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Abstract Urbanisation is a ubiquitous phenomenon
with greater prominence in developing nations. Urban
expansion involves land conversions from vegetated
moisture-rich to impervious moisture-deficient land
surfaces. The urban land transformations alter bio-
physical parameters in a mode that promotes develop-
ment of heat islands and degrades environmental
health. This study elaborates relationships among var-
ious environmental variables using remote sensing
dataset to study spatio-temporal footprint of urbanisa-
tion in Surat city. Landsat Thematic Mapper satellite
data were used in conjugation with geo-spatial techni-
ques to study urbanisation and correlation among var-
ious satellite-derived biophysical parameters,
[Normalised Difference Vegetation Index, Normalised
Difference Built-up Index, Normalised Difference Wa-
ter Index, Normalised Difference Bareness Index,
Modified NDWI and land surface temperature
(LST)]. Land use land cover was prepared using hier-
archical decision tree classification with an accuracy
of 90.4 % (kappa00.88) for 1990 and 85 % (kappa0
0.81) for 2009. It was found that the city has expanded
over 42.75 km2 within a decade, and these changes
resulted in elevated surface temperatures. For exam-
ple, transformation from vegetation to built-up has
resulted in 5.5±2.6 °C increase in land surface

temperature, vegetation to fallow 6.7±3 °C, fallow to
built-up is 3.5±2.9 °C and built-up to dense built-up is
5.3±2.8 °C. Directional profiling for LST was done to
study spatial patterns of LST in and around Surat city.
Emergence of two new LST peaks for 2009 was
observed in N–S and NE–SW profiles.

Keywords Biophysical parameters . Expert
classification . LST. LULC changes . Urbanisation

Introduction

Urbanisation is the most important anthropogenic activ-
ity after greenhouse gas emissions that impact climate
(Kalnay and Cai 2003). Urbanisation on one hand bene-
fits economic welfare of society; on the contrary, it
threatens the biophysical health of the city itself. It causes
detriment to environmental quality, including biodiver-
sity (McKinney 2006; Delgado-V and French 2012;
Threlfall et al. 2012), soil fertility (Chen 2007), water
quality (Kaushal et al. 2008; Paul and Meyer 2001), and
impacts other natural resources (Huang et al. 2010) along
with ecosystem services (Alberti 2005; Bolund and
Hunhammar 1999). Urban land transformations are most
complex and dramatically irreversible land use changes
and are thus one of themost studied phenomena (Wenhui
2012; Jiang and Tian 2010; Taubenböck et al. 2009;
Souch and Grimmond 2006). Urban land use changes
such as loss of vegetation (Scolozzi and Geneletti 2012),
increased built-up and open areas (Ng et al. 2011) along
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with increased expanse of urban fabrics such as concrete
and asphalt altogether alter the local climate of a city by
modifying various biological and physical characteristics
of the environment. These include vegetation cover,
impervious built-up covers, presence of moisture, sur-
face and air temperatures, soil properties and others,
which in turn are governed by land use characteristics
(Voogt and Oke 2003).

With urbanisation taking over the world at an un-
precedented pace, Indian cities are no exception. By
2050, India is expected to inhabit 0.9 billion urban
population with a projection from 29.7 % in 2009 to
about 54.2 % by 2050 (UN 2010). Delhi, Mumbai and
Kolkata already fall in the category of the mega-cities,
and Chennai is soon going to join these along with
Hyderabad and Bangalore (Joshi et al. 2011). Apart
from megacities, a number of smaller urban agglom-
erations are showing tremendous growth since the past
decade (Taubenböck et al. 2009). Surat, for instance,
has great potential of transforming into a megacity.
Surprisingly, not enough work has been done to study
its urban sprawl and related impacts. The city has been
expanding ever since 1951 when it had a population of
0.24 million that gradually increased to 0.49 in 1971,
to 1.52 in 1991 and finally crossing 2.8 in 2001 and
reaching 4.46 million in 2011 (Census of India 2011).
It is expected to inhabit 5.57 million people by 2025
(UN 2010).

Land surface temperature (LST) is the most studied
biophysical parameter related to urban health. It has a
two-way relationship with environmental parameters
as it influences some of them and in turn gets influ-
enced by others. Some literature is available on former
part of this interaction. Baur and Baur (1993) found
that urbanisation-related changes in LST resulted in
local extinction of land snails in Basel. Whitford et
al. (2001) stated LST as one of the four ecological
performance indicators. LST also directly impacts
surface energy budget (Bastiaanssen et al. 1998)
and thus influences air temperature of the area. This
results in emergence of two types of urban heat
Islands (UHI) in same area, viz., surface UHI and
atmospheric UHI. This paper examines formal half
of LST and environment interaction using satellite-
derived equivalents of various parameters. This
study thus employs remote sensing to demonstrate
how different environmental parameters like vegeta-
tion cover and health, moisture intensity and bare-
ness influence LST.

With the advent of geospatial technology, it has
become possible to remotely monitor the biophysical
variables and changing land use patterns and to ana-
lyse their interactions (Buyantuyev and Wu 2012).
Though a number of studies have been carried out to
examine the variability among greenness, surface tem-
perature (Son et al. 2012; Julien and Sobrino 2009;
Raynolds et al. 2008; Julien et al. 2006; Weng et al.
2004; Sandholt et al. 2002; Owen et al. 1998; Gillies et
al. 1997; Goetz 1997) and land use associations
(Amiri et al. 2009; Zhou et al. 2011; Jiang and Tian
2010; Xiao et al. 2008; Xiao and Weng 2007), little
work has been done in assessing the variability of
other biophysical factors in context to LST (Uddin et
al. 2010; Chen et al. 2006). Limited research material
could be found on the relationship of these parameters
with respect to each other and how this relationship
differs for different land uses. Uddin et al. (2010) and
Chen et al. (2006) have attempted classification using
four main indices, viz., Normalised Difference Vege-
tation Index (NDVI), Normalised Difference Water
Index (NDWI), Normalised Difference Built-up Index
(NDBI) and Normalised Difference Bareness Index
(NDBaI). In the present study, an additional mod-
ified water index was developed, Modified Nor-
malised Water Index (MNDWI), for extracting
water. All these factors were considered as these
could account to assess spatio-temporal footprints
of urbanisation.

Surat—the Diamond City

Surat city is the commercial capital city of Gujarat
(India) and also serves as administrative capital of
Surat district. It is situated on the banks of Tapi river
which perennially flows northeast to southwest finally
joining the Arabian Sea, situated 22 km west to the
city. The city is situated at 21.25° N and 72.87° E
(Fig. 1). The region experiences hot summers with
temperature ranging from 38 to 45 °C. Winters are
mild, but the months of December and January are
coldest with temperatures varying between 10 and
15.5 °C. The average annual rainfall is 1,143 mm
(Surat Municipal Corporation 2011).

Being a commercial hub, the region has wit-
nessed tremendous urbanisation over the past few
decades. It ranks 36th in the list of the world’s
largest cities with a population of over 2.5 million
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in 2001 (population density of 1,376 persons/km2)
and the third cleanest metropolitan region in India.
The city has total population of more than 6
million of which 80 % is urban population and
the remaining 1.24 million is rural (Census of
India 2011). Surat has immense business and job
opportunities that trigger high immigration rates to
the city resulting in increased population. The two
major economic activities are agriculture and dia-
mond cutting. A large number of small-scale dia-
mond cutting industries have given the name
‘Diamond City’ to this place.

The study area extends spatially from 21.29° N and
21.12° N to 72.74° E and 72.94° E, spanning across
386.28 km2 covering the city (city limits of 326 km2)
and peripheral urban–rural fringe. The study area mainly
falls in the Chorasi taluk of Surat district but also covers
parts of adjoining taluks of Olpad in the north, Kamrej in
the east and Palsana in the south-east. It is bound by
Navsari on the south.

Materials and methods

Satellite data

Landsat 5/4 Thematic Mapper (TM) satellite images
(Path/Row, 148/45) dated October 19, 1990 and Oc-
tober 23, 2009 were used. Landsat is a medium-
resolution (30 and 120 m) data with seven bands that
are most commonly used for environmental studies.
Landsat TM data consist of seven bands of which the
first three are visible bands, the fourth is near-infrared,
bands five and seven fall in shortwave infrared regions
and sixth is the thermal band. The geometrically and
radiometrically corrected images rectified to a com-
mon Universal Transverse Mercator were procured
from the USGS Earth Resource Observation Systems
Data Center. The details and characteristics of the
satellite data used are given in Table 1.

Spectral enhancement was done using band ratioing
to compute various indices. This performed a twofold

Fig. 1 Location of the study area
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function: firstly, these served as variables in classifica-
tion, and secondly, these were used to study dynamics of
different biophysical parameters (viz., greenness, wet-
ness, bareness and built-up intensity) with respect to

each other and that to thermal response of environment.
Red (TM 3) and infrared (TM4) bands helped to en-
hance greenness (Maxwell and Sylvester 2012; Pure-
vdorj et al. 1998), infrared (TM4) and shortwave

Table 1 Landsat 5 TM sensor system characteristics

Band Spectral details;
wavelength (μm)

Spatial
resolution (m)

Applications

TM1 Blue (0.45–0.52) 30 Can penetrate water bodies, thus help in coastal water studies,
identifying cultural features

TM2 Green (0.52–0.6) 30 Studying water turbidity, vegetation studies

TM3 Red (0.63–0.69) 30 Monitoring vegetation health

TM4 Near-infrared (0.76–0.9) 30 Studying land–water and cropped–non-cropped lands, identifying crops

TM5 Shortwave infrared (1.55–175) 30 Cloud and snow studies, studying geological features, monitoring
vegetation moisture

TM6 Thermal infrared (10.40–12.5) 120 Surface temperature studies, LST estimation, vegetation stress studies

TM7 Shortwave infrared (2.08–2.35) 30 Studying vegetation moisture content, studying rocks and minerals

Fig. 2 Flowchart describing methodology. (Where, LMax and
LMin (watts per square metre per steradian per micrometre) are
spectral radiances for thermal band (band 6) at digital numbers 1
and 255, respectively, i.e. QCalMin and QCalMax values, while
QCal represents the DN value; K1 (607.76 W/(m2/sr-μm)) and

K2 (1260.56 K) are pre-launch satellite calibration constants; a
and b are constants; Ta refers to effective mean atmospheric
temperature, and C and D are computed using emissivity and
atmospheric transmittance derived from water vapour (grams per
square centimetre), where ε is emissivity and τ is transmittance)
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infrared (TM5) were used to enhance built-up areas
(Bridhikitti and Overcamp 2012; Ma et al. 2010;
Zhang et al. 2009) and enhance canopy vegetation
water content (Jackson et al. 2004; Serrano et al.
2000; Gao 1996). Shortwave infrared (TM5) and
thermal infrared (TM6) were employed for enhanc-
ing bare lands (Nasipuri and Chatterjee 2009). LST
retrieval was performed using thermal information
of TM6 band. For more accurate mapping and
extraction of water bodies from image, MNDWI
was computed by transforming blue (TM1) and
shortwave infrared (TM5) bands. Figure 2 briefly
describes the methodology followed.

Data processing

Estimating biophysical parameters

NDVI, NDBI and MNDWI were used to map land use
and land cover (LULC) classes. These metrics along

with NDBaI and NDWI were used to investigate cor-
relation of various biophysical parameters (intensity of
moisture, greenness, build-up density and extent of
bareness) with that of thermal response of urbanised
areas in contrast to vegetated areas. Table 2 presents a
brief review of various indices used, their computation
and uses along with references.

Land surface temperature retrieval

Landsat TM band 6 has been extensively exploited to
study thermal dynamics of various earth surface features
(Qin et al. 2001; Schott et al. 2001). LST was derived
using thermal infrared (TM6) band (10.40–12.50 μm),
with effective wavelength of 11.457 μm, has relatively
lower radiometric sensitivity and coarser spatial resolu-
tion of 120×120 m. Qin et al. (2001) mono-window
algorithm (Sun et al. 2010) was used to retrieve LST
from thermal DN values, and NDVI was used here for
emissivity correction to obtain final LST images.

Table 2 Description of various image transformation used with references

Transformation Algorithm Application References

NDVI
ρ4�ρ3
ρ4þρ3

Vegetation studies (fractional vegetation cover, leaf
area index, plant phenology, productivity, and
chlorophyll density), forest cover estimation,
canopy studies, studying rainfall patterns, drought
monitoring, estimating biomass, studying
urbanisation, as surface urban heat islands (SUHI)
indicator

Anyamba and Tucker (2005); Weiss et al. (2004);
Zhou et al. (2004); Gallo et al. (1995); Carlson
and Ripley (1997); Jong et al. (2011); Yuan and
Bauer (2007); Li and Fox (2012).

NDBI
ρ5�ρ4
ρ5þρ4

Extraction of built-up areas and to study SUHI Zha et al. (2003); Zhang et al. (2009).

NDWI
ρ4�ρ5
ρ4þρ5

Used in vegetation studies as it gives an indication
of vegetation liquid

Gao (1996); Gabor and Jombach (2009); Maki et al.
2004)

NDBaI
ρ5�ρ6
ρ5þρ6

Extraction of bare areas that are moisture deficient Chen et al. (2006)

MNDWI
ρ1�ρ5
ρ1þρ5

Mapping areas covered by water Introduceda

a This index is introduced in this paper

Table 3 Hypothesis, rules and
variables for 1990 and 2009 sat-
ellite images

Hypothesis Rules Conditions

Built-up Built-up areas and rooftops NDVI <0.02 and NDWI <0.2 AND
NDBI ≥0.15 AND NDBaI <−0.25

Sediment Riverbed, silt and sandy −0.75 ≤NDBaI ≤−0.6
Vegetation Agriculture and urban green NDVI >0.3 and 0 <NDWI <0.3 AND −0.6

<NDBaI <0.3 and −0.2 <NDBI <−0.02
Water body Rivers and water bodies MNDWI ≥0.3
Fallow land Agricultural fallow NDVI <0.2 and −0.25 ≤NDWI <−0.1 and

NDBaI ≤−0.3 and 0.1 <NDBI <0.3
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Characterising land use patterns

Five broad categories of LULC were identified
based on visual image interpretation keys; (1)
Built-up comprised of urban features and impervi-
ous structures like asphalt and concrete roads; (2)
River bed included sediments along river and other
sandy and silt deposition structures; (3) A broad

class named ‘Vegetation’ included land under agri-
culture as well as urban vegetation and other can-
opy; (4) Agricultural land without any vegetation
cover including agricultural fallow was classified
as Fallow land; and (5) Water body covered Tapi
river and other small water storage tanks.

Knowledge-based classification technique was
employed to categorise satellite images into LULC
classes. It is a type of hierarchical decision tree algo-
rithm based on hypothesis testing that evaluates vari-
ous rules and conditions defined by the user. Rules are
condition (IF) and action (THEN) statements. Hypoth-
esis, rules and condition represented in linear dendritic
decision tree are inferred and processed to generate
outputs (Table 3). Indices computed earlier were fed
into knowledge engineer as variables for different
LULC classes (the hypothesis), and their threshold
values defined the rules for each hypothesis. Due to
high efficiency of MNDWI in identifying water pixels,
it was used alone for water extraction. The decision
tree thus generated was executed to map LULC. To
assess the classification accuracy, 150 randomly

Fig. 3 Expansion in built-up from 1990 to 2009

Table 4 Accuracy assessment for 1990 and 2009 classification

Class name 1990 2009

PA
(%)

UA
(%)

Kappa PA
(%)

UA
(%)

Kappa

Built-up 90.2 92 0.90 80.39 82 0.77

Sediment 86.27 88 0.85 77.59 90 0.87

Vegetation 90.2 92 0.90 88.24 90 0.87

Water 93.88 92 0.90 90.91 80 0.76

Fallow 91.67 88 0.85 86.96 80 0.76

Overall 90.4 0.88 84.4 0.8050
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generated points were overlaid on the satellite image.
Statistically valid sampling strategy was adopted to
assess commission, omission and overall accuracy
(Stehman 1996).

Statistical analysis

Biophysical parameters

Urban land transformations have great impacts on the
biophysical health of the environment. To examine the
complexity and dynamics of this relationship, 150
experimental and 150 control points were randomly
generated. All the points were well distributed among
the LULC classes and the entire study area. At least 30
points per LULC were generated to extract values of
each of the parameters under study. These were then
used to mine out the values of biophysical parame-
ters two times for analysing the influence of LULC
change on the biophysical environment. Correlation
and regression techniques were employed to exem-
plify how the environment responds to stimulus of
urbanisation.

Directional profiles of LST

Based on the spatial patterns of urban expansion in the
area, four directional profiles for LST were selected:
north–south (N–S), east–west (E–W), northeast–

southwest (NE–SW) and northwest–southeast (NW–
SE) profiles. LST values for these spatial profiles were
analysed across the background of expansion in the
built-up area over the study period.

Results and discussion

LULCC analysis

1990 and 2009 LULC maps were analysed to study
expansion of urban area. The classes mapped were
built-up, vegetation, fallow, river bed and water. Area
statistics for LULC ascertained massive expansion
(nearly three times) in urban expanse at the cost of
vegetation and fallow lands. The urban extent increase
has been equal to 42.74 km2 from 1990 to 2009. With
improved connectivity through roads, highways and
bridges, the city has expanded in almost all directions
(Fig. 3) resulting in newer settlements in Amroli, Nana
Varachha, Choriyasi, Athwa, Vishal Nagar, Sima
Nagar and Jain Wadi. Udhana has been the centre for
highly denser sprawls that could be attributed to its
high economic importance for diamond cutting and
polishing works. Overall classification accuracy of
LULC map for 1990 was 90.4 % and for 2009 was
84.4 % (Table 4). The expert classification accuracy is
remarkably good as compared to hard classification
methods (Punia et al. 2011; Wentz et al. 2008). Due to

Fig. 4 Biophysical parame-
ters in 1990 and 2009
(NDWI, NDVI, NDBI and
NDBaI)
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similar spectral responses of long fallow and less
dense built-up areas, 2009 image has poorer accuracy
for fallow and built-up classes.

Analysis of biophysical parameters

For quantification of relationship between biophysical
parameters under study (Fig. 4), correlation analysis
was carried out using 300 point values. The analysis
demonstrated that LST shoots up with a fall in NDVI
or greenness. A similar relationship was observed for

NDWI also. Lesser will be the water content, lesser
will be evaporation and hence reduced cooling will
result in higher temperature. This explanation also
supports a positive correlation between NDVI and
NDWI (Fig. 5). NDBI represents built-up intensity of
land. The higher the built-up intensity, the more im-
pervious and the lower the moisture content. Thus,
LST–NDBI behaves asynchronously. NDBI and
NDWI exhibited a perfectly negative relationship as
the two indices have exactly the same numerical val-
ues but antonymous signs.

Fig. 5 Scatter plots and coefficient of determination for different parameters in 1990 and 2009
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Bareness index did not exhibit a strong correla-
tion with any of the parameters. Similar results have
been observed by Essa et al. (2012). NDBaI exem-
plified a negative correlation with NDVI and NDWI
and a positive one with LST and NDBI for both
years. But this relationship shows inconsistency
when analysed separately for control and experimen-
tal points showing positive values for year 1990
(0.032 for control and 0.183 for experimental) and
negative for year 2009 (−0.09 for control and
−0.20671 for experimental). Uddin et al. (2010) also
state that in some isolated cases, NDBaI and LST
have a positive variability with respect to each other
(Fig. 5).

LST characterisation

Experimental and control point values of LSTwere ana-
lysed to assess thermal response of different LULC clas-
ses. The average temperature of experimental built-up
points is relatively higher than that for vegetation areas.
LST for vegetation to built-up change areas increased by
8.8±2.6 °C, and fallow land to built-up increased by 6.6

±2.8 °C, while 8.6±2.8 °C change was observed for
increase in built-up density.

Increase in average temperature for unchanged veg-
etated areas was assessed using control points and was
found to be 3.3±3.4 °C. Hence, the net increase in the
temperature for changes from vegetation to built-up is
around 5.5±2.6 °C, vegetation to fallow is 6.7±3 °C,
fallow land to built-up is 3.5±2.9 °C and built-up to
dense built-up is 5.3±2.8 °C. Temperature change for
vegetation to fallow is higher than vegetation to built-
up which could be due to land being fallow for long
and thus being deficient in moisture. Also, as com-
pared to fallow land, which is completely bare, built-
up areas are characterised by shadow effects from
building structures.

Temporal analysis of LST demonstrated that built-
up areas have a higher temperature as compared to
vegetation thus forming the foundation for phenome-
non of urban heat island in the area (Schwarz et al.
2012; Liu and Zhang 2011) (Fig. 6). Built-up areas
that have come up by replacing vegetation show ele-
vated temperatures as compared to other areas. Urban
areas contain impervious surfaces that decrease local

Fig. 6 LULC and LST for 1990 and 2009

Environ Monit Assess (2013) 185:3313–3325 3321



infiltration, percolation and soil moisture (Brun and
Band 2000). Due to their thermal properties, heat
island phenomenon is triggered. LST is one of the
key factors that control physical, chemical and biolog-
ical processes in the environment and in turn is gov-
erned by them. Urbanisation in particular changes the
thermal environment due to physical properties of its
urban fabric (Pu et al. 2006) and encourages the de-
velopment of urban heat island.

Spatial profile analysis

For a detailed analysis of spatial distribution of LST in
the study area, four directional profiles were studied
(Fig. 7). The profiles were constructed based on direc-
tions in which built-up area has expanded. N–S profile
ran from Kosam and Sherdi villages in north of the
river to Udhana industrial centre, in south of Surat city.
Spatial N–S profile of LST for 1990 and 2009 im-
proved our understanding that industrialised area

increased thermal environment. The curve became
flatter for Surat city in 2009, and new peaks were
observed in Udhana centre which were not there in
1990. This could be explained based on the expansion
of built-up in Udhana area. E–W profile starts with
agricultural lands of Bhesan and Melgama villages,
passing built-up area of Jain Wadi crossing the river
to industrial areas of Bharat Nagar, through the city of
Surat, and finally ending in the agricultural lands of
Kosmada and Ladvi villages. E–W profile exhibited
results similar to N–S profile with low thermal re-
sponse of agriculture. In 1990, only one major peak
was observed in built-up area in and around Surat,
while in 2009, profile flattened with higher tempera-
ture values illustrating impacts of increased built-up
on LST.

The NW–SE profile sets out from agricultural areas
of Talad and Sarol Gam villages; crossing across the
river, it passes through Katargam, Surat and Shakti
Nagar areas finally terminating through agricultural

Fig. 7 Directional profiling of LST distribution in 1990 and 2009
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areas of Bonand and Kharsava villages. Temperature
values (Fig. 7) for agricultural areas, in the beginning
and end of the profile, were generally lower with
sporadic peaks due to fallow land. Built-up areas of
Katargam, Surat and Shakti Nagar gave high temper-
ature responses. Profile corresponding to river showed
a steep depression in temperature. Such an observation
was recorded for all four profiles regarding encounter-
ing river in between. NE–SW profile begins at fields
of Abrama crossing the river passing through Kodiyar
Nagar and Surat city through Krishnaganj and Athwa
to Vesu village. A peak was observed for the new
built-up in 2009, towards the northern bank of the
river. In 1990, fewer peaks were observed for Surat,
Kishanganj and Athawa areas, but more and higher
peaks were observed in 2009.

Conclusion

The study was taken up to assess spatio-temporal foot-
prints of urbanisation in Surat city. Over a span of two
decades, the city has spread over an area of 42.75 km2,
with multi-directional expansion of its built-up. The city
has densely spread to the south in Udhana industrial hub
and comparatively less dense northward spreads in
Amroli and Kosad Navi Vasahat. Choriyasi, a small
satellite town, manifests the eastward spread of the city,
while Athawa manifested the same for the southwestern
spreads. Older parts of Sima Nagar and Jain Wadi
served as centres of urban growth for the west.

The urban expansion has altered the state of various
biophysical parameters (including surface temperatures,
moisture contents and vegetation cover) which govern
the health of the environment. In this study, we qualita-
tively studied the multifaceted interactions of biophysical
parameters and quantified relationships among them. The
selected parameters retrieved from satellite data are LST
(thermal behaviour of surface), NDVI (intensity of green-
ness), NDBI (intensity of built-up), NDWI (moisture
status of surface) and NDBaI (bareness). Of these,
LST–NDVI and LST–NDWI were found to vary in-
versely, while LST–NDBI and NDVI–NDWI had a
strong positive correlation. Of these, NDBaI was one
parameter that could not give consistent results and was
characterised by very weak correlations with the other
parameters. Although NDBaI has been successfully
employed by Chen et al. (2006), in this work, some
inconsistent results were obtained for this index. Thus,

we found that this index gave site-specific results, and
there is further scope of developing a more robust index
to measure the bareness intensity of the earth surface.

In face of urban heat island (UHI), LST parameter
was more intensely analysedwith respect to its changing
spatial distribution against the background of changing
LULC patterns. LST through UHI can have severe
impacts on human and environmental health by increas-
ing the frequency and intensity of heat waves (Tan et al.
2010). It was observed that with southward expansion of
Udhana industrial area, new peaks for LST came up in
2009. Similar results were found for Athwa, Jain Wadi
and Surat city areas. Apart from urban areas, some peaks
came up for agricultural fallow lands.

Global urbanisation needs accurate information on
the expansion of impervious surfaces and associated
parameters. The parameters discussed in this study are
of prime importance to assess the impact of
urbanisation-linked development. Eco-planning in ur-
ban sector could use such information to achieve the
goals of sustainable practices and planning. The infor-
mation generated can also aid in understanding the
contribution of local effects on the global phenomena
of climate change and associated changes. These
should be explored to understand the health of urban
ecosystem and linkages with human well-being.
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