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Abstract This study deals with the future scope of
REDD (Reduced Emissions from Deforestation and forest
Degradation) and REDD+ regimes for measuring and
monitoring the current state and dynamics of carbon stocks
over time with integrated geospatial and field-based bio-
mass inventory approach. Multi-temporal and multi-
resolution geospatial synergic approach incorporating sat-
ellite sensors from moderate to high resolution with strat-
ified random sampling design is used. The inventory
process involves a continuous forest inventory to facilitate
the quantification of possible CO2 reductions over time
using statistical up-scaling procedures on various levels.
The combined approach was applied on a regional scale
taking Himachal Pradesh (India), as a case study, with a

hierarchy of forest strata representing the forest structure
found in India. Biophysical modeling implemented re-
vealed power regression model as the best fit (R2=0.82)
to model the relationship between Normalized Difference
Vegetation Index and biomass which was further
implemented to calculate multi-temporal above ground
biomass and carbon sequestration. The calculated value
of net carbon sequestered by the forests totaled to
11.52 million tons (Mt) over the period of 20 years at the
rate of 0.58 Mt per year since 1990 while CO2 equivalent
reduced from the environment by the forests under study
during 20 years comes to 42.26 Mt in the study area.

Keywords Geospatial . REDD/REDD+ . Biomass
inventory . Carbon .MODIS . NDVI

Introduction

Forests are a natural thwart on climate change as these
sequester maximum carbon in their biomass.
Deforestation of tropical forests released carbon of nearly
1–2 billion tons annually during the 1990s, roughly 15%–
25 % of annual global greenhouse gas emissions (Malhi
and Grace 2000; Fearnside and Laurance 2003, 2004;
Houghton 2005; Canadell et al. 2007; van der Werf et
al. 2009). The reduction in these emissions can serve as a
way to solve or reduce the climate change problem.
Deforestation and forest degradation act as the main
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source of emissions of greenhouse gases (GHGs) in most
tropical countries. As estimated by the Intergovernmental
Panel on Climate Change (IPCC), an annual total of 1.6
billion tons of carbon is released worldwide by land-use
change activities, of which a major part results from
deforestation and forest degradation (FAO 2005;
Denman et al. 2007). Simultaneously, deforestation of
tropical forests destroys carbon sinks that sequester CO2

from the atmosphere and are vital for future climate
stabilization (Stephens et al. 2007). The United Nations
Framework Convention on Climate Change (UNFCCC)
recently adopted an initiative step to provide financial
incentives to facilitate reductions in emissions from defor-
estation below a baseline in developing countries, i.e.,
REDD (Reduced Emissions fromDeforestation and forest
Degradation) (Gibbs et al. 2007).

The concept of REDD is derived from RED
(Reduced Emissions from Deforestation) and further
concepts of REDD+ and REDD++/REALU (Reducing
Emissions fromAll Land Uses) are presently originating
out of REDD which reveals the importance and severity
of the concept on a global scale. REDD+ comprises
conservation, sustainable management of forests, and
enhancement of forest carbon stocks, in addition to the
concept of REDD. REALU, on the other hand, con-
siders the emissions not only from forests but for all land
uses. The basic steps required for successful implemen-
tation of a viable REDD regime include the assessment
of forest carbon stocks and their change over time;
quantifying the amount of reduced CO2 emissions,
which qualifies for accounting; identifying and ranking
of the relevant causes for human impact on forests
(Sinha et al. 2012) in order to derive effective measures
to combat the degradation of forests; defining a baseline
against which the changes of carbon stocks in forests are
set off; and finally implementing a scheme for the trans-
fer of benefits to local actors (Plugge et al. 2010).

The intention of the Kyoto Protocol is to limit or reduce
CO2 and other GHGs by an average value of 5 % of 1990
levels in the commitment period 2008–2012 (UNFCCC
1998). The United Nations Collaborative Program on
Reducing Emissions from Deforestation and Forest
Degradation in Developing Countries (UN-REDD
Program) strategy for the period 2011–2015 targets to
assist developing countries to build capacity to reduce
emissions and to participate in a future REDD+ mecha-
nism. India follows an inclusive approach to REDDwhich
is termed as a REDD Plus approach that deals with
compensating countries for “reducing deforestation”

along with “conservation, sustainable management of
forest and increase in forest cover” (ICFRE 2007).
UNFCCC (1998), India, with a view of CDM (Clean
Development Mechanism), considers REDD as
“Reducing Emissions from Deforestation in Developing
countries”, Sustainable Forest Management (SFM), and
Afforestation and Reforestation (A&R), which reveals
the comprehensive approach (MoEF 2009). India has
strong forest monitoring capacities, with several satellites
launched that provide medium resolution imagery suit-
able for monitoring forest cover change. Accurate delin-
eation of successional and mature forest biomass
distribution becomes considerably significant in reducing
the uncertainty of carbon emission and sequestration.

Owing to the dynamism of nature, the land use land
cover features changes with time (Sharma et al. 2012).
Changes in forest cover at regional to global level re-
quires remote-sensing-based approaches, though for
small aerial extent, it can be assessed through field-
based techniques (Trigg et al. 2006). Among all the
land-use systems involving trees, the most significant
carbon pool preserved as Above Ground Biomass
(AGB) (Ravindranath and Ostwald 2008) is susceptible
to frequent changes which require recurrent monitoring.
According to Biomass ECV report (2009), the tech-
niques involved in biomass estimation are destructive
sampling, non-destructive sampling, remote sensing,
and model-based techniques. Remotely sensed data with
its synoptic view, high spatio-temporal resolution, and
digital format allows fast processing of large quantity of
data as well as the availability of data for that particular
area of forest which is inaccessible by field survey.
Optical remote sensing mainly responds to the leaf
chemistry or structure to measure the vegetation indices
like normalized difference vegetation index (NDVI) and
uses the technique ofmodeling based on NDVI–biomass
relations to estimate the aboveground biomass of the
whole forest area (Dong et al. 2003). Baccini et al.
(2004) made use of MODIS (Moderate Resolution
Imaging Spectroradiometer) data to estimate biomass
over regional scales along with other multi-source data.
Lu (2006) has given a brief description of several re-
search works completed with different approach
methods and models applied through optical sensor data
of different spatio-resolution for AGB and forest stand
parameter estimation.

Assessment of AGB for moist tropical forests is
difficult and challenging because of its complicated
and abundant stand structure and varied species
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composition using spectral responses (Lucas et al.
1998; Nelson et al. 2000; Steininger 2000; Foody et
al. 2001, 2003) in comparison to coniferous forests.
AGB can be directly estimated using remotely
sensed data with different approaches like multiple
regression analysis, K nearest neighbor, and neural
network (Roy and Ravan 1996; Nelson et al.
2000; Steininger 2000; Foody et al. 2003; Zheng
et al. 2004) and indirectly estimated from canopy
parameters, such as crown diameter, which are
first derived from remote sensed data using mul-
tiple regression analysis or different canopy reflec-
tance models (Woodcock et al. 1997; Phua and
Saito 2003; Popescu et al. 2003). Tropical AGB
estimation has been investigated with Landsat TM
(Sader et al. 1989; Lucas et al. 1998; Boyd et al.
1999; Nelson et al. 2000; Steininger 2000; Foody
et al. 2001, 2003; Lu 2005) or synthetic aperture
radar (SAR) data (Rignot et al. 1995; Luckman et
al. 1997, 1998; Santos et al. 2002, 2003), but the
studies show difficulty in AGB estimation based
on purely spectral responses from optical sensor
data or backscatters from SAR data. Studies have
shown that textures are also helpful in improving
land cover or vegetation classification (Franklin
and Peddle 1989; Marceau et al. 1990; Augusteijn et
al. 1995; Podest and Saatchi 2002).

Methodology

Study area

Himachal Pradesh covers a total area of 55,673 km2

with the geographic extent of 30°22′ to 33°12′ N
latitude and 75°45′ to 79°04′ E longitude (Fig. 1);
the altitude varies from 350 m to 6,975 m above the
mean sea level. The state has three distinct regions:
Shiwaliks (altitudes up to 1,500 m), Middle
Himalayan region (1,500–3,000 m altitude), and the
Himadris (>3,000 m altitude). Tree growth is minimal
and is governed by elevation and precipitation. Nearly
one third of the geographical area is permanently
under snow and glaciers while remaining under
recorded forests covering an area of 37,033 km2

(Forest Survey of India 2009). Reserved Forests con-
stitute 5.13 %, Protected Forests 89.27 %, and Un-
classed Forests 5.60 % of the total forest area of
Himachal Pradesh. The state has 35 different forest

types (Champion and Seth 1968) divided into eight
groups, namely, Tropical Moist Deciduous, Tropical
Dry Deciduous, Subtropical Pine, Himalayan Moist
Temperate, Himalayan Dry Temperate, Sub Alpine
Forests, Moist Alpine Scrub, and Dry Alpine Scrub.

Area zonation

The complete methodology adopted in the study is
presented in Fig. 2. MODIS with spatial resolution
of 250 m was used for zoning of the total land area
under study. Broad forest classes related to AGB
calculation are based on stratification rules (GPG–
LULUCF; IPCC 2003). Pre-processing was not done
for the cloud-free 16-day composite MOD13Q NDVI
products as standard scientific product made avail-
able by NASA to meet the needs of the research.
The VI (Vegetation Index) products are validated with
accuracies depicted by a pixel reliability flag with glob-
ally averaged uncertainties of only 0.015 units.
Knowledge-based Decision Tree image classification
techniques were applied for MODIS-NDVI 250 m 16-
day composite data over the years 2000, 2005, and 2010
for zoning of total land into forest and non-forest.
MOD13Q NDVI products were in Geographic
Coordinate System and converted to UTM Zone 43
North before any further analysis using MRT (MODIS
Reprojection Tool, version 4.0) and the area of interest
subsetted using ERDAS Imagine. In context to REDD, a
combined inventory aims to focus mainly on forest areas
that show ample changes in their spatial extent (Plugge et
al. 2010). Knowledge-based Decision Tree algorithm
was considered better for classification as this
surpassed the Maximum Likelihood classification
approach (Chen and Rao 2009).This classification
technique also integrated SRTM (Shuttle Radar
Topographic Mission) DEM and climate data (rain-
fall data) for the region. This algorithm was based
on predecided reconnaissance knowledge-based
criteria set up for the particular analysis, hence
had better potential. The Knowledge Classification
application is the means by which knowledge bases
constructed with the Knowledge Engineer, the dia-
log where all of the main functions for creating and
testing a knowledge base are accessible, were
processed. The classes and input data required for
a particular analysis were selected for existing
knowledge base to be used for classification. The
following criteria were considered for identification:
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& The assessment area should represent the entire
target region.

& Derived results should be transferable to other
areas of the state with similar characteristics.

& The assessment area should exhibit diverse inten-
sities of forest degradation.

& Other criteria like infrastructure, accessibility, and
funding were also considered.

Pre-processing and image rectification

High-resolution multispectral Landsat-5 TM and IRS P-
6 LISS-III data were rectified and utilized to stratify and
form similar forest type clusters within the assessment
areas. Consecutive two time (archive and present) data
were used for analyzing change detection of both forest
area and carbon stock. Landsat-5 TM imagery for the
year 1990 were downloaded from the website
www.landsat.org with minimum cloud cover to avoid
the seasonal variation in the vegetation phenology, the
details of which are documented in Table 1. As observed
through visual interpretation, the elevated areas had
shadow effect and dark pixel problem. Dark Object
Subtraction (DOS), haze reduction, and conversion of
DN to top of atmosphere reflectance were executed as a

part of radiometric correction along with image-based
COST method for atmospheric correction. Chavez
(1996) improved dark-object atmospheric correction
for bands 1–5, and 7 of Landsat-5 TM multispectral
data was implemented. The steps for calculating reflec-
tance (ρ) from the fundamental radiance considering the
haze correction is given in Eqs. 1 to 4 (Chavez 1996).

Llmin ¼ LMINl þ QCAL

� LMAXl � LMINlð Þ=QCALMAX ð1Þ
where QCAL is the minimum DN, QCALMAX=255,
and constants LMINl, LMAXl are given in the table of
Markham and Barker (1986).

Ll1% ¼ 0:01 � d2 � cos2θ= p � ESUNlð Þ ð2Þ
where ESUNl=mean solar exoatmospheric spectral ir-
radiance from Markham and Barker (1986), d is the
Sun–Earth distance, and θ is the solar zenith angle (90-
sun elev.).

Ll; haze ¼ Ll; min � Ll; 1% ð3Þ

ρ ¼ p � d2 � Llsat � Llhazeð Þ=ESUNl � cos2θ ð4Þ

Fig. 1 Study area
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Though the output from the model should range from
0 to 1, however, values greater than 1 corresponding to

bright objects (e.g., clouds, snow, and playa) or noise are
obtained. Lhaze values for each band was calculated

Fig. 2 Methodology for quantifying reduced CO2 emission
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using Table 2 which further served as an input to
Chavez’s COST model as shown in Fig. 3. The general
equation is given below:

�Lhaze þ a � Image Band ið Þ � bð Þ � p � d2� �
=

ðc � cos p=180 � 90�sun elev:ð Þð Þ2Þ ð5Þ

where a, b, and c are band-specific constants.
IRS P-6 LISS-III imagery (Table 1) were procured

from NRSC, Hyderabad with minimum cloud cover of

the same season to avoid seasonal variation. Similar
radiometric corrections were performed as of Landsat-
5 TM imagery. For this purpose, the at-surface reflec-
tance is calculated with the following formula
(Sobrino et al. 2004):

ρ ¼ p Lsat � Lp
� �

d2

E0 cos θzTz
ð6Þ

where Lsat is the at-sensor radiance, Tz is the atmo-
spheric transmissivity between the sun and the surface,
θz is the zenithal solar angle, d is the Earth–Sun

Table 1 Satellite data acquisi-
tion details S. no. Satellite/sensor Path/row Date of acquisition Time of acquisition

1 Landsat-5 TM 146/037 18-10-1989 04:35:00.0 pm

2 Landsat-5 TM 146/038 21-10-1990 04:35:00.0 pm

3 Landsat-5 TM 146/039 21-10-1990 04:36:00.0 pm

4 Landsat-5 TM 147/037 09-10-1989 04:35:00.0 pm

5 Landsat-5 TM 147/038 09-10-1989 04:35:00.0 pm

6 Landsat-5 TM 147/039 25-10-1989 04:36:00.0 pm

7 Landsat-5 TM 148/037 04-07-1992 04:35:00.0 pm

8 Landsat-5 TM 148/038 16-10-1989 04:35:00.0 pm

9 IRS-P6 LISS-III 094/047 14-09-2009 05:50:49.0 pm

10 IRS-P6 LISS-III 094/048 12-05-2010 05:50:32.0 pm

11 IRS-P6 LISS-III 094/049 12-06-2010 05:50:53.0 pm

12 IRS-P6 LISS-III 095/047 13-10-2009 05:46:43.0 pm

13 IRS-P6 LISS-III 095/048 13-10-2009 05:47:04.0 pm

14 IRS-P6 LISS-III 095/049 13-10-2009 05:47:24.0 pm

15 IRS-P6 LISS-III 096/048 09-07-2010 05:41:36.0 pm

16 IRS-P6 LISS-III 096/049 22-05-2010 05:42:25.0 pm

17 IRS-P6 LISS-III 097/049 27-05-2010 05:38:11.0 pm

Table 2 Lhaze calculation for satellite data

Band DNmin S. elev. 1 % HLmin L1% Lhaze (Lmax − Lmin)/255 Lmin Lmax S–E dist. S. exo.

TM-1 30 40 0.01 1.6570588 0.2594521 1.3976067 0.0602353 −0.15 15.21 0.9960000 195.7

TM-2 10 40 0.01 0.8949020 0.2424824 0.6524196 0.1174902 −0.28 29.68 0.9960000 182.9

TM-3 8 40 0.01 0.5247059 0.2064216 0.3182843 0.0805882 −0.12 20.43 0.9960000 155.7

TM-4 5 40 0.01 0.2572549 0.1388076 0.1184473 0.0814510 −0.15 20.62 0.9960000 104.7

TM-5 2 40 0.01 −0.0153843 0.0290740 −0.0444583 0.0108078 −0.037 2.719 0.9960000 21.93

TM-7 2 40 0.01 −0.0036039 0.0098796 −0.0134835 0.0056980 −0.015 1.438 0.9960000 7.452

LISS-2 38 15.98 0.01 1.7977725 0.0434982 1.7542743 0.0473098 0 12.064 1.0102000 184

LISS-3 20 15.98 0.01 1.1867451 0.0366425 1.1501026 0.0593373 0 15.131 1.0102000 155

LISS-4 15 15.98 0.01 0.9268824 0.0252952 0.9015872 0.0617922 0 15.757 1.0102000 107

LISS-5 9 15.98 0.01 0.1198941 0.0054373 0.1144568 0.0133216 0 3.397 1.0102000 23
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distance, and Lp is the radiance resulted from the
interaction of the electromagnetic radiance with the
atmospheric components (molecules and aerosols) that
can be obtained with the below given equation:

Lp ¼ L min � L1% ð7Þ

whereL1% ¼ 0:01 cos θzTzE0
1

pd2
and ð8Þ

Tz ¼ cos θz ð9Þ

Lsat ¼ Lmax � Lmin

255
� DN þLmin ð10Þ

where Lmax and Lmin (mw/cm2.sr.μm) are the maxi-
mum and minimum spectral radiance, respectively.

The Earth–Sun distance “d” was computed using the
equation (Van 1996):

d ¼ 1þ 0:0167 sin 2p D� 93:5ð Þ=365½ � ð11Þ
For LISS-III data, the spectral solar irradiance on

top of the atmosphere, E0 and E0
1for bands 2, 3, 4, and

5 are 185.22, 157.73, 109.67, and 24.06 and 184, 155,
107, and 23, respectively (Pandya et al. 2002).

All the scenes of Landsat-5 TM and LISS III
obtained after processing through the Chavez’s
COST model (Eq. 5) with different values for the
constants a, b, and c were mosaicked and the area of
interest subsetted in ERDAS Imagine.

Image classification

NDVI calculated from the images were used as inputs
for knowledge-based decision tree image classification.

Fig. 3 Chavez’s COST model for data processing
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Landsat-5 TM (NDVI), IRS P-6 LISS-III (NDVI),
ASTER DEM, and Slope Map based on ASTER
DEM all co-registered. The six land use classes
viz. Forest Land, Crop Land, Grass Land,
Wetlands, Settlements, and Other Lands as per
GPG–LULUCF from two classified maps of two
time periods were derived. Further, based on the
same knowledge-based principle, the forest area

from both time periods were converted into strata
of forest depending on the different climatic (IPCC
2006) and elevation (H.P. Forest department) zones
for field inventory. Threshold values for NDVI,
climate (rainfall), climatic zones, and elevation
zones were derived after consulting different pub-
lished materials, literatures, direct field informa-
tion, and Google Earth. Classified data often

Fig. 4 GPS sample plot
location

Table 3 Local tree volume equations (Himachal Pradesh)

S. no. Forest tree species Volume equation WDa

(tons dry matter/m3)
BEFb

(biomass expansion factor)

1 Shorea robusta 0.1919 − 2.7070 * D+11.7563 * D2 0.72 1

2 Pinus roxburghii 0.2283 − 1.7288 * D+9.05 * D2 0.65 0.95

3 Quercus dilatata 0.0988 − 1.5547 * D+10.1631 * D2 0.7 4.2

4 Pinus wallichiana 0.291006 − 3.54227 * D+16.894379 * D2 0.48 0.81

5 Cedrus deodara 0.167174 − 1.735312 * D+12.039017 * D2 0.56 0.81

6 Quercus semecarpifolia 0.13581 − 1.84908 * D+10.82341 * D2 0.58 1.4

7 Quercus incana (0.240157+3.820069 * D − 1.394520 *√D)2 0.7 3.4

Source: Volume Equations for Forests of India, Nepal and Bhutan–FSI
aWD from Sharma et al. 2008 and IPCC 2006
b BEF from Chhabra et al. 2002
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manifest a salt-and-pepper appearance due to the
inherent spectral variability encountered by a clas-
sifier when applied on a pixel-by-pixel basis
(Lillesand et al. 2007). Hence, the classified im-
ages were smoothened with 3 × 3 majority filter.

In situ assessment

Data for the land use and forestry obtained from
sample surveys were used to assess land use and
carbon stock changes. The stratified random sam-
pling method was employed as sampling efficiency
enhances due to stratification as subdivision of the
population reduces the variability between units
within a stratum as compared to the variability
within the entire population. Sampling quadrats of
regular shape of dimensions 10 × 10 m, 5 × 5 m,
and 1 × 1 m, nested within each other, were

defined as the units for sampling (Hernandez et
al. 2004). The number of sampling units is calcu-
lated as (Chacko 1965):

N ¼ t2 � CVð Þ2
SE%ð Þ2 ð12Þ

where N=number of sample plot, CV = coefficient
of variation, SE = standard error percentage
(10 %), and t = statistical value at 95 % signifi-
cance level.

Sample plot location was captured using geodetic
Trimble GPS in the field and imported in ArcGIS
framework to generate the location map of the sample
plots (Fig. 4). Several dendrometric data such as DBH
(diameter at breast height), total height, and crown
parameters as well as ancillary data related to the
structure and status of forest, forest type and density,

Fig. 5 Land use and land cover (1990 and 2010)
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sample plot location, and its topographic characteristic
including possible human-induced impacts were also
collected.

AGB calculation

Volume of each tree was enumerated using species-
specific local volume equations formulated by Forest
Survey of India (Table 3). The AGB of a single tree
(AGBtree) was calculated as:

AGBtree ¼ V �WD � BEF ð13Þ

where V = merchantable volume (m3), WD = species-
specific wood density (tons dry matter/m3), and BEF =
species- and site-specific biomass expansion factor

The species-specific wood density (Sharma et al.
2008; IPCC 2006) and site-specific biomass expan-
sion factor (BEF) (Chhabra et al. 2002) were adopted
from existing literature (Brown et al. 1989; IPCC
2006). In case of data unavailability, default values

for tropical hard or softwoods (IPCC 2006) were ap-
plied. Default values provided by IPCC (2006) were
used to convert biomass into carbon. Up-scaling pro-
cedures expand sample plot data to area related esti-
mates (e.g., strata, state, or country) resulting in
aggregation of respective AGB values on different
scales (Riedel 2008).

CO2 emissions

The proportion of carbon in tree biomass varies more
between different tree compartments than between the
tree species (Wirth et al. 2002; Mund et al. 2002;
Schulze 2000). On tree level, the proportion of branch
and leaf biomass to the stem biomass is higher in
younger age classes (Hakkila 1989). The average car-
bon concentration of 0.47 g C g−1 of dry weight in tree
biomass has been implemented for all test sites (Wirth
et al. 2004; IPCC 2006). Quantification of reduced
CO2 includes a reference level for enumerating
changes of carbon stocks in forests and a continuous

Table 4 Forest area (Himachal
Pradesh) Forest zones Area in hectares

Year 1990 Year 2000 Year 2005 Year 2010

Tropical Forests 372,491.76 469,706.25 545,906.25 620,537.5

Montane Sub-Tropical Forests 351,853.79 367,575 410,993.75 558,862.5

Montane Temperate Forests 445,483.88 403,400 403,462.5 359,012.5

Alpine Forests 122,080.77 67,962.5 67,962.5 61,225

Total Forest 1,291,910.2 1,308,643.75 1,428,325 1,599,637.5

Non-Forest 4,311,327.3 4,294,593.75 4,174,912.5 4,003,600

Fig. 6 NDVI map (1990
and 2010)
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Fig. 7 Forest strata statistics (1990 and 2010)

Table 5 Stratified forest cover change and AGB calculation

Strata Area in hectares AGB (t/ha) AGB (t)

1990 2010 Change

Dry Tropical Forests 398.90 243.07 −155.82 60 −9,349.44
Moist Tropical Forests 329,338.46 287,944.01 −41,394.45 182 −7,533,789.19
Wet Tropical Forests 42,754.40 12,338.84 −30,415.56 275 −8,364,279.45
Montane Dry Sub-Tropical Forests 28,543.36 30,508.36 1,965.00 50 98,250.00

Montane Moist Sub-Tropical Forests 302,063.51 493,729.63 191,666.12 127 24,341,597.49

Montane Wet Sub-Tropical Forests 21,246.92 17,574.28 −3,672.64 222 −815,325.71
Montane Dry Temperate Forests 95,773.21 95,555.92 −217.29 122 −26,508.96
Montane Moist Temperate Forests 334,740.25 429,992.12 95,251.88 128 12,192,240.04

Montane Wet Temperate Forests 14,970.42 25,120.80 10,150.38 134 1,360,151.28

Dry Alpine Forests 28,530.69 37,032.83 8,502.14 20 170,042.76

Moist Alpine Forests 88,158.77 138,646.89 50,488.11 60 3,029,286.86

Wet Alpine Forests 5,391.31 7,014.47 1,623.16 50 81,158.05
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monitoring of the same. The following formula was
used for calculating reduced equivalent CO2 at two
time intervals t1 and t2 (IPCC 2006):

Reduced CO2 ¼ Ct2 � Ct1ð Þ � 44
12

ð14Þ

Results and discussions

LULC Classification

The result obtained from knowledge-based expert
classification using decision tree algorithm was better
than other classification techniques for such a large
area and showed consistent results. The inputs to the
expert classifier were in the form of NDVI images for
the two time periods (1990 and 2010), ASTER DEM
and slope map generated using ASTER DEM. Results
show that the land use land cover areal coverage
changed dynamically in the span of 20 years (Fig. 5).
The spatial extent of different classes of land use in
1990 and 2010 can be accessed from the LULC map
shown in Fig. 5 with an overall accuracy of 81.50 %
and 88.75 % and Kappa accuracy of 0.77 and 0.85,
respectively. Most of the area of upper Himalayas in
the state remains snow covered and are deprived of
vegetation.

Temporal forest cover dynamics

Preliminary investigation of LULC classification and
multi-temporal MODIS NDVI for the years 2000,
2005, and 2010 using knowledge-based expert classi-
fier suggested a gain of forest cover from 1.3 Mha in
1990 to 1.6 Mha in 2010 (Table 4). Increment in total
forest cover for over the first 5 years (2000–2005) was
off 2 % while in the second 5 years (2005–2010) it
was 4 %. This increase may be attributed to the new
Indian Forest Policy of 1988 and good management
practices of the Himachal Pradesh State Forest
Department. MODIS indicated the continued areal
increment of the Tropical forest zone and the
Montane Subtropical forest zone since 2000
(Table 4). But within the same time period, Montane
Temperate Zone and Alpine Zone had shown a de-
crease in their coverage especially in the duration
2005 to 2010; this may be due to some developmental
activities in the region. The forest cover in Montane
Temperate and Alpine Zone Zones remained

unchanged during 2000 to 2005 but decreased in
2010 owing to degradation and deforestation. Forest
cover change dynamics as per MODIS data investiga-
tion suggests that there is increase in forest cover of
Tropical zone in Himachal Pradesh during the period
2000 to 2010 while the Alpine Zone forest cover
remained constant. Areal coverage remained constant
for Montane Sub-Tropical forests from 2000 to 2005 but
showed gradual increase of 3 % till 2010. Results sug-
gest that the Himachal state is showing changes in
coverage of forests which needs to be assessed.
MODIS data are a coarse resolution (250 m) product
and cannot be used for accurate forest area calculation
and dynamics, so it was decided to use high-resolution
(<30 m) Landsat-5 TM (1990) and IRS P-6 LISS-III
(2010) data for recording of actual forest changes. The
NDVI values varied from −1 to 0.89 in 1990 NDVI
image and from −1 to 0.9 in 2010 NDVI image (Fig. 6).
Biomass accumulation in the forest is a site-dependent
phenomena, hence necessary for precise biomass
assessment.

Forest stratification

ASTER DEM, rainfall map, slope map based on
ASTER DEM, and NDVI were used for the stratifica-
tion. Twelve strata of forests were identified as per
IPCC (2006) guidelines (Ravindranath and Ostwald
2008). During 1990–2010, the area showed degrada-
tion and deforestation in Tropical forests, either moist
or dry (Table 5). Montane Dry Sub-Tropical and
Montane Moist Sub-Tropical strata area were en-
hanced in the locality. Montane Wet Sub-Tropical
strata of forests have shown area reduction because
of deforestation and degradation. With a minor

Table 6 Model statistics

S. no. Model R2 Standard error of prediction

1 Linear 0.735 68.390

2 Logarithmic 0.720 73.043

3 Inverse 0.698 73.043

4 Quadratic 0.741 68.814

5 Cubic 0.742 68.806

6 Compound 0.793 0.334

7 Power 0.815 0.315

8 Growth 0.793 0.334

9 Exponential 0.793 0.334
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reduction in Montane Dry Temperate forests, Montane
Moist and Montane Wet have increased in coverage
during this time period of 20 years. All the strata (dry,
moist, and wet) within Alpine Zone showed a net
increment in their coverage area from 1990 to 2010,
and the stratified forest map for 1990 and 2010 is
shown in Fig. 7.

Temporal carbon stock dynamics

Dry, Moist, and Wet Tropical Forests depicted loss of
forest cover over the period of 1990 and 2010 (Table 5).
Nevertheless, Montane Wet Sub-Tropical Forests and
Montane Dry Temperate Forests showed negative

Fig. 8 Scatterplot for estimated and predicted biomass

Fig. 9 AGB and carbon maps for 1990 and 2010
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change in forest cover within the same span of time
while the remaining strata of forests showed a positive
change in forest cover. Change of forest cover in
Montane Moist Sub-Tropical Forests stratum is highest
among all the forest strata. Wet alpine stratum showed
least growth in forest cover within this period in the
area. The forests demonstrated a net increase in AGB
from 1990 to 2010 as quantified statistically and verified
from remote sensing as well. The forest cover showed a
net increase of ∼0.28 Mha over the period of 20 years
from 1990 to 2010 (Table 5). The table depicts a net
increase in AGB, calculated to be 24.52 Mt at the rate of
12.3Mt per annum.Modeling resulted in finding a best-
fit line, correlation coefficient, and standard error of
estimate (Table 6). The biomass calculated from sample
plot data were plotted against NDVI extracted for the
same location from NDVI of 2010 LISS-III image.
Different models for curve estimation were applied in
SPSS Statistics software to find a best-fit model which
defines the relationship between NDVI and AGB. After
analyzing the model values for r2 and “Standard Error of
Prediction”, it was observed that the “Power model”
best defines the relationship between NDVI and AGB as

AGB ¼ 1169:8 � NDVI4:2043 ð15Þ
STATISTICA software was used to develop a scatter

plot (Fig. 8) of estimated against predicted AGB values.
At the 0.95 confidence level, predicted AGB showed
high correlation (r2=0.73) with the field-based estimat-
ed AGB values. Maps showing relative abundance of
AGB and forest carbon sequestration in the year 1990
and 2010 (Fig. 9) using Eq. 15 in ERDAS Imagine were
prepared. The calculated value of the net Carbon se-
questered by the forests totaled to 11.52 Mt over the
period of 20 years in the study area at the rate of 0.58Mt
per year since 1990. During this 20 years, CO2 equiva-
lent reduced from the environment by the forests of the
study area resulted to 42.26 Mt.

Conclusions

Climate change has created prospects for deforestation
within international pledge on emissions. Carbon en-
hancement activities and reduced emissions including
both deforestation and forest degradation (REDD)
should be considered of equal importance. Recognition
of a REDD mechanism definitely has a staggered ap-
proach even though deforestation and degradation are

the instant precedence. The motivation behind this ap-
proach is mainly sensible for the political viability of
negotiations under UNFCCC with a simpler scope and
the need for building capacity in carbon accounting for
developing countries. There is agreement for voluntary
participation of only developing countries in REDD that
includes economical incentives for reducing the emis-
sions of GHGs. Articles 3.3 and 3.4 deal with the bene-
fits of forests as carbon sinks (UNFCCC 1998) and
afforestation and reforestation in CDM generate credits.

The methodology adopted in this study of carbon
sequestration in the scope of REDD depends on the
capacities in a country existing or which can be
constructed. So by the end of the first commitment
period, particular nations should have all the capacities
in order to avoid the urgent need for broad-scale
consultancy for which country-specific knowledge is
essential. The applied methodology was designed
using prior information about the study area and the
forest cover distribution as published by Forest Survey
of India, Dehradun and Himachal Pradesh State Forest
Department, hence confirming the inclusion of site-
specific knowledge. The challenge lies in the most
effective synergism of multi-sensor geospatial and
terrestrial inventories. This study reveals the poten-
tial of combined inventory and the statistical
upscaling methods (top-down and bottom-up ap-
proaches) for producing consistent results on a
national and/or sub-national level. For successive
inventories in the scope of REDD, the in situ
framework can be optimized for all of the adapted
IPCC categories to fully exploit the advantages of
a stratified random sampling design. The availabil-
ity of cloudless very high resolution data can pose
an immense challenge, especially in the Himalayan
belt which can be possibly overcome by high
resolution RADAR (e.g., Terra SAR-X, Cosmo-
Skymed, and ALOS PALSAR) and LIDAR data
(Plugge et al. 2010).
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