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Abstract Identification and quantification of dissolved
oxygen (DO) profiles of river is one of the primary
concerns for water resources managers. In this research,
an artificial neural network (ANN) was developed to
simulate the DO concentrations in the Heihe River,
Northwestern China. A three-layer back-propagation
ANNwas usedwith the Bayesian regularization training
algorithm. The input variables of the neural network
were pH, electrical conductivity, chloride (Cl−), calcium
(Ca2+), total alkalinity, total hardness, nitrate nitrogen

(NO3-N), and ammonical nitrogen (NH4-N). The ANN
structure with 14 hidden neurons obtained the best se-
lection. By making comparison between the results of
the ANN model and the measured data on the basis of
correlation coefficient (r) and root mean square error
(RMSE), a good model-fitting DO values indicated the
effectiveness of neural network model. It is found that
the coefficient of correlation (r) values for the training,
validation, and test sets were 0.9654, 0.9841, and
0.9680, respectively, and the respective values of
RMSE for the training, validation, and test sets were
0.4272, 0.3667, and 0.4570, respectively. Sensitivity
analysis was used to determine the influence of input
variables on the dependent variable. The most effective
inputs were determined as pH, NO3-N, NH4-N, and
Ca2+. Cl−was found to be least effective variables on the
proposedmodel. The identifiedANNmodel can be used
to simulate the water quality parameters.

Keywords Artificial neural network . Dissolved
oxygen .Modeling . Heihe River

Introduction

The surface water quality is one of the major issues today
because of its effects on human health and aquatic eco-
systems.With the increase in population, there is increas-
ing pressure on water resources. Surface water quality in
a region is largely determined both by natural processes
including the lithology of the basin, atmospheric inputs,
and climatic conditions, and by anthropogenic inputs
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such as municipal and industrial wastewater discharge.
On the other hand, rivers play a major role in assimilating
or transporting municipal and industrial wastewater and
runoff from agricultural land. Municipal and industrial
wastewater constitutes a constant pollution source,
whereas surface runoff is a seasonal phenomenon, largely
affected by climate within the basin (Singh et al. 2004).

Dissolved oxygen (DO) is one of the important
water quality parameters of an aquatic ecosystem and
a significant status indicator for the aquatic ecosys-
tems. The sources of DO in a water body include re-
aeration from the atmosphere, photosynthetic oxygen
production, and DO loading. The sinks include oxida-
tion of carbonaceous and nitrogenous material, sedi-
ment oxygen demand, and respiration by aquatic
plants (Kuo et al. 2007). Identification and quantifica-
tion of DO profiles of river is one of the primary
concerns for water resources managers.

Several DO models such as deterministic and sto-
chastic models have been developed in order to man-
age the best practices for conserving the DO in water
bodies (Ansa-Ansare et al. 2000; García et al. 2002;
Wang et al. 2003; Hull et al. 2008; Shukla et al. 2008).
Most of these models are complex and need several
different input data which are not easily accessible,
making it a very expensive and time-consuming pro-
cess (Suen et al. 2003). Artificial neural networks
(ANNs) are flexible modeling tools with the capability
of learning the mathematical mapping between input
and output variables of nonlinear systems and gener-
alizing the processes of control, classification, and
prediction. They are capable of providing a neuron
computing approach to solve complex problems. In
the last decade, ANNs have been widely successfully
applied to various water resources problems, such as
hydrological processes (Nayak et al. 2004; Sahoo et al.
2005; Dastorani et al. 2010; Guo et al. 2011; Wu
and Chau 2011; Senkal et al. 2012), water resources
management (Kralisch et al. 2003; Sreekanth and
Datta 2010), groundwater problems (Daliakopoulos
et al. 2005; Dixon 2005; Garcia and Shigidi 2006;
Nayak et al. 2006; Ghose et al. 2010; Banerjee et al.
2011), and water quality (Ha and Stenstrom 2003;
Kuo et al. 2006; Anctil et al. 2009; da Costa et al.
2009; Dogan et al. 2009; Chang et al. 2010; He et al.
2011). ANNs also have been used for modeling and
forecasting DO (Kuo et al. 2007; Singh et al. 2009;
Ranković et al. 2010; Najah et al. 2011). Furthermore,
some intelligence algorithm such as genetic algorithm

was used with ANN model for the management of the
watershed water quality problem (Kuo et al. 2006).
ANNs, as effective tool for the computation of water
quality, can be regarded as a powerful predictive al-
ternative to traditional modeling techniques.

In the arid northwest of China, water resources play a
dominant role in the development of the economy.
Careful management is important for ecological and
environmental protection (Wen et al. 2007). Due to ex-
tensive use of surface water, the quality of the surface
water has also impacted for the last few decades (Wang et
al. 1999). Predicting the water quality evolution of sur-
face water in these arid regions can enhance understand-
ing for river water systems and help decision makers
effectively manage water resources. The main purpose
of this study is to analyze and discuss the performances
of ANNs in modeling of DO in the Heihe River.

Material and methods

Study area

The Heihe River in northwestern China is one of the
largest inland rivers in China, covering an area of 1.3×
105km2. It originates from the Qilian Mountains,
flowing through the Zhangye basin and the lower
reaches (also known as the Ejina Basin) (Fig. 1). The
middle reaches of Heihe River, from the mountain
outlet (Yingluoxia) to the end of the middle reaches
of the Heihe River (Zhengyixia), is 185 km in length
with an average slope of 2 %, covering an area of
1.08×104km2, including Zhangye City, Linze County,
and Gaotai County (Fig. 1). This area has an arid
continental climate with a mean annual temperature
of 3–7 °C. The average annual precipitation ranges
from 50 to 150 mm, with the majority (∼80 %) falling
from June to September. The average annual potential
evaporation is 2,000–2,200 mm (Gao 1991).

Water sampling procedure

The data collected from three water quality monitoring
stations, including Yingluoxia, Gaoai, and Zhengyixia
(Fig. 1). The Yingluoxia is located in the entrance of
the middle reaches of Heihe River, and the stations are
situated at upstream sites of the study area. This sta-
tion receives pollution from nonpoint sources, i.e.,
mostly from agricultural activities with relatively low
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river pollution; the Gaoai and Zhengyixia are located
in the central part and the end of the middle reaches of
Heihe River, respectively, representing the high pollu-
tion of the river. These stations are situated at down-
stream sites of the study area. These stations receive
pollution from point and nonpoint sources, i.e., agri-
cultural and livestock farms, domestic wastewater, and
surface runoff from villages. The river quality was
monitored monthly at three different sites over 6 years
(2003–2008) comprising nine water quality parame-
ters. Although more than 20 water quality parameters
were available, only nine parameters were selected
due to their continuity in measurement at all selected
water quality monitoring stations. The selected water
quality parameters included pH, electrical con-
ductivity (EC, microsiemens per centimeter), chloride
(Cl−, milligrams per liter), calcium (Ca2+, milligrams per
liter), total alkalinity (TA, milligrams per liter), total
hardness (TH, milligrams per liter), nitrate nitrogen
(NO3-N, milligrams per liter), ammoniacal nitrogen

(NH4-N, milligrams per liter), and dissolved oxygen
(DO, milligrams per liter). DO, EC, and pH were mea-
sured in the field by the portable multi-parameter water
quality analyzer, and the analytical precision of DO was
within ±2 %. Other water quality parameters were de-
termined using Standard Methods (APHA 1995).

The independent water quality parameters showed
a coefficient of variation between 2.69 and 151.17 %
(Table 1). Such variability among the samples may be
attributed to the large geographical variations in cli-
mate and seasonal influences in the study area.
Parameter pH showed lowest variation. Compared to
the natural origin parameters, water quality parameters
of anthropogenic origin showed high variations due to
the buffering capacity of the river. The correlation
coefficient between DO and the input parameters
was calculated and presented in Table 1.

The available data are generally divided into train-
ing, validation, and testing subsets to develop an ANN
model. The training set is used to estimate the

Fig. 1 Location of the study
area and the water quality
monitoring station
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unknown connection weights; the validation set is used
to decide when to stop training in order to avoid over-
fitting and/or which network structure is optimal; and
the test set is used to assess the generalization ability of
the trained model (Maier et al. 2010). In this study, the
complete river water quality data set (164 samples×
8 variables) was randomly divided into three sections
including training, validation, and test sets comprised of
100 (60 %), 32 (20 %), and 32 (20 %) samples, respec-
tively. The output variables (DO) corresponding to the
input variables belonged to the same water sample, thus
measured in the same time and space.

In view of the requirements of the neural computa-
tion algorithm, the raw data of both the input and
output variables were normalized to an interval by
transformation. All the variables were normalized
ranging from −1 to 1 as follow equation:

xn ¼ 2� xi � xmin

xmax � xmin
� 1 ð1Þ

where xn and xi represent the normalized and original
training, test, and validation data; xmin and xmax denote
the minimum and maximum of the training, test, and
validation data.

Artificial neural network modeling

An artificial neural network (ANN) is a mathematical
structure designed to mimic the information processing
functions of a network of neurons in the brain (Hinton
1992; Jensen 1994). ANNs are highly parallel systems
that process information through many interconnected
units that respond to inputs through modifiable weights,
thresholds, and mathematical transfer functions. Each
unit processes the pattern of activity it receives from

other units and then broadcasts its response to still other
units. ANNs are particularly well suited for problems in
which large data sets contain complicated nonlinear
relations among many different inputs. ANNs are able
to find and identify complex patterns in data sets that
may not be well described by a set of known processes
or simple mathematical formulae.

Multilayer perceptron neural network

Among the various types of ANNs that have been
developed over the years, the multilayer perceptron
(MLP) neural network structure is the most commonly
used and well-researched class of ANNs (Ouarda and
Shu 2009). A feed forward MLP network consists of an
input layer which receives the values of the input vari-
ables, an output layer which provides the model output,
and one or more hidden layers. Nodes in each layer are
interconnected through weighted acyclic arcs from each
preceding layer to the following, without lateral or feed-
back connections (Shu and Ouarda 2007). Principe et al.
(2000) emphasize that the main advantage is in being
easy to use, and the key disadvantages are that they train
slowly and require a large amount of training data, and
easily to get stuck in a local minimum. However, MLP
with a sufficient number of hidden units can approxi-
mate any continuous function to a prespecified accura-
cy; in other words, MLP networks are universal
approximations (Cherkassky and Mulier 1998).

Back-propagation neural network and leaning algorithm

It has been well recognized that a neural network with
one hidden layer is capable of approximating any finite

Table 1 Basic statistics of the measured water quality parameters in Heihe River

Unit Min Max Average SD CV (%) Correlation

pH – 7.40 8.70 8.18 0.22 2.69 0.26

EC μS/cm 374.00 3050.00 890.60 613.94 68.94 −0.25
Ca2+ mg/l 31.90 127.00 60.61 12.87 21.23 0.23

Cl− mg/l 3.94 387.00 55.97 84.61 151.17 −0.27
TH mg/l 183.00 838.00 333.09 145.64 43.72 −0.18
TA mg/l 138.00 337.00 204.33 40.93 20.03 −0.08
NH4-N mg/l 0.00 4.52 0.62 0.83 133.87 −0.28
NO3-N mg/l 0.08 3.28 1.15 0.64 55.65 0.10

DO mg/l 3.60 11.80 7.84 1.72 21.94 1.00

SD standard deviation, CV coefficient of variation
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nonlinear function with high accuracy and three more
hidden layered systems are known to cause unnecessary
computational overload (Kim and Gilley 2008). Hence,
an MLP network with one hidden layer trained by back-
propagation (BP) neural network was used to build the
ANN model for modeling of the river water DO with
eight input variables as shown in Fig. 2. The activation
function consists of a tan-sigmoid function in the hidden
layer and a linear function in the output layer. The
mathematical expression of the MLP is as follows:

xj ¼
X
i

wijxi þ wj ð2Þ

xj ¼ f xj
� � ¼ 1

1þ e�xj
ð3Þ

where xi is the output of node i located in any one of
the previous layers, wij the weight associated with the
link connecting nodes i and j, and wj the bias of node j.

Since the weights wij are actually internal parame-
ters associated with each node i, changing the weights
of a node will alter the behavior of the node and in turn
alter the behavior of the whole back-propagation MLP.
First, a squared error measure for the pth input–output
pair is defined as:

Ep ¼
X
k

dk � xkð Þ2 ð4Þ

where dk is the desired output for node k, and xk is the
actual output for node k when the input part of the pth
data pair is presented. To find the gradient vector, an
error term ej for node i is defined as:

ej ¼ @Ep

@xj
¼

@
P
k

dk � xkð Þ2

@xj
ð5Þ

By the chain rule, the recursive formula for ej can
be written as:

ej ¼
�2 dj � xx

� � @xj
@xj

¼ �2 dj � xx
� �

xj 1� xj
� �

If node j is a output node
@xj
@xj

P
kj<k

@Ep

@xj
@xk
@xj

¼ xj 1� xj
� � P

kj<k
ekwjk Otherwise

8<
: ð6Þ

where wjk is the connection weight from node j to k
and wjk is zero if there is no direct connection. Then,
the weight update Δwjk for off-line learning is:

$wjk ¼ �η
@E

@wjk
¼ �η

X
p

@Ep

@wjk
ð7Þ

where ŋ is a learning rate that affects the convergence
speed and stability of the weights during learning. In
vector form,

$w ¼ �ηrwE ð8Þ

where E0ΣpEp. This corresponds to a way of using
the true gradient direction based on the entire data set.

The way we adapt to speed-up training is to use the
momentum term:

$w ¼ �ηrwE þ a$wprev ð9Þ
where Δwprev is the previous update amount and α
is the momentum constant. As for the detail of the
backpropagation MLP, interested readers can refer
to any literatures addressing neural network theory
for more information (Freeman and Skapura 1991;
Jang et al. 1997; Kuo et al. 2006).

There are several optimization methods to improve
the convergence speed and the performance of network
training. In this paper, the Bayesian regularization BP
algorithm was selected. The Bayesian regularization is
an algorithm that automatically sets optimum values for

Fig. 2 General conceptual neural network for the DO in the
Heihe River
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the parameters of the objective function. In the approach
used, the weights and biases of the network are assumed
to be random variables with specified distributions. To
estimate regularization parameters which are related to
the unknown variances, statistical techniques are used.
The advantage of this algorithm is that whatever the size
of the network, the function will not be over-fitted.
Bayesian regularization has been effectively used
(Porter et al. 2000; Coulibaly et al. 2001a, b; Anctil et
al. 2004; Krishna et al. 2008). A more detailed discus-
sion of the Bayesian regularization can be found in the
literature (MacKay 1992).

Determining the number of neurons in the hidden
layer is an important task when designing an ANN
(Shu and Ouarda 2007). Too many hidden nodes may
lead to the problem of overfitting. Too few nodes in the
hidden layer may cause the problem of underfitting. The
appropriate number of nodes in a hidden layer was
recommend ranging from (2n1/2+m) to (2n+1), where
nwas the number of input nodes andm is the number of
output nodes (Fletcher and Goss 1993). In this study, a
trial and error procedure for the hidden node selection
was carried out by gradually varying the number of
nodes in the hidden layer.

During the training processes, there are three factors
that are associated with the weight optimization algo-
rithms. These are: (1) initial weight matrix, (2) learning
rate, and (3) stopping criteria such as (a) fixing the
number of epoch size, (b) setting a target error goal,
and (c) fixing minimum performance gradient. The ini-
tial weights are randomly generated between −1 and 1
with a random number generator. The value of the
learning parameter is not fixed. Maier and Dandy
(1998, 2000) reported that optimization of learning pa-
rameter was highly problem dependent and should be
selected so that oscillation in error surface can be
avoided. Hagan et al. (1996) demonstrated that the
learning became unstable for higher values (>0.035).
Thus, the learning rate was set as 0.01.

The mean square error (MSE) can be used to deter-
mine how well the network output fits the desired
output. MSE, the smaller values ensuring the better
performance, is defined as follows

MSE ¼ 1

n

Xn
i¼1

Oi � Pið Þ2 ð10Þ

where n is the number of input samples, and Oi and Pi

are the measured and network output value from the

ith elements, respectively. The maximum numbers of
epochs, target error goal MSE, and the minimum
performance gradient were set as 105, 10−5, and
10−5, respectively. Training stops when any of these
conditions occur. All the computations were per-
formed using MATLAB software (MathWorks, Inc.,
Natwick, MA).

Statistical forecasting of ANN model

The performance of developed models can be evalu-
ated using several statistical tests that describe the
errors associated with the model. The MSE, the coef-
ficient of correlation (r), and the root mean square
error (RMSE) were used to provide an indication of
goodness of fit between the measured and modeled
values.

Coefficient of correlation is defined as the degree of
correlation between the measured and modeled values:

r ¼
Pn
i¼1

Pi � P
� �

Oi � O
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

Pi � P
� �2 Pn

i¼1
Oi � O
� �2s ð11Þ

The RMSE can be calculated as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðOi � PiÞ2
s

ð12Þ

where n is the number of input samples; and Oi and Pi

are the measured and network output value from the

ith elements, respectively. O and P and are their aver-
age, respectively.

Results and discussion

DO model result

The optimum number of neurons was determined
based on the minimum MSE value of the training data
set. The training of the BP MLP-NN was performed
with a variation of 5–17 neurons. Each architecture
configuration was trained 50 times with different ini-
tializations, and then, the best network was retrained
to calculate the overall accuracy. Determined by the
relationship between the numbers of neurons versus
MSE during training, the MSE value decreased to
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0.1825 when 14 neurons were used. Thus, 14 neurons
were selected as the best number of neurons.

The selected ANN for the DO model was com-
posed of one input layer with eight input variables,
one hidden layer with 14 neurons, and one output
layer with one output variable. The coefficient of

correlation (r) and RMSE were computed for the
training. Validation and test data sets used for the
DO model were presented in Table 2. Figure 3
showed the fittings between measured and modeled
values of DO in training, validation, and testing
sets. The coefficient of correlation (r) values for
the training, validation, and test sets were 0.9654,
0.9841, and 0.9680, respectively. The respective
values of RMSE for the training, validation, and
test sets were 0.4272, 0.3667, and 0.4570, respec-
tively. A closely followed pattern of variation by
the measured and modeled DO concentrations in
the Heihe River was shown in Fig. 2, with coeffi-
cient of correlation (r) and RMSE values suggesting
a good-fit of the DO model to the data set.

Table 2 Performance parameters of the artificial neural net-
work model

Model Structure RMSE r

DO 8-14-1 Training 0.4272 0.9654

Validation 0.3667 0.9841

Test 0.4570 0.9680
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Fig. 3 Comparison of the
measured and modeled DO
values in a training, b vali-
dation, and c testing sets
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Sensitivity analysis

To evaluate the effect of input variables on the DO
model, two evaluation processes were used. Firstly,
the performance evaluation of various combinations
of the parameters was investigated utilizing the
coefficient of correlation (r) and RMSE approaches
to determine the most effective variables on the
output. The optimal network architecture of the
various combinations of the parameters was selected
based on the one with minimum of MSE using the
14 neurons. Overall, nine networks were compared
as shown in Table 3. Each one demonstrated the
extents which the eliminated variable would affect
the network accuracy. Apparently, the precision of
model became higher if Cl− was eliminated from
the input variables to the model, where minimum
RMSE and coefficient of correlation (r) were deter-
mined to be 0.4712 and 0.9691 for the testing data
set, respectively. Therefore, Cl− could be excluded.
Conversely, the coefficient of correlation (r) re-
duced if other input parameters was removed,
which reduced the ability of ANN in the capability
modeling. Furthermore, DO was found to be sensi-
tive to the pH, NH4-N, and NO3-N variables.

Secondly, the neural net weight matrix was used
to assess the relative importance of the input vari-
ables (Garson 1998; Elmolla et al. 2010). In this
study, the proposed network consisted of eight var-
iables. Assuming the connection weights from the
input nodes to the hidden nodes demonstrate the
relative predictive importance of the independent

variable, the importance of each input variable can
be expressed as follows:

Ij ¼
Pm¼Nh

m¼1
Wih

jm

��� ��� PNi
k¼1

Wih
km

�� ���� �
� Who

mn

�� ��� �
Pk¼Ni

k¼1

Pm¼Nh

m¼1
Wih

jm

��� ��� PNi
k¼1

Wih
km

�� ���� �
� Who

mn

�� ��� �	 

ð6Þ

where Ij is the relative importance of the jth input
variable on the output variable; Ni and Nh are the
number of input and hidden neurons, respectively;
W is connection weight; the superscripts i, h, and o
refer to input, hidden, and output layers, respective-
ly; and subscripts k, m, and n refer to input, hid-
den, and output neurons, respectively.

Table 4 showed the connection weight values for the
proposed model. The relative importance of each of the
input variables as computed by Eq. (6) was shown in
Fig. 4, illustrating the significance of a variable compared
with the others in the model. Although the network did
not necessarily represent physical meaning through the
weights, it suggested that all the variables had strong
effects on the prediction of DO (Singh et al. 2009), where
the predictor contributions ranged from 7.4 to 18.9% and
pH, NO3-N, NH4-N, and Ca2+ had relatively high con-
tributions Fig. 3. In addition, pH and NO3-N were the
high influential variables with relative importance of 18.9
and 15.8 %. It was obvious that the most effective inputs
were those which included oxygen containing (NO3-N)
and oxygen demanding (NH4-N). Moreover, Cl−

revealed the least contribution on the proposed model.

Table 3 Modeling accuracy of the input variables was eliminate from the model

Model Combination Structure RMSE r

Training Validation Test Training Validation Test

1 All 8-14-1 0.4272 0.3667 0.4570 0.9654 0.9841 0.9680

2 Eliminate pH 7-14-1 0.5019 0.4232 0.7179 0.9448 0.9806 0.9168

3 Eliminate EC 7-14-1 0.6779 0.9484 0.4933 0.9160 0.8407 0.9632

4 Eliminate Ca2+ 7-14-1 0.5005 0.5691 0.5209 0.9600 0.9437 0.9472

5 Eliminate Cl− 7-14-1 0.3857 0.4493 0.4712 0.9738 0.9570 0.9691

6 Eliminate TH 7-14-1 0.5120 0.6524 0.6157 0.9519 0.9274 0.9454

7 Eliminate TA 7-14-1 0.5522 0.6251 0.5970 0.9471 0.9388 0.9393

8 Eliminate NH4
+ 7-14-1 0.9775 1.6073 0.8595 0.8084 0.5515 0.8914

9 Eliminate NO3
− 7-14-1 0.7021 0.7035 0.6812 0.9118 0.9301 0.9260
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These relationships represented that high levels of dis-
solved organic matter consume large amounts of oxygen,
which underwent anaerobic fermentation processes lead-
ing to formation of ammonia and organic acids.
Hydrolysis of these acidic materials causes a decrease
of water pH values (Vega et al. 1998; Singh et al. 2004).

Conclusion

An artificial neural network was developed to simulate
the dissolved oxygen (DO) concentration in the Heihe

River (Northwestern China). A three-layer (one input
layer, one hidden layer, and one output layer) BPNN
was used with the Bayesian regularization training
algorithm. Water quality variables such as pH, electri-
cal conductivity (EC), chloride (Cl−), calcium (Ca2+),
total alkalinity (TA), total hardness (TH), nitrate
nitrogen (NO3-N), and ammonical nitrogen (NH4-N)
were used as the input data to obtain the output of
the neural network, DO. Fourteen neurons were se-
lected as the best number of neurons based on the
minimum value of MSE of the training data set. A
well-trained ANN produced results with the coeffi-
cient of correlation (r) of 0.9654, 0.9841, and
0.9680, and the RMSE of 0.4272, 0.3667, and
0.4570 for the training, validation, and test sets,
respectively, with good match between the measured
and modeled DO. The sensitivity analysis showed
that the input variables such as pH, NO3-N, NH4-
N, and Ca2+ had strong effect on DO. In addition,
pH and NO3-N were the high influential parameters
with relative importance of 18.9 and 15.8 %, while
Cl− revealed the least contribution on the proposed
model and can be excluded. The result demonstrated
that the proposed ANN model was a better choice
for modeling DO levels with limited knowledge of
the water quality parameters.

Fig. 4 The relative importance of the input variables to DO
ANN model for Heihe River

Table 4 Connection weights between input and hidden layers (W1) and weights between hidden and output layers (W2)

Neuron W1 W2

Input variables Target

pH EC Ca2+ Cl− TH TA NH4-N NO3-N DO

1 2.9030 0.5507 0.3237 0.1295 −0.7388 0.5463 −0.4320 −1.1923 1.8273

2 −1.0740 −0.7635 −1.7234 −0.4427 −0.5311 −0.6613 1.1612 0.8638 1.9211

3 1.0478 −0.4759 −0.9306 −0.4848 0.1470 −0.4110 −0.2323 0.2586 1.4489

4 1.5011 −1.2504 0.9808 −0.2178 0.4498 0.9944 0.1010 0.5281 1.6881

5 −0.9063 −0.3498 −0.2671 −0.4753 −0.5861 −1.0770 −0.3427 1.0466 1.8861

6 −0.6823 0.3497 −0.0643 0.1412 −1.0480 −0.4506 0.9581 −1.4659 −1.5894
7 1.1961 0.6122 −0.6630 0.4970 −0.0106 0.1695 −0.0721 0.4011 −1.3215
8 −2.9759 −0.6781 −1.3443 0.8044 −1.1719 0.5936 1.0460 0.4538 1.9414

9 −0.0614 1.2704 1.6516 0.9095 0.9652 0.6873 −0.3609 −1.4873 1.7432

10 −0.7089 −0.2954 1.2947 −1.1460 −0.3713 0.3468 1.9001 0.7855 −2.1393
11 −1.4200 0.5245 −0.5357 0.3485 0.5622 −0.5899 2.2096 −1.0692 2.0094

12 −0.9548 −0.3865 −0.5079 0.1309 0.2503 0.5959 1.1128 1.9301 1.5296

13 −0.4341 −1.0879 0.0636 −0.2805 −1.2685 −0.6450 −0.3724 0.0146 −1.5940
14 −0.1735 0.6558 −1.3277 −0.0438 −0.1984 0.3388 −0.2157 1.5416 −1.6090
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