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Abstract This paper presents a new methodology for
the optimal design of space–time hydraulic head mon-
itoring networks and its application to the Valle de
Querétaro aquifer in Mexico. The selection of the
space–time monitoring points is done using a static
Kalman filter combined with a sequential optimization
method. The Kalman filter requires as input a space–
time covariance matrix, which is derived from a geo-
statistical analysis. A sequential optimization method
that selects the space–time point that minimizes a
function of the variance, in each step, is used. We
demonstrate the methodology applying it to the rede-
sign of the hydraulic head monitoring network of the
Valle de Querétaro aquifer with the objective of select-
ing from a set of monitoring positions and times, those
that minimize the spatiotemporal redundancy. The da-
tabase for the geostatistical space–time analysis corre-
sponds to information of 273 wells located within the
aquifer for the period 1970–2007. A total of 1,435
hydraulic head data were used to construct the exper-
imental space–time variogram. The results show that

from the existing monitoring program that consists of
418 space–time monitoring points, only 178 are not
redundant. The implied reduction of monitoring costs
was possible because the proposed method is success-
ful in propagating information in space and time.

Keywords Optimal monitoring network-design .

Space–time geostatistics . Kalman filter . Hydraulic
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Introduction

The information collected by groundwater monitoring
networks is extremely valuable in understanding the
dynamics of aquifers. Since hydraulic head (HH) is a
variable that depends not only on space but also on
time, a space–time monitoring network design is nec-
essary to capture HH evolution in aquifers. However,
extensive monitoring in space and/or time may in-
volve considerable costs. Therefore, in this paper, we
present a new methodology for the optimal design of
space–time hydraulic head monitoring networks and
its application to redesign the monitoring network of
the Valle de Querétaro aquifer in Mexico.

The following sections describe the state of the art
of two closely related problems: hydraulic head esti-
mation and its monitoring. These two problems are
related because when designing a monitoring network,
usually the objective involves estimating the variable
of interest at sites and possibly at times, where no
samples will be taken from the variable. Therefore, a
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method is required to interpolate or estimate the vari-
able. On the other hand, once an estimation method is
chosen, it can be used to determine the “best” sites and
monitoring times to satisfy a given optimization
criterion.

Hydraulic head estimation

Hydrogeologists need methodologies to better repre-
sent hydraulic heads and efficiently estimate this var-
iable. Although hydraulic heads can be represented as
a function of position and time, it is often difficult to
carry out an analysis of HH evolution in aquifers,
since databases are usually not consistent in space
and/or time. Due to this, HH estimates are difficult to
compare because its spatial uncertainty can be differ-
ent for different years.

Geostatistical techniques for HH estimation have
been employed since the 1970s (Delhomme 1978;
Gambolati and Volpi 1979; Volpi et al. 1979). Many
models have been proposed, validated, and corrected,
but their application and implementation has not been
exhausted (Kemal and Guney 2007; Ahmadi and
Sedghamiz 2007; Ahmadi and Sedghamiz 2008).
Although univariate and multivariate techniques have
been used, space–time developments are relatively
new, both in geostatistics and in hydrogeology appli-
cations. Rouhani and Hall (1989) were the first
researchers that proposed to determine HH in aquifers
using joint information in a space–time domain. In
recent years, interest in applying space–time techniques
for HH estimation has increased (Mendoza and Herrera
2007; Mendoza 2008; Ta’any and Tahboub 2009).

Hydraulic head and groundwater quality monitoring
networks

According to Herrera and Pinder (2005), three
approaches have greatly influenced the design of
groundwater monitoring networks. In the first one,
called hydrological framework (Loaiciga et al. 1992),
the network and its monitoring program are defined by
considering only the hydrological conditions of the
site, without using advanced statistical or probabilistic
techniques. The second, called statistical framework,
proposes an analysis of data within a statistical frame-
work and defines the monitoring network based on
inferences obtained from data. In the last approach, the
modeling framework, groundwater mathematical

models are used to determine groundwater monitoring
locations and frequencies.

In most methods for optimal monitoring network
design, only space is taken into account, that is, only
the positions of the monitoring wells are selected
(Rouhani 1985; Rouhani and Hall 1988; Samper and
Carrera 1990; Andricevic 1990; Storck et al. 1995; Ely
et al. 2000; Hill et al. 2000; Lin and Rouhani 2001;
Wu 2003; Herrera et al. 2004; Júnez-Ferreira 2005;
Bravo 2005; Kumar et al. 2005; Mogheir et al. 2006;
Faisal et al. 2007).

The review presented below focuses on space–time
designs within the statistical framework since they are
the most relevant to our study [For readers interested
in space–time designs within the modeling frame-
work, some examples are: Loaiciga (1989),
Andricevic (1990), Van Geer et al. (1991), Yangxiao
et al. (1991), Herrera (1998), Ely et al. (2000), Hill et
al. (2000), Herrera et al. (2001), Herrera and Pinder
(2005), and Zhang et al. (2005)]. In addition to the
works that address the design of hydraulic head mon-
itoring networks, we include works that propose meth-
ods for designing groundwater-quality monitoring
networks because these methods, with some modifi-
cations, can also be used for designing networks that
allow an adequate characterization of HH in aquifers.

Within the statistical framework, Cameron and
Hunter (2000) proposed an optimization algorithm
for groundwater monitoring networks, through the
reduction of spatial and temporal redundancy. They
employed two separate algorithms: one temporal and
another spatial. The temporal algorithm combines time
series of data from many wells to construct a compos-
ite temporal variogram, used to define sampling fre-
quencies. In the spatial algorithm, numeric weights are
assigned (denoted global kriging weights) to the well
locations in the monitoring network to gauge their
relative contribution to the contaminant plume map.
The wells with the lowest influence in the variance of
new estimates, obtained by kriging, are removed. In
this manner, the contaminant estimate is obtained by
kriging, the temporal optimization is obtained from the
composite temporal variogram range, and the spatial
optimization is also obtained by criteria derived from
the kriging process. In this paper, the cross space–time
correlation of the contaminant is not considered.

Nunes et al. (2004a) optimized groundwater moni-
toring networks considering a reduction in spatial and/
or temporal redundancy. They proposed three
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optimization models to select the best subset of sta-
tions of a large groundwater monitoring network: (1)
one that maximizes spatial accuracy, (2) one that min-
imizes temporal redundancy, and (3) a model that
maximizes spatial accuracy and minimizes temporal
redundancy. The proposed optimization models are
solved with simulated annealing and a parametrization
algorithm based on statistical entropy. The three mod-
els are derived from an equation that considers two
terms: one spatial and another temporal. The
employed models result from simplifications of the
objective function. The estimation is done by kriging
and the optimization method is simulated annealing.
The model that uses the joint space–time information
produces the best results. The general equation from
which the models are derived contains a variance term
and a term that considers time series. The time series
are represented by common mathematical functions
based on empirical judgment and experience.

Nunes et al. (2004b) proposed a methodology to
determine the optimal subset of stations from an existing
groundwater-level monitoring network. The method
considers an optimization function that adds a spatial
component (seeking to reduce estimate error variances),
a temporal component (using time series to consider
temporal redundancies), and two other terms that include
sampling times and their costs (to visit all the chosen
sites and measure at each station). Kriging is employed
for estimation, and the optimization method is simulated
annealing. Authors conclude that relative reduction in
exploration costs compensates the relative loss of infor-
mation in representative data. In this paper, the space and
time are analyzed independently and later added in the
objective function, so the estimation method does not
include space and time jointly. Sampling frequencies are
not determined. Time series are employed only to eval-
uate temporal redundancy of information acquired when
sampling on a site, so the less time-redundant positions
have preference for being chosen.

The methodology presented in this paper for the
optimal design of hydraulic head monitoring networks
falls in the statistical framework. It is based on the
methodology proposed by Herrera (1998), but the
space–time covariance matrix required to estimate by
the Kalman filter (KF) is obtained from a space–time
geostatistical analysis of data. The optimization meth-
od is also of successive inclusions, but, in contrast to
Herrera (1998), the evaluation of possible monitoring
space–time points is done by implementing a forward

spatiotemporal filtering (the meaning of this will be
explained in detail later).

This kind of methodology is very useful in design-
ing new monitoring networks or in redesigning an
existing one, including also its optimal monitoring
calendar according to the objective function. The pro-
posed methodology only requires historical data of the
variable, regardless of whether or not the monitoring
was constant in space and/or time.

To our knowledge, the proposed methodology is
the first of its kind that selects monitoring positions
and times to monitor HH using a space–time vario-
gram obtained from a geostatistical analysis. A space–
time estimation is employed, unlike most works based
on geostatistics for the design of monitoring networks
which consider only space or time.

Space–time estimation methods

Due to the variability of hydrogeological phenomena,
it is necessary to consider HH measurements in differ-
ent times to achieve a better understanding of the
hydrodynamic behavior of an aquifer. In this sense,
analysis of the spatial distributions and temporal evo-
lution of the variable is needed for a proper decision
making when managing an aquifer. On the other hand,
HH information is usually scarce (in space and/or
time), making it difficult to obtain accurate space–time
estimates. One way to address this problem is to
consider the variable as a space–time random function.

Usually, available hydrogeological information is
multivariate, i.e., a variable is generally correlated
with others so that measurements from those variables
can be used as additional information to strengthen the
variable estimate. In classical geostatistics, the corre-
lation between two or more variables that vary in
space has been studied; joint variation of two attrib-
utes is measured through a cross-variogram. The as-
sociated estimation technique is known as cokriging
and is also referred to as multivariate geostatistical
analysis. Ahmadi and Sedghamiz (2008) compared
water level estimates in an aquifer using univariate
and multivariate analysis, obtaining better results in
the multivariate case. Rouhani and Hall (1989) pro-
posed to determine HH using joint space–time infor-
mation with a linear model; however, their model
presents problems because the covariance matrix is
singular in certain cases (Myers and Journel 1990;
Rouhani and Myers 1990). De Iaco et al. (2001) and
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De Cesare et al. (2001) represented space–time corre-
lation structures through the product–sum model.
Mendoza and Herrera (2007) and Mendoza (2008)
explored various methods for estimating HH; results
obtained with multivariate (spatiotemporal) analysis
using the techniques of cokriging and a product–sum
model were better than univariate (spatial) analysis,
using ordinary kriging.

Methodological framework

The first step of the proposed methodology is to define
the monitoring design objective. In a space–time design,
this objective involves estimating HH over an area of
interest (such as areas of intensive exploitation, recharge
or discharge areas, the entire aquifer, etc.) for a certain
time period. In this work, a design is proposed for a
predefined period; afterward, data can be collected for
that period and a design for a new period can be
obtained. That is, management periods can be defined,
and a different design can be proposed for each period.
In the example presented, the design is proposed for a
single management period.

The selection of the monitoring positions and times
that will define the monitoring network and its sched-
ule for the period of interest is performed using a static
Kalman filter (Herrera 1998) and an optimization
method. The Kalman filter requires a prior space–time
covariance matrix, which is calculated through a prod-
uct–sum model (De Cesare et al. 2001). The optimi-
zation method is heuristic and sequential. It selects,
one at a time, the space–time points that minimize an
objective function. The objective function depends on
the estimate error variance and may change according
to the particular problem of implementation. The op-
timization procedure seeks to reduce the value of this
function over a set of space–time points for which
estimates are needed. This set can be denser over areas
and times with higher priority, in order to assign them
more weight in the optimization process.

Space–time geostatistical analysis

A geostatistical analysis is needed to determine the
spatiotemporal correlation structure of the data. The
result of this analysis is the space–time variogram
model.

Fig. 1 Study area and well
locations with piezometric
data
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Space–time random functions

Consider a space domain D and a time domain T. A
space–time random variable (RV) Z(x, t) is a vari-
able that depends on both a space location x ¼
x; yð Þ 2 D and a time t∈T. A space–time random
function Z x; tð Þ; x; tð Þ 2 D� Tf g is defined as a
group of dependent RV Z(x, t). The RV Z(x, t) is
fully characterized by knowing its distribution func-
tion, which gives the probability that the variable Z
in a space position x and a time t is not greater than
any given threshold z:

F x; t;: zð Þ ¼ Prob Z x; tð Þ � zf g; 8z; x; tð Þ 2 D� T

ð1Þ
The space–time random function concept is analo-
gous to that of a spatial random function, so the
second-order stationarity and intrinsic hypothesis
also apply to it (De Iaco et al. 2001).

Sample space–time variogram

The central tool of geostatistics is the variogram. In
classical geostatistics, the covariance and the vario-
gram are functions that describe the spatial structure of
the property being studied. In the space–time concep-
tualization, this definition is extended to consider also
the time correlation.

The sample variogram for the increments Δx ¼
Δx;Δyð Þ andΔt is based on the following expression:

gst Δx;Δtð Þ ¼ 1

2N Δx;Δtð Þ
XN Δx;Δtð Þ

k¼1

Z xk þΔx; tk þΔtð Þ � Z xk ; tkð Þ½ �2

ð2Þ
where N Δx;Δtð Þ is the number of pairs Z xk ; tið Þ;ð
Z xk þΔx; ti þΔtð ÞÞ separated by a space–time incre-
ment (Δx, Δt). To capture the structure of sample
space–time variograms, it is necessary to use autho-
rized models.

Fig. 2 Hydraulic head
sample space–time
variogram
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Product–sum models

A very general geostatistical model for space–time
covariances is the product sum (De Cesare et al.
2001; De Iaco et al. 2001). This model has the follow-
ing structure:

Cst hs; htð Þ ¼ k1Cs hsð ÞCt htð Þ þ k2Cs hsð Þ
þ k3Ct htð Þ ð3Þ

Or equivalently, for space–time variograms:

gst hs; htð Þ ¼ k2 þ k1Ctð0Þ½ �gs hsð Þ
þ k3 þ k1Csð0Þ½ �g t htð Þ
� k1gs hsð Þg t htð Þ ð4Þ

where Cs and Ct are space and time covariance func-
tions, respectively; γs and γt are their corresponding
variogram functions. Cst(0) is the variance of γst, Cs(0)
is the variance of γs, and Ct(0) is the variance of γt. By
definition, gst 0; 0ð Þ ¼ gsð0Þ ¼ g tð0Þ ¼ 0.

The following condition is implicit in the covari-
ance–variogram transformation of Eq. 4:

k1Csð0ÞCtð0Þ þ k2Csð0Þ þ k3Ctð0Þ ¼ Cst 0; 0ð Þ ð5Þ

Evaluating Eq. 4 for ht00, the following equality is
obtained,

gst hs; 0ð Þ ¼ k2 þ k1Ctð0Þ½ �gs hsð Þ ð6Þ
and evaluating the same equation for hs00, we get

gst 0; htð Þ ¼ k3 þ k1Csð0Þ½ �g t htð Þ ð7Þ
To estimate and model γs(hs) and γt(ht) through γst(hs,
0) and γst(0, ht), respectively, it is assumed that

k2 þ k1Ctð0Þ ¼ 1 ; k3 þ k1Csð0Þ ¼ 1 ð8Þ
From Eq. 3, it is clear that k1>0, k2≥0, and k3≥0

are sufficient conditions to obtain a positive definite
covariance. From Eqs. 4 and 8, it is obtained:

k1 ¼ Csð0Þ þ Ctð0Þ � Cst 0; 0ð Þ½ � Csð0ÞCtð0Þ=
k2 ¼ Cst 0; 0ð Þ � Ctð0Þ½ � Csð0Þ=
k3 ¼ Cst 0; 0ð Þ � Csð0Þ½ � Ctð0Þ=

ð9Þ

To model separately the spatial and temporal vario-
grams, it is necessary to ensure that variances are chosen
so that k1, k2 and k3 in Eq. 9 are positive (De Cesare et
al. 2001).

A second-order stationary space–time random field
must satisfy the following equation (De Iaco et al. 2001):

Cst hs; htð Þ ¼ Cst 0; 0ð Þ � gst hs; htð Þ ð10Þ

Fig. 3 Projection of the
sample space–time vario-
gram of hydraulic head on
the variogram-spatial lags
plane
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Trend

The expected value of a random function may depend
on its coordinates. For a random function to satisfy the
intrinsic hypothesis, the trend must be a constant value.

When the expected value of a space–time random
function depends on the space location, on time or
both, the random function does not satisfy the intrinsic
hypothesis. In that case, it is possible to work with a
modified variable called the residual, by rewriting the
space–time random function Z(x, t) as:

Z x; tð Þ ¼ m x; tð Þ þ R x; tð Þ ð11Þ
where m(x, t) is a deterministic function (known as
trend) of space–time coordinates x and t, and R(x, t),
known as the residual, is a zero mean stationary spa-
tiotemporal random function modeling the space–time
fluctuations around m(x, t) (Kyriakidis and Journel
1999).

To represent the function m(x, t), a trend surface
(typically polynomial functions for the spatial coordi-
nates and periodic functions for time, although other
functions can be used) can be obtained by a least-
squares fit to the data. In this way, zero mean stationary
data (residuals) are obtained and used to calculate the
variogram. This technique is called residual kriging.

The Kalman filter

The KF is a set of mathematical equations that provide a
minimum-variance unbiased linear estimate for the state
of a system given noisy data (Jazwinski 1970). In its
general form, the filter relies upon two equations, a dy-
namic and a measurement equation. In this paper, we use
what we call the static KF, which only uses measurement
equations and incorporates the time through space–time
state vectors (Herrera 1998; Herrera and Pinder 2005).

The linear measurement equation of the discrete KF,
which relates the state vector of the variable h in posi-
tions and times of interest with the sampled data z, is:

zj ¼ Hjhþ vj ð12Þ
where zj; j ¼ 1; 2; . . .

� �
is a sequence of HH measure-

ments. The jth sampling matrix Hj is a 1×N matrix that
is non-zero only at the space–time positions
corresponding to the entry of h where the jth sample is
taken andN is the dimension of the vector h. The space–
time vector h0{hip} with the HH values in the positions
and times of interest (hip is the HH in position xi and
time tp). The vectors vj; j ¼ 1; 2; . . .

� �
represent mea-

surement errors. They are a white Gaussian sequence,
with zero mean and covariance rj. The measurement
error sequence {vj} and the vector h are independent.

Fig. 4 Projection of the
sample space–time vario-
gram of hydraulic head on
the variogram-temporal lags
plane
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The estimate error covariance matrix is:

Pn ¼ E h� bhn� �
h� bhn� �T

� �
ð13Þ

where bhn ¼ E h z1= ; z2; . . . ; znð Þf g is the expected val-
ue of h, given the measurements z1, z2,…zn. In this
notation, the superscript identifies the number n of
measurement vectors used to obtain the estimate.

To implement the filter, it is required a prior esti-

mate of both h (named bh0) and of the error covariance
matrix (P0). Note that P0 is a space–time covariance
matrix. Given these prior estimates, the minimum-
variance linear estimate for h can be obtained sequen-
tially through the following formulas:

bhnþ1 ¼ bhn þKnþ1 znþ1 �Hnþ1bhn� �
ð14Þ

Pnþ1 ¼ Pn �Knþ1Hnþ1P
n ð15Þ

Knþ1 ¼ PnHT
nþ1 Hnþ1P

nHT
nþ1 þ rnþ1

� 	�1 ð16Þ
There are many ways to estimate bh0; a particular

one is presented in the application included in this
paper. The prior estimate-error covariance matrix
(P0) is obtained through a geostatistical analysis by

fitting a space–time variogram model to the sample
variogram. Once the variogram model is selected, the
elements of the space–time covariance matrix are cal-
culated with Eq. 10.

Monitoring network optimization

Consider the sets of all possible monitoring positions

xM1 ; x
M
2 ; :::; x

M
Nmp

n o
and all possible monitoring times

tM1 tM2 . . . tMNmt

n o
, where Nmp is the number of possible

monitoring locations and Nmt is the number of possible
monitoring times. For the present application, we de-
fine the set of possible space–time monitoring points

a s M ¼ xMi ; t
M
p

� �
; i ¼ 1; . . . ;Nmp; p ¼ 1; . . . ;Nmt

n o
(but notice that the proposed methodology can be
applied even if the monitoring times are not the
same for each well). From this set, the points that
minimize the estimate error variance on the space–
time points for which estimates are needed,

E ¼ xEj ; t
E
q

� �
; j ¼ 1; . . . ;Nep; q ¼ 1; . . . ;Net

n o
, where

Nep is the number of estimation locations and Net is the
number of estimation times, will be selected.

Fig. 5 Sample space–time
variogram of residuals from
a first-order polynomial fit
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In previous works, we have tried two options for
the optimization objective function. The first, used
by Herrera (1998), is the estimate error variance
summed over all the space–time estimation points.
This function is called the total variance of the
estimate error and is calculated using the following
formula:

σ2
T ¼

XNep

j¼1

XNet

q¼1

σ2
j;q ð17Þ

where σ2
j;q is the variance of the estimate error

e xEj ; t
E
q

� �
¼ h xEj ; t

E
q

� �
� bh xEj ; t

E
q

� �
at the jth estima-

tion location and at the qth estimation time,
obtained from the diagonal of the KF covariance
matrix. Note that when using this objective func-
tion, each monitoring point contributes to the re-
duction of the estimate error variance at all times
considered. That is, each monitoring point contrib-
utes to reduce the estimate error variance in the
past, present, and future. The formulas used to
minimize the total variance are presented in
Herrera (1998) and Herrera and Pinder (2005).

The second option is to consider the effect of each

monitoring point xMi ; t
M
p

� �
in the estimate error vari-

ance only in present and future times. This objective
function was used to optimize one of the groundwater
quality monitoring networks presented in Herrera and
Pinder (2005).

In the present work, the effect of data in the esti-
mate error variance is also considered only in present
and future times, but in addition, the covariance matrix
is only updated in the present and future. This is when
a monitoring point is selected to be part of the moni-
toring network, the covariance matrix is updated by
the KF only in present and future times. The applica-
tion of this procedure is what we call the forward
spatiotemporal filtering (FSTF) optimization of the
monitoring network.

The problem is optimized sequentially, using a
successive-inclusion method (Samper and Carrera
1990) as is explained next. Given an order of the spatio-
temporal monitoring points X ¼ xM ; tMð Þ in M,

XM
1 ;X

M
2 ; . . . ;X

M
Nmp�Nmt

n o
, for n¼1; 2; . . . ;Nmp � Nmt ,

choose the point Xo,n that minimizes the function

σ2
FSTF OMP n� 1ð Þ;Xð Þ¼PNep

j¼1

PNet
q¼p

σ2
j;q OMP n� 1ð Þ;Xð Þ

where σ2
j;q OMP n� 1ð Þ;Xð Þ is the estimate error vari-

ance at the estimation point xEj ; t
E
q

� �
, obtained using the

n−1 optimal monitoring program OMP n� 1ð Þ ¼
Xo;1;

�
Xo;2; . . . ;Xo;n�1g previously chosen and the spa-

tiotemporal point X. Let Pn�1
o be the spatiotemporal

covariance matrix obtained after applying Eqs. (15)
and (16) of the KF to the OMP n� 1ð Þ. Then, to find
Xo,n, for each possible monitoring point that has not been
chosen before, calculate the covariance matrix of the

Fig. 6 Projection of the
sample space–time vario-
gram of residuals from a
first-order polynomial fit on
the variogram-spatial lags
plane (circles) and fitted
variogram model (squares)
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estimate error using Eqs. (15) and (16) of the KF with

the covariance matrix Pn�1
o and the possible monitoring

point; select the point that gives the minimum
σ2
FSTF OMP n� 1ð Þ;Xð Þ. The selected point is then

added to the set of optimal monitoring points, and the
matrix Pn

o is calculated again using the KF. The process

starts with P0
o ¼ P0, the prior covariance matrix

obtained from the space–time geostatistical analysis.
When applying a sequential optimization, it is neces-

sary to determine where to stop the process, i.e., to
determine the total number of space–time points to be
included in the optimal monitoring network. There are
several possible procedures to define this number; the
criterion used in this work will be explained later in the
context of the problem presented.

Results and discussions

We demonstrate the methodology applying it to the
redesign of the hydraulic head monitoring network for
the Valle de Querétaro aquifer. The objective is to
select from a set of monitoring positions and times
those that minimize the spatiotemporal redundancy,
that is, to minimize the number of positions and times
needed to obtain a HH estimate uncertainty close
enough to the one obtained using the present monitor-
ing network and monitoring schedule.

The Valle de Querétaro aquifer is located in the
central part of Mexico. It is an unconfined aquifer that
is locally confined in some regions (Geofísica de

Exploraciones Guysa 1991). It covers an area of ap-
proximately 379 km2, and the deepest zones are about
600 m. This aquifer is located within the Mexican
states of Querétaro and Guanajuato. We present the
monitoring network design for the eastern part of the
aquifer, located in the state of Querétaro (Fig. 1).

Data sets

The HH database for the space–time analysis includes
information of 273 wells located in the Valle de
Querétaro aquifer for the period between August
1970 and November 2007 (Fig. 1). There are not
complete annual piezometric records for any of these
wells during this period. Well 612-F has the maximum
piezometric data (32). On the other hand, December
1995 is the month with more information (60 data). In
total, we have 1,435 piezometric data.

The analysis was based on the construction of the
sample space–time variogram with the piezometric
data available (Fig. 2). To perform this analysis, we
used a modified routine of GAMV (Deutsch and

Table 1 Space–time variogram model of residuals from a first-
order polynomial fit

Model Component Nugget Sill Range

Spherical Spatial 150 2,900 16,000

Spherical Temporal 40 940 30

– Global – 2,900 –

Fig. 7 Projection of the
sample space–time vario-
gram of residuals from a
first-order polynomial fit on
the variogram-temporal lags
plane (circles) and fitted
variogram model (squares)
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Journel 1997) by De Cesare et al. (2002) for modeling
space–time variograms. We used 20 spatial lags, with
1,362.4 m of space lag separation and 37 temporal lags
with a 1-year lag separation.

To better analyze the behavior of the space–time
variogram, we present its projection on the
variogram-spatial lags plane (Fig. 3) and on the
variogram-temporal lags plane (Fig. 4). The spatial
projection shows a curvature close to a quadratic
function in the first part, which indicates the

possible presence of drift (Journel and Huijbregts
1978). However, the variogram decreases in the
22,000-m lag. It can also be seen a more scattered
behavior beginning in the 13,000-m lag. The tem-
poral projection shows that higher variogram val-
ues have a much higher variability than small
variogram values. To continue the space–time anal-
ysis, the trend was removed by fitting a polyno-
mial function through least squares.

Trend removal

First- and second-order polynomials were tested. The
first-order polynomial fit was chosen because the
space–time variogram calculated with the residuals
obtained is better defined (Fig. 5). The same number
of spatial and temporal lags and lag separation as the
HH analysis were used.

Fig. 8 Estimation grid
(squares) and possible
spatial monitoring locations
(dots)

Table 2 Cross-validation results for the last 10 years with
information

Min
error (m)

Max
error (m)

Mean
error (m)

MSE
(m2)

RMSE
(m)

SMSE

−163.91 101.89 −0.87 422.24 20.55 1.01
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Figure 6 shows the spatial projection. The quadratic
function behavior is no longer present in the variogram,
and it is bounded at 16,000 m. However, the decreasing
behavior in the last part of the variogram is still present,
but now occurs after the 17,000-m lag. Figure 7 shows
the temporal projection. A more homogeneous behavior
than before is found by removing the trend, although a
higher variability is still present in high variogram values.

Fitting of the variogram model

For the variogram model fit, piezometric data from
the last 10 years with information (December 1997–

November 2007) were used. The aquifer conditions
since that recent period have not changed drastical-
ly, and therefore, it is expected that a properly
adjusted variogram for those years should model
accurately the spatiotemporal correlation of HH af-
ter the year 2007.

Following De Iaco et al. (2002), a product–sum
model was fitted to the space–time sample vario-
gram manually (i.e., different models were pro-
posed “by eye” and evaluated to choose the one
with the best cross validation results). The param-
eters of the selected model are presented in
Table 1.

Fig. 10 Square root (total
variance/space–time estima-
tion positions) vs. number of
space–time monitoring
points

Fig. 9 Total variance vs.
number of space–time
monitoring points
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Cross-validation results for the last 10 years of
information are presented in Table 2; as it can be
seen, maximum and minimum errors are large;

however, we consider this an acceptable adjust-
ment taking into account the high variability of
the data.

Fig. 12 Number of
monitoring times in the
optimal space–time
monitoring program for
each well (top) and well ID
(bottom)

Fig. 11 Number of sam-
pling locations for every
year
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Design of a hydraulic head space–time monitoring
network

The monitoring network was designed for the peri-
od 2008–2018. Since for any period in the future it
is impossible to use a geostatistical analysis of data,
we used historical data to construct the variogram
and validated it for the period 1997–2007. In what
follows, we redesign the monitoring network, and
then we use the data that would be gathered from
the resulting monitoring network and sampling pro-
gram to evaluate estimate errors for the 1997–2007
period. Júnez-Ferreira (2011) tested the proposed
methodology using synthetic data from a numerical
transient flow model that produces declining
groundwater levels with time. He used “historical
data” to find the best space–time variogram fit and
“future data” to calculate the estimate errors. The
model included groundwater extraction through
wells that were kept with similar extraction rates
in the “future period.” He found that estimate errors
were similar to those obtained for the “historical

period.” Therefore, we assume that if aquifer con-
ditions do not change dramatically (for example, in
cases where there are no significant changes in land
use or in groundwater extraction), the analysis just
explained gives an idea of future estimate errors for
the period 2008–2018.

As was mentioned before, the objective of the design
was to select locations and monitoring times needed to
obtain a good estimate of the variable at different spec-
ified times for the whole aquifer. Since we use a discrete

set xEj ; j ¼ 1; :::;Nep

n o
to represent the continuous

area of the aquifer and in the objective function

σ2
FSTFðOMPðn� 1Þ;XÞ ¼ PNep

j¼1

PNet

q¼p
σ2
j;qðOMPðn� 1Þ;XÞ,

the variances are added over those positions at the
estimation times; if we want to give the same
weight to the uncertainty in the whole aquifer, we
need to define the estimation locations on a regular
grid. We used a grid with square elements of 2 km
side length, which results in a set of 82 nodes; we
call this set the estimation grid (Fig. 8). One

Fig. 13 Hydraulic head
estimate for December of
1997

3540 Environ Monit Assess (2013) 185:3527–3549



possible estimation time was selected at December
of each year, with the exception of 2007, for which
November was used because data are available only
for that month. In this way, 82 estimation positions
and 11 estimation times were included in the
space–time estimation grid.

Thirty-eight well positions were selected as possi-
ble spatial monitoring locations (Fig. 8). These wells
were selected because they were monitored in the
most recent groundwater level surveys on December
2006 and/or November 2007. Every December in the
period 1997–2006 and November of 2007 were con-
sidered possible monitoring times.

Since the space–time variogram model was ad-
justed to residuals from a first-order polynomial fit,
the KF was applied to estimate this variable. Once
residuals were estimated, HH values at each space–
time estimation node were obtained by adding its
residual estimate and the value of the polynomial
function at the corresponding space–time point. For
each year, the KF prior estimate of the state vector
was calculated with the average of residuals

corresponding to positions with HH data measured
in the field. Since there were no data for December
2001 and December 2002, the state vector prior
estimates for those years were obtained by linear
interpolation of the averages of adjacent years. The
prior space–time covariance matrix was calculated
from the space–time variogram model, applying
Eq. 10. It was constructed for 82 (estimation posi-
tions)+38 (monitoring positions)+29 (additional
support positions to estimate missing data)0149
positions and 11 times, so its dimension was of
1,639 columns (149×11) by 1,639 rows.

Priority order

When the monitoring network optimization method is
applied, at each round the point that reduces the most
the variance (in other words, the point that gives
maximum information) is selected. For this reason,
the order in which the space–time points are selected
represents a priority order in a natural way, so the
selection order is an indicator of how important the

Fig. 14 Hydraulic head
estimate for December
of 2001
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data obtained at those points are in reducing the total
variance. If the selection order is small, the priority is
great. This can be seen clearly in Fig. 9; the total
variance is greatly reduced when choosing the first
space–time points, but as the number of selected
points increases, the amount of reduction of the total
variance decreases.

Criterion for determining the total number
of monitoring points

As mentioned above, there are several criteria to de-
termine the total number of space–time monitoring
points in the monitoring network program. In this
paper, we have implemented a criterion based on the
results of the total variance.

It can be seen in Fig. 9 that after monitoring
the 200 monitoring points with larger priority, the
total variance remains almost constant (around
675,000 m2). This indicates that the 218 remaining
points might be redundant, that is, they provide

little information and do not contribute much in
reducing the total variance.

To define the number of space–time points of the
monitor ing network, we propose using theffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Total Variance
N

q
value, where N ¼ Nep � Net is the

number of space–time estimation points.
It can be shown that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNep

j¼1

PNet

q¼1
σ2
j;q

N

vuuut
� 1

N

XNep

j¼1

XNet

q¼1

σj;q

for N≥1 and
PNep

j¼1

PNet

q¼1
σj;q � 0. In this way, the proposed

statistic value is an upper bound for the average
standard error in the space–time estimation grid,
which can help us to consider a conservative design
scenario. The calculated values of square root (total

Fig. 15 Hydraulic head
estimate for December of
2004
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variance/space–time estimation points) versus num-
ber of space–time monitoring points are shown in
Fig. 10.

The criterion consists in selecting the space–time
points where a 99 % of the maximum possible reduc-
tion (MPR) value is achieved:

MPR ¼ Max

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNep

j¼1

PNet

q¼1
σ2
j;q

N

vuuut
�Min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNep

j¼1

PNet

q¼1
σ2
j;q

N

vuuut

This occurs when 178 space–time points are select-
ed and an average estimate uncertainty of 27.53 m is
expected in the space–time estimation grid. This value
is high but it is extremely close to the one obtained
using all the available space–time monitoring points
(27.27 m). That means that the existing monitoring
network cannot reduce the uncertainty in some zones
enough and thus that it is necessary to monitor other
positions as well.

Optimal monitoring network

In this example and according to the exposed before,
178 monitoring points were selected to constitute the
optimal sampling program for the existing monitoring
network. Figure 11 shows the number of samples to be
taken in each monitoring time. It can be seen that the
most intense monitoring campaign is proposed for the
first year, which is consistent with the chosen optimi-
zation criterion. Positions in the first monitoring year
have the highest priority order because there is not
available information in previous years of the design
period to reduce the variance in that year and also
because every well chosen in the first year provides
information for the entire period. When we advance in
time, less wells are needed, but periodically a little
increase occurs because the influence of previous
monitored years decreases and more wells are needed
to improve the estimates.

Figure 12 shows the number of monitoring times
for each well. As it can be seen, locations that need to

Fig. 16 Hydraulic head
estimate for November
of 2007
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be measured with higher frequencies are located in
poorly covered zones by the existing monitoring net-
work spatial array.

Estimation

As an illustration of the HH estimates that would be
obtained using the proposed monitoring program for
the analysis period, HH estimates were obtained on the
estimation grid, for each one of the estimation times.
Since for this case there are no information data in all
monitoring locations for all the design period, it was
necessary to estimate the missing information.
Missing values were obtained by estimating them
through the KF using the space–time variogram model
selected previously and the residuals of existing data
in the 38 monitoring locations and the support meas-
urements in 29 additional wells (in total, 255 space–
time data were used for the estimation). Residuals of
HH data were then estimated in all the space–time
monitoring points without information measured in

the field. In this way, we had information in the 418
possible space–time monitoring points.

Hydraulic head estimation

Figures 13, 14, 15, and 16 show FSTF hydraulic head
estimates obtained for four years with the proposed
monitoring network. These figures show the estimat-
ed HH spatial and temporal changes in the aquifer.
The recharge zones correspond to the zones with
maximum level of HH, which coincide with the max-
imum topographic levels. In Fig. 13, we can see that
for December 1997, the flow direction is northeast–
southwest and the HH levels at the north entrance are
higher than 1,860 m above sea level (asl); another
entrance is located at the northeast, where the flow
goes to the center of the aquifer. The minimum HH
levels are present at the central and south zones of the
aquifer (the levels are lower than 1,700 m asl). Over
time, the cone of depression at the central zone
becomes larger, and by December 2001 (Fig. 14),

Fig. 17 Estimate error
variances and priority
order of wells for December
of 1997
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the lowest levels in this zone are below 1,680 m asl.
In those years, levels are below than 1,670 m asl at
the southwest zone. From this moment, levels start
recovering in the zones with the most pronounced
drawdowns, but from 2004, a very important cone of
depression is formed in the south zone of the aquifer
with levels below 1,670 m asl.

Estimate error variances

Figures 17, 18, 19, and 20 show FSTF estimate error
variances obtained for each year with the proposed
monitoring network. The priority order is also included.

We can see that variances have almost the same
spatial distribution for any monitoring time. The min-
imum values are located around the center of the
aquifer, where most part of the wells is found and
the maximum variances are located at the margin of
the aquifer because just a few monitoring wells are
found there. However, the variances have high values
(between 300 and 1,700 m2). These values are close to

the minimum possible values that can be obtained with
the present position of the monitoring wells. These
variance maps, together with practical criteria, can be
very useful in choosing new monitoring locations in
the zones with the maximum variances.

Conclusions and recommendations

The proposed methodology incorporates spatiotempo-
ral correlation between data, using a spatiotemporal
variogram model obtained through a geostatistical
analysis of historical data. An important advantage of
the method is that the cross-correlation between hy-
draulic heads at different locations and times is
accounted for, which allows for a more complete
evaluation of redundant monitoring positions and/or
monitoring times.

The results show that the average standard error
in the study area when monitoring the 418 avail-
able space–time monitoring locations is less than

Fig. 18 Estimate error
variances and priority
order of wells for December
of 2001
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27.27 m and when monitoring the 178 locations
with higher priority order is less than 27.53 m.
This means that the last chosen 240 monitoring
space–time locations are redundant, since the in-
formation they provide reduce very little the aver-
age standard error. These results show that the
proposed method is successful in propagating in-
formation in space and time.

The most sampled date for the selected optimal
monitoring network was the first one. This is due
to three reasons: (1) The temporal variogram range
is equal to 30 years, which is large in comparison
with the analyzed period; (2) in the optimization
process, the effect of each sample is considered
only in present and future times, which makes the
first monitoring time the one that can provide the
largest information of HH in the design period; and
(3) we did not condition the prior covariance matrix
with historical data, something that we would do if
we apply the method for consecutive management
periods.

Large values of total variance after measuring
all possible space–time monitoring points indicate

that the present monitoring network is quite defi-
cient in providing enough information to represent
the space–time evolution of HH in the aquifer with
certainty. This means that new wells should be
added to the optimal monitoring network, in zones
with the highest variance values. To propose new
wells locations, practical and hydrogeological cri-
teria should also be used.

An underlying hypothesis of the proposed meth-
odology is that if aquifer conditions do not change
dramatically (for example, in cases where there are
no significant changes in land use or in groundwater
extraction), then the spatiotemporal sampling net-
works obtained would be useful for a period in the
future of the same length as the one used in the
design. Júnez-Ferreira (2011) tested the proposed
methodology using synthetic data from a numerical
transient flow model that produces declining
groundwater levels with time. He used “historical
data” to find the best space–time variogram fit and
“future data” to calculate the estimate errors. The
model included groundwater extraction through
wells that were kept with similar extraction rates in

Fig. 19 Estimate error
variances and priority
order of wells for December
of 2004
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the “future period.” He found that estimate errors
were similar to those obtained for the “historical
period.” We will publish those results in a forthcom-
ing paper.

Drift is usually present in hydraulic heads; in this
work, as in many others before (Samper and Carrera
1990; Kumar et al. 2005; Ahmadi and Sedghamiz
2007; Mendoza and Herrera 2007; Mendoza 2008),
the drift was removed through a technique called
residual kriging. Some authors (see, for example,
Webster and Oliver (2007)) argue that there are two
disadvantages in using residual kriging. First, the trend
is usually estimated by ordinary least squares, which
gets unbiased estimates, although they have no mini-
mum variance unless the sampling sites have been
selected through a sampling plan. The second disad-
vantage is that semivariances calculated with the resid-
uals are biased. In future work, an evaluation of the
effect of this problem in the KF estimates has to be
done, and if necessary, a different method to remove
the drift from HH data could be used. Further work is
also needed in the evaluation of the adjustment quality
of space–time variogram models to represent the
space–time dependence of the variable.
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