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Abstract The average summer temperatures as well
as the frequency and intensity of hot days and heat
waves are expected to increase due to climate change.

Motivated by this consequence, we propose a meth-
odology to evaluate the monthly heat wave hazard and
risk and its spatial distribution within large cities. A
simple urban climate model with assimilated satellite-
derived land surface temperature images was used to
generate a historic database of urban air temperature
fields. Heat wave hazard was then estimated from the
analysis of these hourly air temperatures distributed at
a 1-km grid over Athens, Greece, by identifying the
areas that are more likely to suffer higher temperatures
in the case of a heat wave event. Innovation lies in the
artificial intelligence fuzzy logic model that was used
to classify the heat waves from mild to extreme by
taking into consideration their duration, intensity and
time of occurrence. The monthly hazard was subse-
quently estimated as the cumulative effect from the
individual heat waves that occurred at each grid cell
during a month. Finally, monthly heat wave risk maps
were produced integrating geospatial information on
the population vulnerability to heat waves calculated
from socio-economic variables.

Keywords Heat wave . Fuzzy logic . Satellite
images . Urban climate

Introduction

Heat waves are extended periods of extremely hot weath-
er that have a major impact on human health, socio-
economics and natural systems. According to the
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European Environmental Agency in the decade between
1998 and 2009, heat waves were the most prominent
hazard in Europe causingmore than 70,000 excess deaths
during the extreme summer of 2003 (EEA 2010).
Extreme temperature events are normal features of
inter-annual temperature variability, but their frequency
and intensity have increased both in SW, Midwest and
SE United States, in Western and Central Europe as well
as in Mediterranean regions (EEA 2010; Meehl and
Tibaldi 2004). Furthermore, the Intergovernmental
Panel on Climate Change (IPCC 2007) projected impacts
included a ‘very likely’ increase in frequency of heat
extremes and heat waves in Europe (WMO 2011).
North American ‘cities that currently experience heat
waves are expected to be further challenged by an in-
creased number, intensity and duration of heat waves
during the course of the century, with potential for ad-
verse health impacts’. Increased attention has been drawn
to natural hazards and the European Commission recent-
ly has published guidelines (EC 2010) for risk assess-
ment and mapping for appropriate disaster management
following a Council Conclusions call (Council of the
European Union 2009).

The main purpose of these guidelines was to improve
coherence and consistency among the risk assessments
undertaken in the Member States at national level in the
prevention, preparedness and planning stages and to
make these risk assessments more comparable between
Member States. Coherent methods for national risk as-
sessments will support a common understanding in the
EU of the risks faced byMember States and the European
Union and will facilitate co-operation in efforts to prevent
and mitigate shared risks, such as cross-border risks. The
guidelines emphasise the need for national assessments to
address the following subjects: (1) hazard analysis, in-
cluding geographical, temporal and probability analysis
and (2) vulnerability analysis taking into consideration
population exposure as well as physical, economic, envi-
ronmental and other social/political factors.

According to the WorldMeteorological Organization
(WMO 2008), public health outcomes of hot weather
and heat waves depend upon the level of exposure
(frequency, severity and duration), the size of the ex-
posed population and the population sensitivity. Heat
waves and hot weather are potentially fatal and can
aggravate existing health conditions. Health effects can
appear in all age groups; however, some people are
more at risk of heat-related illness and death than others.
Variations in risk are related to individual conditions, the

level of exposure to hot weather and heat waves and the
ability to adapt to hot weather conditions.

Heat-related health impacts are largely preventable
if populations, health and social care systems and
public infrastructure are prepared (WMO 2008).This
is plausible if past events are studied for which heat
wave risk assessment and mapping are central compo-
nents. Identifying the specific locations where certain
population groups particularly vulnerable to heat
stress live is beneficial for targeting public health in-
terventions. The delineation of high risk zones is crit-
ical for the adaption of effective targeted measures in
areas of public and private activity rather than in the
whole city agglomeration. The evaluation of extreme
events may support decision makers, stakeholders and
interested parties to agree on the preventive measures
to take and to prepare in ways to avoid the immediate
heat wave consequences, most notably in citizens’
health as well as energy demand in future events.

Therefore, in order to answer how severe a heat
wave is, an expert will have to consider the intra-urban
variability of the hazard, as well as the local socio-
economic factors and their geographical variation. In
that context, the present paper proposes a fuzzy logic
methodology to assess heat wave hazard and the as-
sociated risk in the summer months. In this article we
use the term ‘hazard’ to refer to the severity of a heat
wave phenomenon and ‘risk’ to refer to the potential
harm associated with the hazard. A fully automated
system for the classification of heat waves that resem-
bles the common perception of severity according to
intensity, duration and time lag between events has
been developed based on fuzzy logic. Additionally,
the spatial distribution of socio-economic factors at
census block scale is considered to estimate the asso-
ciated risk. The methodology is applied to past events
for the city of Athens, Greece, and considers the
severity of the events at intra-urban scale.

The remainder of the paper is organised as follows:
“Background” gives the necessary background with
regard to heat waves and urban climate modeling,
followed by a presentation of the case study area of
Athens in “Athens Greater Area” and the datasets used
for the development of the methodology in “Data”. The
methods employed for modeling the air temperature and
building the fuzzy logic risk model are introduced in
“Methods”. Finally, the results of the application of the
approach together with a sensitivity analysis are given in
“Application” and the conclusions in “Conclusions”.
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Background

Heat waves

Morbidity and mortality increase during times of un-
usually high ambient air temperatures even in temper-
ate climates (Armstrong et al. 2011). It is also widely
found that the nature of the temperature–mortality
relationship varies between places (e.g. Basu 2009;
McMichael et al. 2008). Heat-related mortality is often
underestimated and may only be indicated when heat
waves occur, resulting in a signal detection bias. The
studies to date are often limited by information from
the death certificates. Other related information, such
as income level, poverty, medicine use, time-activity
patterns or air conditioning use, is not offered on the
individual level, making it difficult to assess socioeco-
nomic and health status of the casualties (Basu 2009).

Regarding spatial patterns, Henschel et al. (1969)
and Schuman (1972) are among the first to investigate
the spatial distribution of heat-related mortality rates.
Recently, Johnson and Wilson (2009) commented that
the spatial analysis of vulnerability to heat waves at
intra-urban scale has been limited, with some excep-
tions including Harlan et al. (2006) and Smoyer
(1998) that developed a multiple linear regression
model using the Urban Heat Island (UHI) intensity
and vulnerable population characteristics to predict
heat-related mortality. Later Ruddell et al. (2010) il-
lustrated that temperatures vary significantly within
the same urban area, and that some residents are at
significantly greater risk of exposure to threshold tem-
peratures than others. They simulated a heat wave
event of 4 days in Phoenix, AZ, using the WRF model
(Shamrock et al. 2005) together with an urban surface
energy balance model and showed marked contrasts in
temperature across neighborhoods.

Urban agglomerations are especially vulnerable to
heat waves in terms of increased mortality due to the
so-called urban heat island effect (Dousset et al. 2011).
Many factors contribute to this effect (Oke et al.
1991): Construction materials typically have a high
heat storage capacity, causing prolonged heat release
during night time; lack of evaporating surfaces yields
a reduced latent heat flux and therefore an elevated
sensible heat flux which causes an increased heating
of the atmosphere; urban morphology plays a signifi-
cant role as well, where the geometry of street canyons
reduces the effective albedo of an urban surface as

well as decreases the long wave radiation loss due to
the screening of the skyline.

Heat wave hazard varies within a metropolitan area
due to different topography, land cover/ land use,
meteorological conditions (e.g. sea breeze) and the
presence of UHI. On the other hand, population vul-
nerability to heat waves varies with age—with elderly
people and infants being more vulnerable to high
temperatures—and it is higher in urban areas due to
higher population numbers and density (EEA 2010).
On top of that, air pollution exacerbates the adverse
health effect of higher temperatures, by stressing the
respiratory and circulatory systems. It was recently
shown (Dousset et al. 2011; Laaidi et al. 2011) using
data from Paris 2003 that elderly people’s mortality
risk is significantly associated with exposure to the
elevated minimum temperatures averaged over
2 weeks and averaged on the day of death and the
six preceding days. Poverty and isolation are also
influential factors. Housing characteristics (e.g. lack
of thermal insulation) plays an important role as well.
In addition to elevated mortality, serious illnesses,
such as heat stroke, heat exhaustion, cardiovascular,
and respiratory problems, rise during the warmest
spells of the year (Semenza et al. 1999). Deaths and
illnesses from air pollutants and infectious diseases
also increase during extremely hot weather (Easterling
et al. 2000; Patz et al. 2005).

Urban climate models

Typical modeling exercises employ regional climate
models coupled to an urbanised surface module to
account for the presence of cities. Several models exist
to compute the surface heat fluxes (De Ridder and
Schayes 1997; Grimmond and Oke 2002; Masson
2000; Kusaka et al. 2001; Ca et al. 2002; Martilli et
al. 2002; Dupont and Mestayer 2006; De Ridder
2006). Nevertheless, such fully coupled modeling ap-
proaches tend to be computationally prohibitive to
generate the required urban air temperature fields at
the spatial resolution of ∼1 km during the course of
multiple summer seasons. As an alternative, studies on
urban climate may employ statistical techniques typi-
cally involving methods like regression analysis or
kriging in which satellite-derived land surface temper-
ature (LST) retrievals are used as in situ estimations of
the urban temperature fields (Gallo and Owen 1999;
Jarvis and Stuart 2001a, b; Choi et al. 2003). In this
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paper, we propose the modeling approach developed
by VITO, the Flemish Institute for Technological
Research in Belgium (Maiheu et al. 2010; Manunta
et al. 2010a; Keramitsoglou et al. 2012) which is based
on a simple urban climate model constrained by satel-
lite LST retrievals via data assimilation and embedded
in the coarse resolution European Centre for Medium-
Range Weather Forecasts (ECMWF) Interim re-
analysis data (ERA-Interim, see “Ancillary data”).

Athens Greater Area

Athens is the capital and largest city of Greece.
According to the recent census paper of Eurostat
(http://epp.eurostat.ec.europa.eu/), the Athens Larger
Urban Zone (LUZ) is the eighth most populated
LUZ in the European Union with a population of
about 4,000,000. Athens is characterised by a warm
thermo-Mediterranean climate with mild and relative-
ly wet winters and warm dry summers. The average air
temperature of the warmest month (July) is 28 °C. The
City of Athens is the central municipality with a pop-
ulation density of 20,467 people/km2. Athens is a
coastal city at the south-easternmost edge of the
Greek mainland (Fig. 1) which sprawls across a cen-
tral basin bound by Mount Egaleo to the west, Mount
Parnitha in the north, Mount Penteli in the northeast,
Mount Hymettus in the east and the Saronic Gulf in
the southwest. The basin is bisected by a series of
small hills. These specific topographic characteristics
make Athens an example of a coastal city located in
very complex terrain.

Analysis of 9 years of MODIS acquisitions
(Keramitsoglou et al. 2011) revealed three areas that
consistently appeared warmer than the city centre in
the daytime images. These areas are Megara, Elefsina-
Aspropyrgos and Mesogeia which were mainly cov-
ered by sparse low vegetation and bare soil (negative
heat island). On the other hand, the city centre of
Athens was characterised by a strong surface Urban
Heat Island phenomenon of 5.7 °C in average, which
was observed later in the day and mostly at night-time
spatially coinciding with the dense urban fabric.

With air temperatures often rising above 37 °C in
Athens, heat waves are not seldom episodes. A major
heat wave in Athens in 1987 was associated with more
than 2,000 deaths (Katsouyanni et al. 1988). The com-
bination of large-scale subsidence and horizontal

movement of air masses from southern parts is the
typical cause of the heat wave phenomenon over
Greece (Theoharatos et al. 2010).

During the last 10 days of June and July 2007,
Athens experienced two extreme heat events. Those
heat waves became front page news in all Greek news-
papers, and the Public Authorities took preventive mea-
sures. The National Health’s Operational Centre
(NHOC) declared a state of national alert from June 22
to June 28 and from July 23 to 27 (Theoharatos et al.
2010). During the first 2 weeks of June 2007, daily
maximum air temperature in Athens varied within its
normal values (from June to August daily maximum
temperature at Athens is 31.6 °C, with reference to
1961–1990 period; Founda and Giannakopoulos 2009;
Theoharatos et al. 2010) and started to rise gradually
above normal during the third week, when the area was
affected by the first and most severe heat wave of the
summer from 24 to 28 June 2009 (Founda and
Giannakopoulos 2009) reaching air temperatures as
high as 46 °C. Two night-time MODIS LST images
depicting the LST distribution before and during the
event using the same color scale are indicative of the
severity of the June heat wave (Fig. 2a and b). Due to
high temperatures coupled with strong winds, several
fires raged across central and southern Greece, and
Athens was covered in a cloud of thick black smoke as
a large fire onMount Parnitha caused significant parts of
the National Park to be destroyed. The fire is identifiable
on the LST image of 28 June, north of the centre of
Athens (Fig. 2c).

Data

Thermal infrared satellite data

An important ingredient for the heat wave risk assess-
ment and mapping is the availability of hourly and
spatially explicit urban air temperature data. The avail-
ability of dense measurement networks would be in-
dispensable to capture the spatial distribution of
temperature and humidity in urban environments.
However, the existing urban meteorological networks
only cover limited areas—often away from the city
centres—and are therefore not adequate to capture the
spatial variability of the temperature within a complex
urban environment. Satellite sensors of ∼1 km spatial
resolution can provide a few images of LST per day
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both during day- and night-time. The most commonly
used instruments with thermal infrared bands at this
resolution include NOAA/AVHRR (National Oceanic
and Atmospheric Administration/Advanced Very High
Resolution Radiometer) and Terra, Aqua/MODIS
(MODerate-Resolution Imaging Spectroradiometer).
Envisat/(A)ATSR (Advanced Along-Track Scanning
Radiometer) data are available until 8 April 2012 when
communication with Envisat satellite was lost.
Although rich in spatial detail for the scale under con-
sideration here, the limited revisit time of these sensors

is still not sufficient for monitoring the diurnal variation
at any given area. One therefore has to rely on modeling
approaches.

In the present study, we analysed a 3-year time
series of MODIS summer images (from May to
October 2007–2009) acquired over Athens.
Specifically, 415 daytime MODIS-Terra LST maps
and 319 MODIS-Terra and Aqua LST maps were
produced and archived as part of the requirements of
Urban Heat Islands and Urban Thermography project
(21913/08/I-LG) funded by the European Space

Fig. 1 Athens, Greece, with
areas of interest on the map.
The red mark denotes the
location of the National
Observatory of Athens
in Thission

Fig. 2 Sequence of satellite-derived LST maps from
MODIS 1 km spatial resolution images around midnight
local time depicting one of the most intensive heat wave
events of the recent history: a typical LST image of Athens
acquired 1 day before the event started (21 June 2007); b

the night with highest temperatures at the peak of the event
(27 June 2007); and c Parnitha National Park of Greece
destructive wildfire due to high temperatures and strong
winds (28 June 2007) [Data Source: ESA UHI Project
Grant No. 21913/08/I-LG]
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Agency (‘the UHI project’ hereafter; Manunta et al.
2010b; http://www.urbanheatisland.info). The original
MODIS data used in the present study were procured
at no charge from the Warehouse Inventory Search
Tool (WIST web site) repository. MODIS is a key
instrument on board the Terra (EOS AM) and Aqua
(EOS PM) satellites. Terra’s orbit around the Earth is
timed so that it passes from north to south across the
equator in the morning, while Aqua passes south to
north over the equator in the afternoon. MODIS has 20
infrared bands; however, two of them are suitable for
LST retrievals, namely, bands 31 and 32 at 11.0 and
12.0 μm, respectively. The spatial resolution of TIR
bands is approximately 1 km at nadir. The production of
LST images is described in Keramitsoglou et al. (2011).
These LST images were subsequently assimilated into
the Urban Climate Model (Urban Climate Model).

Ancillary data

The lateral boundary conditions for the urban cli-
mate model are given by the ECMWF ERA-
Interim dataset (Dee et al. 2011), thereby account-
ing for the large scale temperature and wind field
variations. Down-welling long- and shortwave sur-
face radiation fluxes needed for the urban energy
budget are interpolated from the corresponding
Land Surface Analysis Satellite Applications
Facility datasets (LSA SAF 2010; 2011). These
data are given at the spatial resolution of the
Meteosat Second Generation Spinning Enhanced
Visible and Infrared Imager (SEVIRI) instrument,
typically 4–5 km resolution at the latitude consid-
ered. Land cover information was derived from the
CORINE land cover dataset by the European
Environmental Agency (EEA; www.eea.europa.eu).
More specifically, we derived the fraction of sealed
(urban) surface and the fraction of water content in each
model grid cell from this dataset. The vegetation fraction
was derived from the 10-day syntheses SPOT-
VEGETATION Normalized Difference Vegetation
Index data made available through the VITO
VEGETATION archive (http://free.vgt.vito.be). The
model thereby accounts for the change in vegetation
cover during the course of a summer period.
Terrain elevation data at 1 km resolution were
derived from the US Geological Survey (USGS)
GTOPO 30 dataset, available from the USGS
Earth Resources Observation and Science Center.

Note that all ancillary data needed in the urban
climate modeling approach are freely obtainable.

Census data

Vulnerability of population was estimated at the finest
available level using census block datasets from the
general population census of 2001. This was the most
recent one at the time of methodology development. In
particular, population density and percentage of non-
proper dwellings were the two variables from the
census. A vector file containing the geographic bound-
aries of the census blocks of the study area was
employed to illustrate the data (Fig. 3). The vector
dataset were joined with the population living in the
blocks and the number of non-proper dwellings. These
include sub-standard dwellings made of inexpensive
construction materials without a predetermined design
plan. This information was provided by the Hellenic
Statistical Authority (www.statistics.gr).

In situ data

A ∼20-year time-series of air and dew point tempera-
tures was collected from the Meteorological &
Actinometric Station of the National Observatory of
Athens (NOA), located on the Hill of Nymphs at
Thission area in the centre of Athens (Fig. 1; position,
38° 0.00′ N, 23° 43.48′ E, height above sea level
110 m; operated by the Institute of Environmental
Research and Sustainable Development). A long time
series is necessary to calculate meaningful statistics
for the city under consideration and establish dynamic
thresholds that characterise that particular city (see
Identification and extraction of Hot Days; Table 1).

Methods

Concept

According to the International Organization for
Standardization (ISO 31010), indices can be used for
classifying different risks associated with an activity if
the system is well understood. They permit the inte-
gration of a range of factors which have an impact on
the level of risk into a single numerical score for level
of risk. The inputs are derived from analysis of the
system, or a broad description of the context. This
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requires an adequate understanding of all the sources
of risk, the possible pathways and what might be
affected. Tools such as fault tree analysis, event tree
analysis and general decision analysis can be used to
support the development of risk indices. Once the
system has been defined, scores are developed for
each component in such a way that they can be com-
bined to provide a composite index. Cumulative ef-
fects can be taken into account by adding scores.
Uncertainty can be addressed by sensitivity analysis
and varying scores to find out which parameters are
the most sensitive.

Based on the above understanding, the methodolo-
gy adopted here is illustrated in Fig. 4. MODIS acqui-
sitions in the infrared electromagnetic spectrum
(“Thermal Infrared satellite data”) were processed so
as to derive LST images. These LST instances (two to
three per day) were then assimilated into an urban
climate model (“Urban climate model”), which also
took into account other ancillary data (“Ancillary data”),
to reconstruct the air temperature 3D field for three
summers (2007–2009). The two-dimensional spatial
grid (latitude–longitude) was 1 km, whilst the temporal
step represented hourly intervals. In situ data (“In situ
data”) from a long ground station record (∼20 years)
was used to dynamically define relevant statistical
thresholds, which were then used to extract the hot days

from the 3D air temperature grid (“Identification and
extraction of hot days). Subsequently, heat wave events
were identified, and relevant parameters were calculated,
including their intensity, duration and time lag between
two consecutive events. Artificial intelligence fuzzy logic
was then used to characterise each heat wave event from
mild to extreme (Classification of heat wave events). The
accumulated monthly result was the monthly spatial dis-
tribution of heat wave hazard (“Monthly heat wave risk”).
This information was then convoluted with the spatial
distribution of population vulnerability to heat waves
(“Population vulnerability to heat waves” using census
data presented in “Census data”) to provide the final
product, namely the monthly spatial distribution of heat
risk.

Urban climate model

The air temperatures used for the heat wave risk model
were generated by an urban climate model developed
at VITO (Maiheu et al. 2010). The main criteria for
model selection were: (1) speed, as the model had to
produce long historic time series of urban air temper-
atures for ten European cities and (2) usage of freely
available ancillary data.

The model consisted of two separate components,
namely a surface module that computes spatially

Fig. 3 Indicative subsets of
census data showing the
population near Athens cen-
tre (on the left) and the ratio
of non-proper dwellings
over all residences per cen-
sus block in an agricultural
area (on the right) [Source:
Hellenic Statistical
Authority]

Table 1 1991–2009 Air tem-
perature statistics using ground
measurements in the centre of
Athens, where Tappmax: the max-
imum apparent temperature,
Tmin: minimum air temperature,
p90: 90th percentile, p95: 95th
percentile

Month Tappmax.p90 Tappmax.p95 Tappmax.median Tmin.p90 Tmin.p95

May 30.4 32.0 25.4 20.4 21.2

June 36.6 37.9 31.6 25.2 26.2

July 39.9 41.9 34.9 26.8 27.4

August 39.4 40.7 34.7 26.7 27.7

September 34.1 35.5 29.6 23.2 24.0
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explicit sensible heat fluxes and a second, atmospheric
component which ingests these fluxes as a lower
boundary condition and computes the vertical diffu-
sion and horizontal advection of the air temperature.
The surface model consisted of a two-layer prognostic
force-restore soil temperature model (Garratt 19922).
Here, the soil heat flux was replaced in the urban
environment by the storage heat flux computed by
the objective hysteresis model (OHM; Grimmond
and Oke 2002), taking into account the net radiation
balance at the surface using downwelling radiation
fluxes provided by LandSAF. The relationships given
by Grimmond and Oke (2002) which were based on
the parameterisations by de Bruin and Holtslag (1982)
were used to compute the turbulent sensible and latent
heat fluxes. The surface module uses CORINE land
cover to derive sealed surface fraction and water con-
tent in every grid cell; vegetation fraction is derived
from 10-day SPOT-VEGETATION composites in or-
der to allow for seasonal effects in NDVI.

OHM coefficients were derived based on Grimmond
and Oke (2002), Rigo and Parlow (2007) and Roberts et
al. (2006); however, as they are typically expressed for
material types, it proved rather difficult to specify ap-
propriate values for generic urban environments due to
the large variation of the coefficients in literature.
Therefore, an additional constraint was built into the
model via ensemble data assimilation. In a sequential
Monte Carlo (Doucet et al. 2001) method, the MODIS

LST observations were compared with the model’s
surface temperature fields. The model fields were
subsequently adjusted via importance sampling to
better match with the observed LST retrievals. In
this technique, an ensemble of model states was
generated and propagated in time using the model’s
dynamic equations.

At times when MODIS LST retrievals were avail-
able, weights were assigned to each of the model states,
reflecting the conditional likelihood for that particular
model state given the observation. During the assimila-
tion or analysis step in the procedure, model states were
drawn from the ensemble available at that time, taking
into account the relative likelihoods. A new ensemble of
model states which better reflected the satellite-retrieved
LST patterns was thereby constructed.

The atmospheric module used wind speed and di-
rection as well as air temperature derived from
ECMWF ERA Interim reanalysis as lateral boundary
conditions. A single wind vector and temperature val-
ue was applied to the whole domain on an hourly basis
in order to calculate horizontal advection and vertical
diffusion of the air temperature. The sensible heat
fluxes from the surface module described above were
used as lower boundary conditions. The model was
able to run relatively fast but did not allow local
circulations such as an urban-breeze to develop. It is
important to mention that the air temperature model
does not take into account microscale effects and can

Fig. 4 Conceptual flow-
chart of the methodology
proposed for the calculation
of heat wave risk
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therefore be thought to be representative for the iner-
tial sublayer above a certain blending height in which
the effects of individual roughness elements and street
canyons are aggregated (Oke 2006). A more detailed
description of the air temperature modeling approach
can be found in Maiheu et al. (2010), Manunta et al.
(2010a) and Keramitsoglou et al. (2012).

As the model generated long historic time-series of
urban air temperatures, statistical analyses became
possible. An example of the 90th percentile for the
UHI effect in Athens during June 2007 is shown in
Fig. 5. The map represents for that particular month
the local temperature increment of the urban area
compared with the rural background temperature at
20:00 UTC, roughly corresponding to the time of the
day when the UHI effect is most pronounced. The
UHI intensity was then defined as the air temperature
offset in each pixel with reference to the median of the
air temperature in the rural pixels. Note that both
temperatures were corrected for altitude using the
standard lapse rate of −6.5 K/km. We clearly see the

most extreme urban temperature increments, up to 6 °C
(90th percentile), over the denser urban fabric.

Heat wave hazard and risk

Identification and extraction of hot days

Due to the fact that heat waves are defined relatively to
the usual weather conditions in a given area, there is
no universal definition of a heat wave (EEA 2010),
e.g. in terms of a fixed temperature threshold that has
to be reached for a number of consecutive days.
Nevertheless, suggestions for a generic definition do
exist. In the present work, such a universal definition
was adopted as proposed by the EuroHEAT project
(Improving Public Health Responses to extreme
weather/heat-waves). According to it, a day is
characterised as a ‘hot day’ based on values of maxi-
mum apparent temperature (Tapp) and high night-time
temperatures through minimum temperature (Tmin).
Tapp is a discomfort index based on air (AT) and dew

 24’  30’  36’  42’  48’  54’   24oE 
 42’ 

 48’ 

 54’ 

  38oN 

  6’ 

 12’ 

Longitude [°E]
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e 
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Fig. 5 Urban climate model-
ing result for Athens UHI ef-
fect during June 2007 based
on the 90th percentile. The
colours represent the UHI in-
tensity in degrees Centigrade
with reference to the median
temperature over all rural
pixels for that particular
month
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point (Tdew) temperatures, thus accounting for the
physiological impact of heat on health. It is calculated
using the following formula:

Tapp ¼ �2:653þ 0:994AT þ 0:0153Tdew
2 ð1Þ

Hot days were then defined (D’Ippoliti et al. 2010)
as days with either (1) Tappmax exceeding the 90th
percentile of the monthly distribution or (2) days in
which Tmin exceeds the 90th percentile and Tappmax

exceeds the median monthly value. In addition, we
further adopted empirical rules for Athens, where a hot
day is defined as a day during which the air tempera-
ture exceeded 37 °C for more than 3 h (Hellenic
National Meteorological Service, HNMS, personal
communication; Founda and Giannakopoulos 2009;
Metaxas and Kallos 1980).

In order to calculate the above-mentioned dynamic
thresholds necessary for the identification of hot days,
a 20-year time series from NOA station at Thission
was used. The climatological values that were used for
the extraction of hot days and the estimation of heat
wave intensity (see next in Classification of heat wave
events) are shown in Table 1.

Following the extraction of hot days, the identifi-
cation of heat waves was straightforward, as a se-
quence of two or more hot days. In the case that a
series of hot days was interrupted by one non-hot day,
then this was treated as one heat wave event.

Classification of heat wave events

One of the innovations of this analysis is the classifi-
cation of the severity of the heat wave event resem-
bling common perception based on several characteristics
of the event using artificial intelligence fuzzy logic.
Fuzzy logic theory has emerged over the last years as a
useful tool for modeling processes which are too complex
for conventional quantitative computing techniques to
solve or when the available information from the process
is qualitative, inexact or uncertain. Zadeh (1965) intro-
duced the fuzzy logic theory, which only recently became
a popular technique for developing sophisticated models
and systems with numerous applications. The reason for
this rapid development of fuzzy systems stems from some
unique and powerful characteristics of fuzzy logic. It
addresses qualitative information perfectly as it resembles
the way humans make inferences and take decisions in a
‘natural’ way; ‘natural’ generally means in the language

of the expert or the user. It fills an important gap in system
design methods, which is between purely mathematical
approaches (e.g. system design) and purely logic-based
approaches (e.g. expert systems). While other approaches
require accurate equations to model real-world behaviors,
fuzzy design attempts to accommodate the ambi-
guities of real-world human language and logic. It
provides an intuitive method for describing sys-
tems in human terms and automates the conversion
of those system specifications into effective models. The
fuzzy logic was used in this study to build a model for
the classification of a heat wave event from mild to
extreme based on important influencing factors. The
Mamdani model was selected (Mamdani 1974), which
describes process states by means of linguistic variables
and uses these variables as inputs to control rules. The
development of the system was completed in three
steps:

The first step was the selection of input parameters
to be included in the knowledge base of the expert
system, a repository of human knowledge drawn from
experience, published work or communication with
experts. This was made so that all the important
influencing factors were considered, while maintaining
the system at a reasonable size. The parameters consid-
ered are presented below and were based on D’Ippoliti
et al. (2010).

& Intensity: Heat wave intensity can be estimated in
different ways, one approach being to consider the
maximum air temperature, as a straightforward
attribute routinely measured in every city and di-
rectly appreciated by non-experts. For Athens, we
selected the ‘psychological’ air temperature
threshold of 40 °C, above which almost all activ-
ities paralyse (Founda and Giannakopoulos 2009;
HNMS personal communication). However, air
temperature is clearly city-specific, therefore a
more general statistical threshold was used as well,
namely the deviation of Tappmax from the monthly
Tappmax.p95 calculated using the 20-year station
data (see Table 1). This attribute is of course more
complicated to calculate, needs a long past record,
but it is independent of the city. These two inten-
sity attributes refer to the maximum daytime air
temperature. It is noted that this threshold differs
from the Hot Day definition one of Tappmax.p90, as
it addresses ‘how hot is a hot day’. Additionally,
recent publications provided evidence that it is
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actually unusually high night temperatures that
have the most significant health impact (Dousset
et al. 2011); therefore, we also considered the
deviation of the Tmin from the Tmin.p95 as a mea-
sure of the heat wave intensity (see Table 1).

& Duration: Heat wave duration is the number of
consecutive hot days. D’Ippoliti et al. (2010)
showed results that give evidence for duration to
play a more important role than intensity. Heat
waves of long duration had the greatest impact
on mortality and resulted in 1.5 to 3 times higher
daily mortality than for other heat waves.

& Timing: It refers to the time lag since the previous
event. The first heat wave of the season (starting
on May 1st) is considered separately. Following
that, any event occurring 3 days or less after a
previous heat wave is considered to have an accu-
mulative effect on the population.

The second step was the development of the data-
base, where fuzzy sets were defined for all input param-
eters, as well as for the only output variable, namely, the
severity of the heat wave event. The fuzzy sets
appointed to each input or output variable are as follows:

& Input:

– Intensity: Three triangular fuzzy sets, namely
‘Low’, ‘Medium’ and ‘High’ were defined on
the input space which measured the maximum
air temperature and compared it with the ‘psy-
chological’ threshold of 40 °C to characterise
the intensity. The example shown in Fig. 6a
illustrates that using fuzzy sets seems more
appropriate than the use of crisp thresholds.
The linguistic variable ‘Intensity’ consisted of
the terms ‘Low’, ‘Medium’ and ‘High’. Other
parameters (e.g. Tappmax, Tmin) were also consid-
ered using the same concept.

– Duration: The variable ‘Duration’ was described
by three terms, namely ‘Short’, ‘Long’ and
‘Extra Long’ depicted by two triangular and
one trapezoidal function, as presented in Fig. 6b.

– Timing: In this case, two fuzzy sets (terms) were
defined on the input space. One triangular named
‘High effect’ and one trapezoidal named ‘No
effect’.

& Output: heat wave hazard: The only output vari-
able was the characterisation (classification) of the

severity of the heat wave event, and it was mea-
sured from 0 to 5. The higher the number, the more
extreme the event. Simple 5- or 6-integer category
classifications exist for a number of hazards. These
classifications can help the general public to un-
derstand the magnitude of the event. Five triangu-
lar fuzzy sets were defined on the above-
mentioned output space, namely ‘Mild’, ‘Mild to

Fig. 6 Fuzzy sets defined for a input value “Intensity based on
the psychological threshold of 40 °C”, b “Duration”, c output
value heat wave hazard (severity)
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moderate’, ‘Moderate’, ‘Moderate to extreme’ and
‘Extreme’. This is appropriately depicted in Fig. 6c.

The third step consisted of the development of the
rule base. During this step, the experts developed a
number of fuzzy rules, based on their intuition and
experience. The rules connected the input variables with
the output variable (heat wave hazard) and were based
on the fuzzy state description that was obtained by the
definition of the linguistic variables. The number of
linguistic variables and the number of terms of each
variable determined the number of rules. They were
constructed in simple language terms and can be under-
stood at a common sense level. At the same time, these
rules yield specific and repeatable (same inputs gives
same output) results. An example is given below:

If a heat wave event is very long and the inten-
sity is high and it happened soon after another
heat wave, then the event is characterised as
EXTREME.

The above three-step procedure defined the knowl-
edge base of the fuzzy system. When the fuzzy model
was to be applied to the set of input parameter values
(crisp input values, e.g. ATmax is 43 °C, duration is
5 days and the events starts 2 days after the previous
heat wave), the information flowed through the
fuzzification–inference–defuzzification processes in
order to classify the heat wave hazard. First, the
fuzzification process transformed the crisp values into
grades of membership for the participating fuzzy sets.
Subsequently, fuzzy inference process combined the
facts obtained from the fuzzification with the rule base
and conducted the fuzzy reasoning process. Finally,
defuzzification computed the final heat wave classifi-
cation. The centroid defuzzification method (Driankov
et al. 1993) was used, where the crisp value of the
output variable was computed by finding the centre of
area below the combined membership function.

Population vulnerability to heat waves

Age has been found (Basu 2009) to modify the asso-
ciation between ambient temperature and mortality.
The elderly and children have been reported to be at
greater risk from mortality following heat waves, as
well as ambient temperature. Nevertheless, different
studies have given the age thresholds of 75 years, or

65 years of age, children under 15 years, 5 years and
younger, and infants 1 year of age and under to be at
increased risk for mortality from high ambient temper-
ature (see review in Basu 2009). As the number of
infants, young children and the elderly is highly cor-
related with population density, a variable routinely
provided from census data in cities, we took into
consideration the latter to estimate population vulner-
ability. Another independent variable is the percentage
of non-proper dwellings made of inexpensive mate-
rials without heat insulation.

The census datasets corresponding to population and
housing were firstly joined with the vector census blocks
dataset. Subsequently, they were mapped appropriately
to the same 1-km grid as the hazard output. A fuzzy
model was then developed for mapping the population
vulnerability to heat waves taking into consideration two
independent variables: (1) population density and (2)
non-proper houses. The fuzzy sets appointed to each
input or output variable are as follows:

& Input:

– Population density: Three triangular fuzzy sets,
namely ‘Sparse’, ‘Medium’ and ‘Dense’ were
defined on the input space which measures the
population density depicted by two triangular
and one trapezoidal function. ‘Sparse’ is a grid
point corresponding to population density less
than 150 inhabitants per km2, ‘Medium’ from
100–1,500 inhabitants/km2 and ‘Dense’ above
1,000 inhabitants /km2.

– Ratio of non-proper dwellings over total
number of residences: Essentially, this
characterises the grid point as ‘proper’ if the ratio
is below 0.5, i.e. more than half of the residences
are proper.

& Output: heat wave population vulnerability: The
only output variable was the characterisation of the
population vulnerability to heat wave events, and
it was measured from 0 to 20. The higher the
number, the more vulnerable population is. Four
triangular fuzzy sets were defined, namely
‘Negligible’, ‘Low’, ‘Medium’ and ‘High’.

The resultant 1-km resolution vulnerability map for
the case study area is presented in Fig. 7. Apart from
the evident densely built-up centre, the other settle-
ments around Athens as well as the coastal settlements
are shown.
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Monthly heat wave risk

In order to calculate the heat wave hazard of a partic-
ular month, the event scores (see “Classification of
heat wave events”) for that month were added, yield-
ing the monthly spatial distribution of heat wave haz-
ard. This information was then multiplied by the
spatial distribution of population vulnerability to heat
waves to provide the final product, namely the month-
ly spatial distribution of heat risk.

Application

Results

The methodology presented in “Methods” was applied
to three summers (2007–2009). The methodology and
heat wave event classification was then applied to every
grid point of the 3D air temperature field ‘latitude–
longitude-time’ (grid step of ‘1×1 km×1 h’). Themonth-
ly hazard and risk maps of the summer months (June,
July, August) from 2007–2009 are shown in Fig. 8.

Figure 8 shows the distribution of the heat wave
hazard within the study area exhibiting remarkable

differences spatially mostly evident in the hot summer
months of 2007. In the June 2007 map, the area of
higher severity is more extended. The July 2007 map
shows overall lower severity values than June. Recent
investigation in the cause of the two exceptional
events of June and July 2007 (Theoharatos et al.
2010) has provided evidence that the two heat waves
had distinctly different thermo-hygrometric character-
istics at the surface level, the event of June being hot
and damp whilst the event of July hot and dry.
Evidently, the hot and wet characteristics of the June
event led to higher values of Tapp (see Eq. 1). The
pattern of hazard shows higher values in the central
low-altitude municipalities in the Attica basin. The
mountains surrounding the basin are shown as
expected as low-hazard areas, due to the lower air
temperatures.

Figure 9 shows the corresponding risk maps for the
same months. A very interesting result is that the
somehow familiar pattern of temperature (see also
Fig. 2) is altered once the population vulnerability is
convoluted to the hazard maps. The resulting risk
maps show that the City of Athens and the areas
around the centre with high population density are
exposed to much higher risk than the adjacent

Fig. 7 Population vulnera-
bility to heat waves at 1 km
spatial resolution. The Na-
tional Observatory of Ath-
ens station at Thissio from
where we used the 20-year
time series of meteorologi-
cal data (In situ data) is
marked on the map
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municipalities due to their high population vulnerabil-
ity. The settlements around Athens are identifiable in
the warmest months of June and July 2007 as areas of
slightly increased risk. This pattern is evident due to
the corresponding population. Another interesting fea-
ture at this scale is the relatively high values of risk at
Elefsina-Aspropyrgos due to increased number of
non-proper houses (Roma dwellings). The risk values
are higher in June than in July.

At this stage, it is interesting to cite the health
effects reported for the same period (published in
Theoharatos et al. 2010). During the June event,
NHOC reported 146 emergency department visits for
heat exhaustion and heat stroke in Attica region and
six deaths from excessive heat exposure. In July, there
were a limited number of patients affected by the heat
wave (46 patients and 1 death). The health data are not
location-specific and therefore cannot be used for
quantitative validation of our approach; nevertheless,
they provide evidence that our overall result about the
risk in June being higher than that of July is correct.

Validity of model’s individual components

The accuracy of the heat wave risk and hazard maps in
terms of spatial distribution can only be judged by
taking into account the validity of the individual com-
ponents used for the model and also by testing the fuzzy
model itself in a number of ways. As far as the input
components are concerned, the output of the urban
climate model has been extensively validated within
the framework of UHI project. The results for Athens
using 15 months of hourly data from ten meteorological
stations show that the model overestimated ground-
based temperatures by an average of 1 °C (standard
deviation 2 °C), whilst the mean temporal correlation
coefficient for the entire validation dataset was equal to
0.911 (Manunta et al. 2011). In Keramitsoglou et al.
(2012), results are presented of a validation using data
from the THERMOPOLIS campaign (July 17, 2009–
August 2, 2009; Daglis et al. 2010) using 26 monitoring
sites spread out over the city. It was shown than the
model was able to explain 85 % of the spatial variance

Fig. 8 Overview of heat wave hazard maps for Athens Greater Area for the summer months of 2007–2009 (6: June, 7: July, 8: August)

8252 Environ Monit Assess (2013) 185:8239–8258



of the average air temperatures measured during the
campaign. During this period, the RMS difference be-
tween the average modeled and observed air tempera-
ture was 0.55 °C.

Socio-economic census data are considered accu-
rate; however, since they are updated every decade,
they are potentially up to 9 years out-of-date. For
a growing city, this is an important factor of
underestimating the population vulnerability. In addi-
tion, the fuzzy model has been extensively checked
and fine-tuned using a long record of NOA station
data. The model scored 100 % in detecting hot days
and heat waves. The ultimate validation exercise is to
compare the output hazard and risk maps against spa-
tially distributed morbidity and mortality data; at the
stage of publication and to the knowledge of the
authors, such dataset is not available for Athens.

The system response was exhaustively tested re-
garding its ability to identify heat wave events and
calculate correctly its attributes (duration, intensity,
starting day, time lag between events) on the 20-year

series from NOA station. The two heat waves of June
and July 2007 were appropriately identified and clas-
sified as ‘extreme’ (hazard score: 4.7/5.0). A subset of
the results is presented in Table 2.

Sensitivity analysis

There are often considerable uncertainties associated
with the analysis of risk (ISO 31010). An understand-
ing of uncertainties is necessary to interpret and com-
municate risk analysis results effectively. An area
closely related to uncertainties is sensitivity analysis.
Sensitivity analysis involves the determination of the
size and significance of the magnitude of changes in
the risk estimates with respect to changes in individual
input parameters. It is used to identify those data
which need to be accurate, and those which are less
sensitive and hence have less effect upon overall ac-
curacy. Sources of uncertainty have to be identified
whilst parameters to which the analysis is sensitive
and the degree of sensitivity must be stated.

Fig. 9 Overview of heat wave risk maps for Athens Greater Area for the summer months of 2007–2009 (6: June, 7: July, 8: August)
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Four parameters were altered (increased and de-
creased) to investigate the sensitivity of the hazard mod-
el: (1) the empirical temperature threshold of 37 °C for
Athens, for identifying ‘hot days’(Identification and
extraction of hot days), (2) the ‘psychological’ air tem-
perature threshold of 40 °C, which determines the heat
wave intensity, (3) the air temperature field from the
urban climate model (Urban Climate Model) which
carries an uncertainty of approximately 1±2 °C
(Manunta et al. 2011), and (4) the relative humidity field
with an estimated 10 % uncertainty. The experiments
were carried out for the warmest month in the dataset,
namely June 2007. During the sensitivity analysis, one
factor at a time was changed to see what effect this
produces on the output heat wave hazard map. We
started from the nominal values for the four parameters;
then one input parameter was adjusted keeping others at
their nominal value; subsequently, the value is returned,
and the second parameter is deviated.

The sensitivity analysis results are shown in Fig. 10.
The central map is the one with nominal values of (1) /
(2) / (3) / (4), i.e. 37/40/AT/RH. It is noted that AT and
RH are the fields for the whole study area. Red font
denotes the deviation from the nominal values of the
central panel. To assist readers, blue arrows mark the
adjustment in the temperature threshold used in the
definition of hot days (±1 °C), the red ones the adjust-
ment in the ‘psychological’ threshold (±1 °C), the green
ones the uncertainty in AT field (1±2 °C) and finally the
purple arrows show the deviation in RH field (±10 %).
The analysis revealed the following interesting findings:

& The empirical temperature threshold for the iden-
tification of hot days is critical to define the pat-
terns of the areas affected by a heat wave within
the greater study area. Lowering the threshold

results in larger areas being affected (upper left
panel of Fig. 10). In the centre, the hazard level
is unchanged (average hazard is increased by 0.2
out of 5, i.e. 4.6 %) while in the whole image the
average hazard is increased by 0.4, i.e. 8 %, there-
fore one has to be careful as to which threshold is
to be used for a specific city as a low value will
result in false alarms. Increasing the threshold has
less effect on the patterns (lower right panel) and
average city centre and whole area values; howev-
er, it lowers the hazard of high altitude areas.

& The ‘psychological’ air temperature threshold of
40 °C, which determines the heat wave intensity, is
a parameter entering the fuzzy model to determine
the intensity of an event. It affects less the distri-
bution of heat wave hazard compared with the
empirical temperature threshold, making the fuzzy
model robust in the characterisation of severity of
heat waves. Increasing the threshold from 40 to
41 °C (upper right panel) gives larger areas a lower
severity, yet in relative change numbers this is
negligible (of the order of 3 %). The city centre
is not much affected in 1-degree fluctuations of the
threshold (less than 1 %).

& The air temperature field was not deviated sym-
metrically from its nominal value in order to take
into account a systematic bias of 1 °C (Manunta et
al. 2011) against in situ measurements. The resul-
tant maps (vertical middle panels) on heat wave
severity are indeed very sensitive to the air tem-
perature field, as expected. In particular, increasing
the AT by 1 °C results in a 4.6 % increase in
hazard, whilst decreasing it by 3 °C decreases the
hazard by 30 %. This was by far the feature to
which the model is most sensitive.

& Finally, the RH field can alter the heat wave hazard
patterns as it is related to the dew point temperature
and the apparent temperature thus accounting for the
physiological impact of heat on health (see Eq. 1).
The patterns of high hazard are altered (horizontal
middle panels): A decrease of 10 % in RH results in
a decrease of hazard in the city centre (remaining
high along the western coastline) and the increase of
10 % results in more areas being under high hazard.
It is important to note that neither of these changes is
more than 1.5 % when the whole area is considered.

Given the sensitivity of the approach to the air
temperature, it is fair to state that having accurate

Table 2 A subset of the model output that shows that it iden-
tified and appropriately characterised the June and July 2007
heat wave events as extreme in the 1991–2009 NOA station
database

Start
date

Tappmax-
Tappmax.p95

Tmax Duration
(days)

Hazard
score
(out of
5.0)

Heat wave
classification

20 June
2007

11.19 43.8 10 4.7 Extreme

19 July
2007

7.61 41.2 9 4.7 Extreme
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and reliable air temperature estimates is very impor-
tant. In Validity of model’s individual components, we
already discussed in more details the validation of the
urban climate model. However, it is quite important to
be aware of the difficulties in validation of urban air
temperatures (Oke 2006) due to microscale effects,
especially when comparing in situ measurements
against 1×1-km2 grid values.

Conclusions

Studies of past events in terms of distribution and as-
sessment of risk are important tools to support decision
makers, stakeholders and interested parties to agree on
the preventative measures to take and to prepare in ways
to avoid the immediate heat wave consequences, most
notably in citizens’ health as well as energy consump-
tion of buildings for air-conditioning purposes. This
article introduced a novel approach for mapping at

intra-urban scale the heat wave hazard and risk based
on a fuzzy logic concept. The methodology utilised a
combination of state-of-the-art technologies, such as sat-
ellite remote sensing, urban climate modeling, artificial
intelligence and advanced computing to produce monthly
hazard and risk maps of past years. These maps show the
hazard severity and the spatial distribution of risk within a
city agglomeration and prove that there is a strong poten-
tial in the analysis for risk zoning.

The importance of the findings of this article is two-
fold: First, they give spatially distributed information on
the heat wave severity and risk experienced in specific
areas in Athens, Greece, during two severe events. This
can be useful for targeted prevention measures (short-
term planning) or even UHI mitigation planning at city
level (long-term planning). In addition, the results are
useful to energy providers. Secondly, the approach shown
here offers a repeatable methodology that can be
customised for other cities. The methodology does not
need expensive or proprietary data to be applied.

Fig. 10 Sensitivity analysis of the heat wave hazard model. The
central panel represents the nominal values for June 2007. Blue
arrows mark the adjustment in the temperature threshold used in
the definition of hot days (±1 °C), the red ones the adjustment in

the ‘psychological’ threshold (±1 °C), the green ones the uncer-
tainty in AT field (1±2 °C) and finally the purple arrows show
the deviation in RH field (±10 %). Modifications in the nominal
values are shown with red fonts
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Following Meehl and Tibaldi (2004) results, priority
should be given to application to areas already experienc-
ing strong heat waves (e.g. southwest, midwest and south-
east United States and the Mediterranean region) but also
to other areas (e.g. northwest United States, France,
Germany and the Balkans) where increases of heat wave
intensity could have more serious impacts because these
areas are not currently as well adapted to heat waves.

As extreme heat events continue to cause preventable
human mortality, approaches such as the classification
scheme proposed in this study will be adopted as a
foundation to understanding heat wave hazard and risk
spatially for the purposes of saving lives and reducing
economic losses. In collaboration with Civil Protection
authorities, city planners and/or energy providers a major
future task lies in the application to other cities and the
downscaling to census block level. The latter holds espe-
cially for the air temperature modeling approach in which
currently no microclimatic effects are taken into account.
The combination, however, with producing long historic
time series of urban air temperature fields makes this task
rather challenging from a computational point of view.

Acknowledgements The authors thank Dr. Dimitra Founda
from the Institute of Environmental Research and Sustainable
Development of NOA for providing the station dataset and Ms.
Maria Mihelaraki from the Hellenic National Meteorological Ser-
vice for her contribution regarding heat waves in Athens. Census
block data were provided by the Hellenic Statistical Authority
(www.statistics.gr). The work was funded by the European Space
Agency project ‘Urban Heat Islands and Urban Thermography’
(www.urbanheatisland.info; Grant no. 21913/08/I-LG). The au-
thors wish to acknowledge the input from the anonymous re-
viewers, which substantially improved the manuscript.

References

Armstrong, B. G., Chalabi, Z., Fenn, B., Hajat, S., Kovats, S.,
Milojevic, A., et al. (2011). Association of mortality with
high temperatures in a temperate climate: England and
Wales. Journal of Epidemiology and Community Health,
65, 340–345.

Basu, R. (2009). High ambient temperature and mortality: A
review of epidemiologic studies from 2001 to 2008,
Review. Environmental Health, 8, 40.

Ca, V. T., Ashie, Y., & Asaeda, T. (2002). A k-ε turbulence closure
model for the atmospheric boundary layer including urban
canopy. Boundary-Layer Meteorol, 102, 459–490.

Choi, J., Chung, U., & Yun, J. I. (2003). Urban-effect correction
to improve accuracy of spatially interpolated temperature
estimates in Korea. Journal of Applied Meteorology, 42,
1711–1719.

Council of the European Union (2009). Council Conclusions on
a community framework on disaster prevention within the
EU, 2979th JUSTICE and HOME AFFAIRS Council
meeting. Brussels, 30 November 2009.

Daglis, I.A., S. Rapsomanikis, K. Kourtidis, D. Melas, A.
Papayannis, I. Keramitsoglou, T. Giannaros, V. Amiridis,
G. Petropoulos, A. Georgoulias, J.-A. Sobrino, P. Manunta,
J. Gröbner, M. Paganini, and R. Bianchi, “Results of the
DUE Thermopolis campaign with regard to the Urban Heat
Island (UHI) effect in Athens,” in Proc. ESA Living Planet
Symposium, ESA SP-686, European Space Agency (2010).

de Bruin, H. A. R., & Holtslag, A. A. M. (1982). A simple
parameterization of surface fluxes of sensible and latent heat
during daytime compared with the Penman–Monteith con-
cept. Journal Applications Meteorological, 21, 1610–1621.

De Ridder, K. (2006). Testing Brutsaert’s temperature roughness
parameterization for representing urban surfaces in atmo-
spheric models. Geology-Physics Research Letters, 30,
L13403. doi:10.1029/2006GL026572.

De Ridder, K., & Schayes, G. (1997). The IAGL land surface
model. Journal of Applied Meteorology, 36, 167–182.

Dee, D. P., et al. (2011). The ERA-Interim reanalysis: Configuration
and performance of the data assimilation system. Quarterly
Journal of the Royal Meteorological Society, 137, 553–597.

D’Ippoliti, D., et al. (2010). The impact of heat waves on mortality
in 9 European cities: Results from the EuroHEAT project.
Environmental Health: A Global Access Science Source, 9, 37.

Doucet, A., Freitas, N. D., & Gordon N. (2001). Sequential
Monte Carlo methods in practice. Birkhauser, 2001.

Dousset, B., Gourmelon, F., Laaidi, K., Zeghnoun, A., Giraudet,
E., Bretin, P., et al. (2011). Satellite monitoring of summer
heat waves in the Paris metropolitan area. International
Journal of Climatology, 31, 313–323. doi:10.1002/joc.2222.

Driankov, D., Hellendoorn, H., & Reinfrank, M. (1993). An
introduction to fuzzy control. Berlin: Springer-Verlag.

Dupont, S., & Mestayer, P. (2006). Parameterization of the
urban energy budget with the submesoscale soil model.
Journal of Applied Meteorology and Climatology, 45,
1744–1765.

Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A.,
Karl, T. R., & Mearns, L. O. (2000). Climate extremes:
Observations, modeling and impacts (review). Science,
289, 2068–2074.

EC European Commission. (2010). Commission staff working
paper: Risk assessment and mapping guidelines for disas-
ter management. Brussels: SEC(2010) 1626 final.

EEA European Environment Agency. (2010). Mapping the im-
pacts of natural hazards and technological accidents in
Europe: An overview of the last decade. Technical report
No 13/2010 (pp. 1725–2237). Copenhagen: ISSN.

Founda, D., & Giannakopoulos, C. (2009). The exceptionally
hot summer of 2007 in Athens, Greece—A typical summer
in the future climate? Global and Planetary Change, 67,
227–236.

Gallo, K., & Owen, T. (1999). Satellite-based adjustments for
the Urban Heat Island temperature bias. Journal of Applied
Meteorology, 38, 806–813.

Garratt J.R. (1992). The atmospheric boundary layer,
Cambridge University Press, Cambridge (1992).

Grimmond, C. S. B., & Oke, T. R. (2002). Turbulent heat fluxes
in urban areas: Observations and a local-scale Urban

8256 Environ Monit Assess (2013) 185:8239–8258

http://www.statistics.gr
http://www.urbanheatisland.info
http://dx.doi.org/10.1029/2006GL026572
http://dx.doi.org/10.1002/joc.2222


Meteorological Parameterization Scheme (LUMPS).
Journal Applied Meteorology, 41, 792–810.

Harlan, S. L., Brazel, A. J., Prashad, L., Stefanov, W. L., &
Larson, L. (2006). Neighborhood microclimates and vul-
nerability to heat stress. Social Science & Medicine, 63,
2847–2863.

Henschel, A., Burton, L. L., Margolis, L., & Smith, J. E. (1969).
An analysis of the heat deaths in St. Louis during July,
1966. American Journal of Public Health, 59, 2232–2242.

IPCC Intergovernmental Panel on Climate Change (2007).
Contribution of Working Groups I, II and III to the
Fourth Assessment Report of the Intergovernmental Panel
on Climate Change, Core Writing Team, Pachauri, R.K.
and Reisinger, A. (Eds.), IPCC, Geneva, Switzerland. pp
104 (http://www.ipcc.ch/publications_and_data/ar4/syr/en/
contents.html).

ISO International Organization for Standardization 31010:2009
Risk management—Principles and guidelines http://
www.iso.org/iso/catalogue_detail?csnumber=43170.

Jarvis, C. H., & Stuart, N. (2001a). A comparison among
strategies for interpolating maximum and minimum daily
air temperatures. Part I: The selection of “guiding” topo-
graphic and land cover variables. Journal of Applied
Meteorology, 40, 1060–1074.

Jarvis, C. H., & Stuart, N. (2001b). A comparison among
strategies for interpolating maximum and minimum daily
air temperatures. Part II: The interaction between number
of guiding variables and the type of interpolation method.
Journal of Applied Meteorology, 40, 1075–1084.

Johnson, D. P., & Wilson, J. S. (2009). The socio-spatial dy-
namics of extreme urban heat events: The case of heat-
related deaths in Philadelphia. Applied Geography, 29,
419–434. doi:10.1016/j.apgeog.2008.11.004.

Katsouyanni, K., Trichopoulos, D., Zavitsanos, X., & Touloumi,
G. (1988). The 1987 Athens heatwave. Lancet, 2, 573.

Keramitsoglou, I., Daglis, I. A., Amiridis, V., Chrysoulakis, N.,
Ceriola, G., Manunta, P., et al. (2012). Evaluation of
satellite-derived products for the characterization of the
urban thermal environment. Journal of Applied Remote
SensingSpecial Issue: Advances in Remote Sensing for
Monitoring Global Environmental Changes, 6, 061704.

Keramitsoglou, I., Kiranoudis, C. T., Ceriola, G., Weng, Q., &
Rajasekard, U. (2011). Identification and analysis of urban
surface temperature patterns in Greater Athens, Greece,
using MODIS imagery. Remote Sensing of Environment,
115(3080–3090), 2011.

Kusaka, H., Kondo, H., Kikegawa, Y., & Kimura, F. (2001). A
simple single-layer urban canopy model for atmospheric
models: Comparison with multi-layer and SLAB models.
Boundary-Layer Meteorol., 101, 329–358.

Laaidi, K., et al. (2011). The impact of heat islands on mortality
in Paris during the August 2003 heatwave. Environ Health
Perspect, 120, 2. doi:10.1289/ehp.1103532.

LSA SAF (2010), Down-welling longwave flux (DSLF) product
user manual, Issue 3.3, Sept. 2010 (Available on http://
landsaf.meteo.pt).

LSA SAF (2011), Down-welling surface shortwave flux (DSSF)
product user manual, Issue 2.6v2, July 2011 (Available on
http://landsaf.meteo.pt).

Maiheu, B., Ridder, K. D., Dousset, B., Manuta, P., Ceriola, G.,
Viel, M., Daglis, I. A., et al. (2010). Modelling air

temperature via assimilation of satellite derived surface
temperature within the Urban Heat Island Project. In
EARSel Workshop Proceedings of the Joint SIG
Workshop Urban–3D–Radar–Thermal Remote Sensing
and Developing Countries, 162–181.

Mamdani, E. H. (1974). Application of fuzzy algorithms for simple
dynamic plants. Proceedings of IEE, 121(12), 1585–1588.

Manunta et al. (2010a). Design justification file v.4, ESA pro-
ject: “Urban Heat Island and thermography”—Contract
number 21913/08/I-LG.

Manunta, P., Ceriola, G., Daglis, I. A., de Ridder, K., Giannaros,
T., Keramitsoglou et al. (2010b). Urban Heat Islands and
urban thermography. In Proc. ESA Living Planet
Symposium, ESA SP-686, European Space Agency.

Manunta et al. (2011). Product validation report v.3, ESA Project:
“Urban Heat Island and thermography”—Contract number
21913/08/I-LG.

Martilli, A., Clappier, A., & Rotach, M. W. (2002). An urban
surface exchange parameterisation for mesoscale models.
Boundary-Layer Meteorol., 104, 261–304.

Masson, V. (2000). A physically-based scheme for the urban
energy budget in atmospheric models’. Boundary-Layer
Meteorol., 98, 357–397.

McMichael, A. J., Wilkinson, P., Kovats, R. S., Pattenden,
S., Hajat, S., Armstrong, B., et al. (2008). International
study of temperature, heat and urban mortality: The
‘ISOTHURM’ project. International Journal of
Epidemiology, 37, 1121–1131.

Meehl, G. A., & Tibaldi, C. (2004). More intense, more fre-
quent, and longer lasting heat waves in the 21st century.
Science, 305, 994–997.

Metaxas, D. A., & Kallos, G. (1980). Heat waves from a synoptic
point of view. Rivista di Meteorologia Aeronautica JL, 2–3,
107–119.

Oke, T. R., Johnson, D. G., Steyn, D. G., & Watson, I. D.
(1991). Simulation of surface urban heat island under ideal
conditions at night—Part 2: Diagnosis and causation.
Boundary Layer Meteorology, 56, 339–358.

Oke, T. R. (2006). Initial guidance to obtain representative
meteorological observations at urban sites. WMO
Instruments and Observing Methods, Report No 81,
WMO/TD-No. 1250 (Available at http://www.wmo.int/
pages/prog/www/IMOP/publications/IOM-81/IOM-81-
UrbanMetObs.pdf).

Patz, J. A., Campbell-Lendrum, D., Holloway, T., & Foley, J. A.
(2005). Impact of regional climate change on human
health. Nature, 438, 310–317.

Rigo, G., & Parlow, E. (2007). Modelling the ground heat flux
of an urban area using remote sensing data. Theoretical
and Applied Climatology, 90, 185–199.

Roberts, S., Oke, T. R., Grimmond, C. S. B., & Voogt, J. (2006).
Tests of four methods to estimate urban heat storage in
central Marseille. Journal of Applied Meteorology and
Climatology, 45, 1766–1781.

Ruddell, D.M., Harlan, S.L., Grossman-Clarke, S., &
Buyantuyev, A. (2010). Risk and exposure to extreme heat
in microclimates of Phoenix, AZ. In Geospatial techniques
in urban hazard and disaster analysis, P.S. Showalter, Y.
Lu (eds.), Geotechnologies and the environment 2, doi
10.1007/978-90-481-2238-7_9, Springer Science+
Business Media B.V. 2010.

Environ Monit Assess (2013) 185:8239–8258 8257

http://www.ipcc.ch/publications_and_data/ar4/syr/en/contents.html
http://www.ipcc.ch/publications_and_data/ar4/syr/en/contents.html
http://www.iso.org/iso/catalogue_detail?csnumber=43170
http://www.iso.org/iso/catalogue_detail?csnumber=43170
http://dx.doi.org/10.1016/j.apgeog.2008.11.004
http://dx.doi.org/10.1289/ehp.1103532
http://landsaf.meteo.pt/
http://landsaf.meteo.pt/
http://landsaf.meteo.pt/
http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-81/IOM-81-UrbanMetObs.pdf
http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-81/IOM-81-UrbanMetObs.pdf
http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-81/IOM-81-UrbanMetObs.pdf
http://dx.doi.org/10.1007/978-90-481-2238-7_9


Schuman, S. H. (1972). Patterns of urban heat-wave deaths and
implications for prevention: Data from New York and St.
Louis during July 1996. Environmental Researc, h, 5, 59–
75.

Semenza, J. C., McCullough, J. E., Flanders, W. D.,
McGeehin, M. A., & Lumpkin, J. R. (1999). Excess
hospital admissions during the July 1995 heat wave in
Chicago. American Journal of Preventive Medicine,
16(4), 269–277.

Shamrock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker,
D. M., Wang, W., Powers, J. G., et al. (2005). A description
of the advanced research WRF Version 2. NCARTechnical
Note.

Smoyer, K. (1998). Putting risk in its place: Methodological
considerations for investigating extreme event health risk.
Social Science & Medicine, 47, 1809–1824.

Theoharatos, G., Pantavou, K., Mavrakis, A., Spanou, A.,
Katavoutas, G., Efstathiou, P., et al. (2010). Heat waves
observed in 2007 in Athens, Greece: Synoptic conditions,
bioclimatological assessment, air quality levels and health
effects. Environmental Research, 110(2), 152–161.

WMO World Meteorological Organization (2008). Heat–health
action plans, edited by Franziska Matthies, Graham Bickler,
Neus Cardeñosa Marín and Simon Hales. ISBN 978 92 890
7191 8 http://www.euro.who.int/en/what-we-publish/
abstracts/heathealth-action-plans.

WMO World Meteorological Organization (2011). Weather ex-
tremes in a changing climate: Hindsight on foresight,
ISBN: 978-92-63-11075-6, http://www.wmo.int/pages/
mediacentre/news/documents/1075_en.pdf.

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8,
338–353.

8258 Environ Monit Assess (2013) 185:8239–8258

http://www.euro.who.int/en/what-we-publish/abstracts/heathealth-action-plans
http://www.euro.who.int/en/what-we-publish/abstracts/heathealth-action-plans
http://www.wmo.int/pages/mediacentre/news/documents/1075_en.pdf
http://www.wmo.int/pages/mediacentre/news/documents/1075_en.pdf

	Heat wave hazard classification and risk assessment using artificial intelligence fuzzy logic
	Abstract
	Introduction
	Background
	Heat waves
	Urban climate models

	Athens Greater Area
	Data
	Thermal infrared satellite data
	Ancillary data
	Census data
	In situ data

	Methods
	Concept
	Urban climate model
	Heat wave hazard and risk
	Identification and extraction of hot days
	Classification of heat wave events
	Population vulnerability to heat waves
	Monthly heat wave risk


	Application
	Results
	Validity of model’s individual components
	Sensitivity analysis

	Conclusions
	References


