spatial
autocorrelation analysis approaches may also be useful
tools for identifying hotspots and spatial patterns of
pollution. A few spatial autocorrelation analysis methods
have been suggested for hotspot or spatial cluster pattern
identification, such as Moran’s I (Jing et al. 2010;
Prasannakumar et al. 2011), Geary’s C (Tiefelsdorf et
al. 1997; Barreto-Neto et al. 2004), Getis’ G (Lai et al.
2009; Bohórquez et al. 2011), and Join Count analysis
(Kabos et al. 2002; Epperson 2003), but Moran’s I index
seems to be the most widely used (Getis et al. 1996).
Moran’s I method has been used in a number of research
fields, including environmental management (Zhang et
al. 2004; Brody et al. 2006; Castillo et al. 2011; Su et al.
2011). However, within the geoscientific variables of a
large-scale industrially contaminated site, this method is
relatively untried.

This study used Global Moran’s I and Local Moran’s
I indices of spatial autocorrelation to analyze the statis-
tical structure characteristics of samples from a contam-
inated site. Global Moran’s I was used to describe the
correlation distance and spatial pattern of soil PAHs.
The standardized spatial autocorrelation coefficients of
different spatial lags were arranged in order and mapped
on to standardized spatial correlograms, which were
used to show spatial dependence. The Local Moran’s I
index was used to calculate the relationship between
each sample and its neighbors, which allowed hotspots
and cool spots for soil PAHs to be identified at the
contaminated site. The research has provided important
information about contamination at the site that can be
used at other sites to aid remediation investigations and
the creation of remediation strategies for large-scale
industrially contaminated sites.

Materials and methods

Site characteristics

The plant is located in the north of China and has a total
land area of 1.35 km2. It was one of China's large-scale
independent coking chemical industrial enterprises that
had been in operation for over 40 years. The major
products were coke, coke oven gas, tar, benzene, am-
monium sulfate, asphalt and naphthalene, amongst a
total of 40 chemical products. Serious environmental
pollution was caused by poor production technology
and pollution controls during its initial period, and car-
cinogenic substances and harmful emissions have dam-
aged the area taken up by the plant and its surrounding
environment. The plant took in coal as a raw material to
produce gas and coke and extracted coal-based
chemicals from crude tar. On site, the facility consisted
of a former coal preparation factory, coking factory,
sieve coke factory, gas purification system, tar factory,
and a gas factory. Spills and leakages during gas purifi-
cation and refining, tar processing, storage, transport
and production processes, as well as planned and
unplanned emissions, were the major causes of the field
pollution characteristics shown by the polycyclic aro-
matic hydrocarbons and associated compounds. Soil
contamination at the site is serious, based on site recon-
naissance and relevant data analysis. It is now impera-
tive to undertake a site risk assessment, contamination
management, and other related work.
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Sampling and chemical analyses

Based on the plant’s historical production, manage-
ment and technological layout, a total of 64 monitor-
ing points were first sampled in an effort to pick soil
sampling points in areas of potentially contaminated
ground and to confirm known contamination areas,
contamination depth, and contaminant species. A sec-
ond sampling grid and monitoring points were com-
bined with the first in order to provide a comprehen-
sive picture of contamination at the site. The monitor-
ing points and first analysis focused on the seriously
polluted areas. A total of 114 effective soil sampling
points were used in both sampling visits.

For the extraction of PAHs, 10 g of soil sample was
extracted with acetone/dichloromethane (1/1, v/v) by
ASE-300 (Dionex, Beijing, China). The extracted
PAHs were concentrated by organomation and eluted
with approximately 30 mL dichloromethane/n-hexane
(2/1, v/v) and concentrated to 1 mL for analysis (Grimalt
et al. 2004). PAHs in the extracts of all samples were
analyzed by gas chromatography–mass spectrometry
[Agilent, 6890N GC, 5975B mass spectrometric detec-
tor, USA] equipped with an HP-5MS capillary column
(30 m, 0.25 mm inner diameter×0.25 mm film thick-
ness, Agilent, USA). In this method, the identification of
16 priority PAHs was performed by gas chromatogra-
phy–mass spectrometry, and quantification analysis was
based on peak area external reference of 16 PAH stan-
dard sample (Supelco Co., USA) containing Nap, Acy,
Ace, Fle, Phe, Ant, Fla, Pyr, Baa, Chr, Bbf&Bkf, Bap,
Daa, Bgp, Inp, the analytical procedure was comprehen-
sively evaluated against quality control acceptance
criteria (USEPA 2007a), the linear quantitative equation
was obtained with r2>0.99 (USEPA 2007b), and the
method detection limits ranged from 10 to 15 μg kg−1,
while the recoveries were 50 % to 105 % with relative
standard deviation lower than 11 %.

Spatial autocorrelation

Spatial autocorrelation refers to the correlation of the
same variable in different spatial positions and the
relationship between a location variable value and
nearby values. Ordinary correlation refers to the mu-
tual relationship between two or more variables.
Spatial autocorrelation includes spatial clusters and
spatial outliers. A spatial cluster refers to a variable
with high concentration surrounded by variables that

also have high concentrations. In contrast, a spatial
outlier means a high variable concentration surrounded
by variables with low concentrations. Once the variables
show a certain spatial regularity, there is spatial autocor-
relation between them.

Spatial autocorrelation uses global and local indi-
cators. Global spatial autocorrelation describes the
overall distribution of a variable in order to determine
if spatial clusters of this variable exist over a larger
area and uses a single value to reflect the region's
degree of autocorrelation. Local spatial autocorrela-
tion computes each spatial unit in relation to neigh-
boring units on a property. There have been many
methods proposed for the calculation of spatial auto-
correlation, such as Moran’s I, Geary’s C, Getis’ G,
Join Count et al.’s Express Global spatial autocorrela-
tion characteristic and Moran’s I and Getis’ G et al.’s
Express Local spatial autocorrelation characteristics.
Moran’s I seems to be the most often used, so this
study identified pollution hotspots at the large coking
contaminated site in north China using Moran’s I
index.

Global Moran’s I index

Global Moran’s I was introduced by Moran in 1948
and examines whether spatial correlation exists or
not over an entire region. The Global Moran’s I
statistic for spatial autocorrelation is given as (Cliff
et al. 1981):

I ¼ n
Xn

i¼1

Xn

j¼1

Cij

�

Xn

i¼1

Xn

j¼1

Cij xi � x
� �

x j � x
� �

Xn

i¼1

xi � x
� �2

where n is the number of the variable value for the
whole region, xi and xj are the variable values at
locations: i and j, x is the mean of x, C is the
spatial weights matrix and Cij is the spatial weight
between locations: i and j. The value of Moran’s I
usually varies between −1 and 1. A value that
approximates to −1 indicates negative autocorrela-
tion and a value that approximates to 1 indicates
positive autocorrelation. No autocorrelation results
in a value close to 0.
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Generally, normal approximation is a precondition,
so the Global Moran’s I index can be standardized to
Z(I) as follows (Cliff et al. 1981):

Z Ið Þ ¼ I−E Ið Þffiffiffiffiffiffiffiffi
Var

p
Ið Þ

where
E Ið Þ ¼ −

1

n−1ð Þ ;Var Ið Þ ¼ 1

w2
0 n2−1ð Þ n2w1−nw2 þ 3w2

0

� �
−E2 Ið Þ

w0 ¼ ∑
n

i−1
∑
n

j¼1
wij;w1 ¼ 0:5∑

n

i−1
∑
n

j¼1
wij þ wji

� �2
;w2 ¼ ∑

n

i¼1
wi∗ þ w∗ið Þ2

where wi∗ is the sum of all weights located in the row i
and w∗i is the sum of all weights in column i. Following
significance testing on the I value (at 0.05 level), if Z(I)
is greater than 1.96 or smaller than −1.96, then it sig-
nifies an existing significant positive or negative spatial
autocorrelation, respectively.

Local Moran’s I index

Local Moran’s I is the index used to describe the
locations of spatial clusters and spatial outliers. This
study used the Local Moran’s I index to identify
spatial clusters and outliers. The function is as follows:

I i ¼
xi − x

� �

S2
Xn

i¼1

Cij xi − x
� �

S2 ¼ 1

n−1

Xn

j¼1 j¼i

Cij xi − x
� �2

The notations of the methods are similar to that for
Global Moran’s I. Local Moran’s I can be standard-
ized, and the significance of a spatial autocorrelation
can be tested. The methods are similar with that used
for the Global Moran’s I.

Data analyses using computer software

The calculation of the spatial autocorrelation index
was conducted using OpenGeoDa 1.0.1 and STARS
0.8.2 software. The maps were produced using
OriginPro 7.5 and ArcGis 10.0 software. Multivariate
and statistical analyses on the sample data were
performed using SPSS14.0.

Results and discussion

Correlation analysis for PAHs

Correlation analysis can be used to test similarity
among PAH sample concentration data. The correla-
tion analysis of different pollutants helps analyze the
cause of soil contamination and identify pollutant
sources and typical pollutants. The data for PAHs in
soils from the contaminated coking plant site used in
this study varied greatly and were highly skewed,
which resulted in a non-normal distribution, so the
Spearman statistical test was used to analyze the cor-
relation. Table 1 presents the coefficients between soil
PAHs. The results showed that all the PAHs were
highly correlated (correlation is significant at the
0.05 level). The higher correlations between soil
PAHs may indicate that these PAHs had similar
sources. Although significantly positive correlations
existed between PAHs, the correlation coefficients
were different. For example, the correlations for Nap
and Acy and Nap and Ant were significant at r=0.814
and r=0.674, respectively (at the 0.05 level) but dif-
ferent. A high correlation coefficient represents a
greater correlation between the contaminants.

Principal component analysis of PAHs

PCA is a useful statistical technique, which can reduce
the initial dimension of a large dimension dataset and
is a common technique for finding patterns in a
dataset. The pollution caused by the 16 different
PAHs analyzed in this study was not the same, and
the sample numbers that exceeded the threshold con-
centration were also different. Two principal compo-
nents (PC), with eigenvalues higher than 1, were
extracted. Their eigenvalues were 9.92 and 2.51. The
PCA method led to a reduction in the original 16
PAHs to two components that could explain 84.52 %
of the data variation. Representation of the variables
by the two components was adequate, considering the
commonalities obtained in the analysis. In the rotated
principal component analysis of the matrix (Table 2),
the first principal component was dominated by Chr,
Bbf&Bkf, Inp, Daa and Bgp, and the second principal
component was dominated by Nap, which meant that
these six PAHs were representative of the site. In the
scattergram of “factor scores” (Fig. 1), principal com-
ponent 1 is the X-axis and principal component 2 is the
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Y-axis. The scattergram shows that for division num-
ber 2 for sample numbers 13, 27, 39 and 89, principal
component 2 gave the highest scores and principal
component 1 gave relatively low scores. The corre-
sponding concentration for Nap seriously exceeded
acceptable levels. For division number 1 of the sample
numbers, principal component 1 gave the highest
scores and principal component 2 gave relatively low
scores, which showed that the first component’s five
PAHs showed similar levels of contamination.

Status of PAH concentrations and identification
of outliers

Table 3 shows a number of statistical parameters, in-
cluding skewness, kurtosis, SD and CV, for the concen-
trations of PAHs in soils at the contaminated site. The
concentration ranges were quite wide. For example, Nap
concentrations in the 114 samples ranged from 0.01 to
4,100.00 mg kg−1, with a mean of 100.91 mg kg− 1. The
data had high CVs and skewness. This implied that the
original data included extreme values and were not
normally or lognormally distributed, according to the
Kolmogorov–Smirnov (K-S) test, because all the K-S P
parameters were 0.00. In contaminated site investigation
and remediation, only extremely large values have a

major effect on the statistics and are of concern. In this
study, the box-and-whiskers plot method was used to
identify extreme values (extreme values were defined as
those which were greater than the sum of the mean
values and at least three times the standard deviation.).

Global spatial autocorrelation analysis

In general, the higher the absolute value of Moran’s I,
the stronger the spatial autocorrelation; the larger the
absolute value of standardized Moran’s I, the more
significant the spatial structure is (Huo et al. 2012).
Figure 2 shows the standardized spatial correlograms
for the soil PAHs. The Y-axis is the standardized
Moran’s I and the X-axis is the lag distance. The
values of the spatial autocorrelation for regionalized
variables can be obtained from the standardized
Moran’s I map. The data can also be used to estimate
if spatial clusters or spatial outliers exist in the study
area and to compare the significant spatial patterns of
the variables. Generally, there were more than two
positive autocorrelations in the standardized Moran’s
I map (the nearer distance represents the spatial corre-
lation distance of the variable). Figure 2 provides the
standardized Moran’s I values for the six PAHs, and
the results show the standardized Moran’s I values for

Fig. 1 PCA scattergram of “factor scores” for each sample
location

Table 2 Principal component matrix analysis for PAHs

Component Rotated Component

PC1 PC2 PC1 PC2

Nap 0.567 0.668 0.180 0.858

Acy 0.658 0.474 0.352 0.731

Ace 0.121 0.438 −0.102 0.443

Fle 0.405 0.634 0.053 0.751

Phe 0.765 0.525 0.422 0.726

Ant 0.810 0.470 0.488 0.800

Fla 0.961 0.113 0.791 0.558

Pyr 0.984 −0.002 0.766 0.468

Baa 0.982 −0.101 0.728 0.380

Chr 0.981 −0.153 0.935 0.334

Bbf&Bkf 0.932 −0.336 0.979 0.150

Bap 0.841 −0.325 0.694 0.115

Inp 0.904 −0.387 0.979 0.091

Daa 0.911 −0.361 0.973 0.118

Bgp 0.837 −0.450 0.950 0.004

9554 Environ Monit Assess (2013) 185:9549–9558



Nap, which were positive at a distance from 350 to
750 m and 1,850 to 2,100 m. This meant that spatial
clusters for Nap concentrations existed in these ranges.
The standardized Moran’s I values for Nap were neg-
ative at a distance from 800 to 1,750 m, which implied
spatial outliers existed in this range. Similarly, five
other PAHs showed spatial clusters and spatial outliers

in the study area. With the exception of Bgp, the
amplitudes of the spatial outliers were larger than they
were for the spatial clusters, which meant that negative
spatial autocorrelation existed in the study area. The
autocorrelation distances for Nap, Chr, Bbf&Bkf, Inp,
Daa, and Igp were 750, 850, 1,200, 850, 750, and
1,200 m, respectively.

Table 3 Summary statistics for the original PAH data

Nap Chr Bbf&Bkf Inp Daa Bgp

Minimum 0.01 0.01 0.01 0.01 0.01 0.01

Maximum 4,100.00 175.00 393.00 144.00 45.70 160.00

Mean 100.91 6.69 12.51 4.65 1.57 4.81

Median 0.04 0.25 0.44 0.26 0.09 0.20

Skewness 6.07 4.96 5.51 5.59 5.25 5.88

Kurtosis 40.48 26.31 35.17 36.22 31.30 39.72

CV 5.01 3.83 3.92 3.83 3.78 4.04

SD 505.93 25.63 49.04 17.82 5.93 19.42

K-S test P 0.00 0.00 0.00 0.00 0.00 0.00

Concentration, milligrams per kilogram, n=114

SD standard deviation, CV coefficients of variation, K-S Kolmogorov–Smirnov test

Fig. 2 Standardized spatial correlograms for soil PAHs
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Using the Local Moran’s I index to identify hotspots

Hotspots and cool spots for soil PAH distribution can
be identified using the Local Moran’s I index method.

Cool spots are often considered as clean areas, but soil
PAH pollution studies of this particular contaminated
site focused on the identification of high pollution risk
areas, so it was important to identify hotspots if the

Fig. 3 Local spatial cluster characteristics for soil PAHs
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degree of pollution at the site was to be quantified. The
Local Moran’s I index was calculated based on a
distance band of 300 m. The results are shown in
Fig. 3. It was found that all soil PAHs showed signif-
icant spatial clusters and spatial outliers. The high–
high values showed hotspots and low–low values
showed cool spots. For Nap, there were nine high–
high values, clustered in the mid-bottom part of the
site and seven low-low spatial clusters. There were
also several low–high and high–low outliers identified
in the mid-bottom part of the site. For Chr, the number
of high–high values and low–low values were also
nine and seven, but the number of low–high spatial
outliers increased to 15 and most of samples were
located in the eastern part of the site. Bbf&Bkf and
Daa had 12 and six high-high values that were clus-
tered, respectively. Bgp and Daa, which had eight
and five low–low values that were clustered, respec-
tively, were the most and fewest low–low clusters of
the six PAHs.

All the PAHs had four kinds of spatial clusters.
Although they had different distributions, pollution
hotspots were visible in the mid-bottom part of the
site, where soil PAH samples with high concentrations
were surrounded by samples with similarly high PAHs
concentrations. Taking the hotspot distribution results
into consideration, it seems that the hotspot distribu-
tion results were consistent with the contamination
that would have been caused by past processing oper-
ations at the contaminated site. Overall, areas at the
mid-bottom part of the site were mainly where the
production process workshops for coking, gas purifi-
cation, tar products, etc. were situated and were
expected to be seriously contaminated. It was to be
expected that nearly all of the high–high values would
be found in these areas. A relationship can be
established between where the pollution hotspots were
found and the influencing factors based on the occur-
rence and distribution of processes around the contam-
inated site. The areas of the site mainly contained coal
preparation areas and gas purification workshops, and
these areas did not show serious contamination.
Relatively low–low values were found in these areas.

Zhang et al. (2008) used Local Moran and GIS
results to identify pollution hotspots for Pb in urban
soils. He found that different distance bands produced
different results, so he suggested that a number of
factors should be considered when choosing suitable
distance bands. A distance band of 300 m was used in

this study. The distance between samples was 80–
200 m. The spatial interpolation of un-sampled areas
at a contaminated site is often based on the weighted
average of the nearest neighbors, so 300 m was chosen
as weight Matrix for this study.

Pollution hotspots in large-scale abandoned indus-
trially contaminated sites need to be identified for
remediation investigations. The knowledge of
hotspots and the statistical characteristic of hotspots
are useful for site environmental management. This
study showed that the Global Moran’s I and Local
Moran’s I indices of spatial autocorrelation are reliable
tools for classifying spatial clusters and spatial outlier
characteristics of PAH concentration data sets, and
also for identifying hotspots of PAH pollution in con-
taminated sites. The research has provided important
information about hotspot identification for the envi-
ronmental risk management of large-scale industrially
contaminated sites.

Conclusions

Principal component analysis and correlation analysis
were applied to 114 samples, in which the total con-
centrations of 16 PAHs were measured at a contami-
nated large-scale independent coking chemical indus-
trial site in China. Two significant components were
extracted by PCA, which explained 84.52 % of the
total variance. The analysis showed that Chr,
Bbf&Bkf, Inp, Daa, Bgp, and Nap were representative
of the whole site.

The results of the global spatial autocorrelation
analysis showed that soil PAH distribution in soil at
the contaminated site was not random, but there were
some significant spatial autocorrelation features. The
spatial positive correlation ranges for Nap, Chr,
Bbf&Bkf, Inp, Daa, and Igp were found at 750, 850,
1,200, 850, 750, and 1,200 m, respectively.

Different significant spatial structures existed for
the PAH distribution in the target site according to
the Local Moran’s I index analysis. The pollution
hotspots were located in the mid-bottom part of the
site, which contained workshops of coking, gas puri-
fication, tar products, which were suspected to be the
seriously contaminated areas in the site. Pollution
hotspots at this contaminated site needed to be identi-
fied so that efficient environmental remediation strat-
egies can be developed.
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