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Abstract The impacts of climate change on stream-
flow and non-point source pollutant loads in the
Shitoukoumen reservoir catchment are predicted by
combining a general circulation model (HadCM3)
with the Soil and Water Assessment Tool (SWAT)
hydrological model. A statistical downscaling model
was used to generate future local scenarios of
meteorological variables such as temperature and
precipitation. Then, the downscaled meteorological
variables were used as input to the SWAT hydrolog-
ical model calibrated and validated with observations,
and the corresponding changes of future streamflow
and non-point source pollutant loads in Shitoukoumen
reservoir catchment were simulated and analyzed.
Results show that daily temperature increases in three
future periods (2010–2039, 2040–2069, and 2070–
2099) relative to a baseline of 1961–1990, and the
rate of increase is 0.63°C per decade. Annual
precipitation also shows an apparent increase of
11 mm per decade. The calibration and validation
results showed that the SWAT model was able to
simulate well the streamflow and non-point source
pollutant loads, with a coefficient of determination of

0.7 and a Nash–Sutcliffe efficiency of about 0.7 for
both the calibration and validation periods. The future
climate change has a significant impact on streamflow
and non-point source pollutant loads. The annual
streamflow shows a fluctuating upward trend from
2010 to 2099, with an increase rate of 1.1 m3 s−1 per
decade, and a significant upward trend in summer,
with an increase rate of 1.32 m3 s−1 per decade. The
increase in summer contributes the most to the
increase of annual load compared with other seasons.
The annual NH4

+-N load into Shitoukoumen reser-
voir shows a significant downward trend with a
decrease rate of 40.6 t per decade. The annual TP load
shows an insignificant increasing trend, and its change
rate is 3.77 t per decade. The results of this analysis
provide a scientific basis for effective support of
decision makers and strategies of adaptation to climate
change.

Keywords Climate change . Shitoukoumen reservoir .

Statistical downscaling method . SWATmodel .

HadCM3 . Non-point source pollution

Introduction

Climate change affects the hydrological cycle and
causes increasing atmospheric water vapor content,
thereby changing patterns, intensity, and extremes of
precipitation, thus changing the runoff over water-
sheds and the streamflow in rivers. It also modifies
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nutrient transformation and transport characteristics
(Murdoch et al. 2000) affecting water quality and
exacerbating many forms of water pollution, such as
nutrients, sediments, and pathogens, with possible
negative impacts on ecosystems and human health
(Bates et al. 2008; Campbell et al. 2009; Park et al.
2010; Tu 2009; Williamson et al. 2008). In addition to
climate change impacts on water availability and
hydrological risks, the consequences to water quality
are receiving great attention (Delpla et al. 2009;
Hodgkins et al. 2003; Lee et al. 2010; Neff et al.
2000; Yu et al. 2002; Whitehead et al. 2006).

Regional and global climate scenarios and models
are useful tools for producing data inputs for
hydrological models in order to understand and
predict the potential effects of climate change on
water bodies (Delpla et al. 2009). Xu (1999) reviewed
the methodologies and processes for assessing hydro-
logical responses to global climate change. Among
these methodologies, general circulation models
(GCMs) are especially important tools for the assess-
ment of climate change and are widely used (Fowler
et al. 2007; Ghosh and Mujumdar 2008; Hamlet and
Lettenmaier 1999). However, because of their coarse
spatial resolution, the outputs from these models may
not be used directly in impact studies (Randall et al.
2007). Downscaling and analytical studies can deter-
mine the most appropriate GCM for assessing climate
change impacts at the watershed scale (Diaz-Nieto
and Wilby 2005; Fowler et al. 2007). There are two
fundamental techniques for downscaling coarse GCM
data to finer resolutions, namely, dynamical down-
scaling techniques (Graham et al. 2007; Payne et al.
2004; Stone et al. 2001), which involve a nested
regional climate model, and statistical downscaling
techniques (Chu et al. 2009; Wilby et al. 2002), which
employ a statistical relationship between the large-scale
climatic state and the local variations derived from
historical data. The statistical downscaling technique
was applied in the present study.

Hydrologic models are often combined with
climate scenarios generated from GCMs to produce
potential scenarios of the effects of climate change on
water resources and non-point source pollution
(Dibike and Coulibaly 2005; Xu 1999). There are
mainly four types of hydrological model used to
estimate the impact of climate change, namely,
empirical models (annual base), water-balance models
(monthly base), conceptual lumped-parameter models

(daily base), and process-based distributed-parameter
models (hourly or finer base). The choice of a model
for a particular case study depends on many factors,
the most important being the purpose of the study and
model availability. The Soil and Water Assessment
Tool (SWAT) includes approaches describing how
CO2 concentration, precipitation, temperature, and
humidity affect plant growth, ET, snow, and runoff
generation. It has often been used as a tool to
investigate climate change effects. During simulation,
the climate, land use, soil, topography, and geological
variations are all taken into consideration (Arnold and
Fohrer 2005). The SWAT model has been applied
successfully throughout the world. Arnold and Fohrer
(2005) reviewed the background, development, and
application of SWAT in many study areas. The SWAT
model is a relatively mature model, and therefore, the
SWAT model was selected for simulation in the
present study. Several case studies of climate change
impacts on hydrology and water resources have
used a combined GCM–SWAT model system
(Graiprab et al. 2010; Xu et al. 2009; Zhang et al.
2007; Jha 2004; Stone and Hotchkiss 2003; Githui et
al. 2009; Limaye et al. 2001). However, little work
has been done to examine the effects of future
climate changes on agricultural runoff and non-point
source pollutant loads.

Shitoukoumen reservoir is a large reservoir at the
middle reaches of the Yinma River in a tributary of
the Songhua River. It is the main drinking water source
of Changchun City. In recent years, the upstream
sediments and pollutants from municipal, industrial,
and agricultural sources have worsened the water
quality and water resources of the Shitoukoumen
reservoir, threatening the safety of drinking water for
residents in Changchun and the Songhua River water
quality. However, the control of non-point source
pollution is difficult because the pollution is affected
by rainfall runoff, which has great temporal and
spatial variations. Therefore, the main objectives of
the present study were to evaluate the effect of
climate change on future streamflow volume and
non-point source pollutant loads at the inlet of the
Shitoukoumen reservoir. SWAT, a physically based,
distributed hydrological model, was calibrated and
validated by comparing observations and simulation
data of streamflow and non-point source pollutant
at the outlet of the study area. The HadCM3 model
developed at the Hadley Centre in the United Kingdom
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was downscaled by the Statistical Downscaling Model
(SDSM) technique to generate possible future, local
meteorological variables including temperature and
precipitation in emission scenarios A2 (medium–high
emissions) in this study area. The downscaled data were
then used as input to the SWAT model to simulate the
corresponding future streamflow and non-point source
pollutant loads in the Shitoukoumen reservoir catch-
ment. The results of the study are expected to provide a
theoretical basis for local water management authorities
to make scientific and rational control measures and
response plans.

Materials and methods

Description of the study area

Shitoukoumen Reservoir is located in Jiutai City, Jilin
Province (125°45′E, 43°58′N). It is a large reservoir
in the middle of the Yinma River, which is the major
first-level branch of the Songhuajiang River. It covers
an area of 4,944 km2. The major basins of the region
are the Yinma River, the Shuangyang River, and the
Chalu River (Fig. 1). The Shitoukoumen reservoir
catchment lies in the North Temperate Zone, with a
climate of continental, seasonal, temperate, and
semi-humid monsoon.

The location is dry and windy in spring, warm and
rainy in summer, dry with early frost and rapid
cooling in autumn, and with long, cold, multi-
northwest winds in winter. The annual average
temperature is 5.3°C. The coldest average temperature
is −17.2°C in January, and the hottest average
temperature is 23.0°C in July. The annual rainfall is
369.9–667.9 mm, and it is mainly concentrated from
May to September, which accounts for 80% of annual
precipitation. Annual average evaporation is 1658.1mm,
and the largest values occur from April to June, which
accounts for 50% of annual evaporation. Thus, there are
often drought and serious water shortages in the study
area. In recent years, the water quality of Shitoukoumen
reservoir has deteriorated because of non-point
source pollutants from upstream from sources such
as pesticides, fertilizers, urban sewage, rural domestic
garbage, wastewater from industrial and mining
enterprises in protected areas, and soil erosion.
The deterioration of water quality poses a serious
threat to the safety of drinking water for residents

in Changchun City and to the water quality of the
Songhua River.

GCMs and downscaling methodology

The Hadley Centre’s coupled ocean/atmosphere
climate model (HadCM3) was used to construct
climate change scenarios. Downscaling of the GCM
output to the study area was accomplished using the
SDSM (Wilby et al. 2002).

The SDSM uses a multi-linear regression approach,
using one or more synoptic-scale predictors (region-
scale variables, such as GCM variables) to build a
correlation with the predictands (site measured variables,
such as daily mean temperature, precipitation). This
correlation is calibrated using the National Centers for
Environmental Prediction (NCEP)/National Center for
Atmospheric Research (NCAR) reanalysis data and
observed data for 1961–1975 and validated with data
for 1976–1990. The NCEP/NCAR reanalysis data set is
a continually updating gridded data set representing the

Fig. 1 Location of the study area
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state of the Earth’s atmosphere and incorporating
observations and numerical weather prediction model
output dating back to 1948. It is a joint product from the
NCEP and the NCAR (Wikipedia 2011). The derived
relationships were then used to downscale ensembles of
the same local variables for the future climate using
data supplied by the HadCM3 driven by the A2
emission scenarios for the full period 2010–2100.
The characteristics of future climate change were
analyzed by using linear regression and Mann–
Kendall trend analysis methods (Kendall 1975;
Mann 1945) during the 2020s (2010–2039), the
2050s (2040–2069), and the 2080s (2070–2099).

The precipitation and temperature changes that are
brought by climate change result in significant influence
on the composition and water quality of rivers and lakes.
Moreover, changes of rainfall intensity and frequency
can affect non-point source pollution, so that it will
become more urgent to manage wastewater and water
pollution. So, the measured daily mean air temperature
and precipitation at Shitoukoumen Reservoir weather
station from 1961 to 2000 were selected from the daily
observational data of the China Meteorological Admin-
istration. There are 23 different atmospheric variables,
and these were derived from the daily reanalysis dataset
of NCEP/NCAR for 1961–2001 at a scale of 2.5°
(long.)×2.5° (lat.), as well as outputs of scenarios A2 of
HadCM3 from 1961 to 2099, with a spatial resolution of
3.75° (long.)×2.5° (lat.) (Chu et al. 2009). First, the
NCEP data were interpolated to adjust their resolution
to be the same as scenarios A2 of the HadCM3 model,
and then all of the data were normalized.

SWAT model

SWAT is a basin-scale, continuous time model that
operates on a daily time step and is designed to predict
the impact of management on water, sediment, and
agricultural chemical yields in ungauged watersheds.
The model is physically based, computationally effi-
cient, and capable of continuous simulation over long
time periods. Major model components include weather,
hydrology, soil temperature and properties, plant growth,
nutrients, pesticides, bacteria and pathogens, and land
management (Arnold et al. 1998; Neitsch et al. 2005).

The AvSWAT2005 was used in this study, which is
provided with an ArcView Geographic Information
System interface (Di Luzio et al. 2004). The model
divides the simulation area into multiple subwater-

sheds which are then divided into units of unique
soil/land use characteristics called hydrological
response units (HRUs). The classification of the
Shitoukoumen reservoir catchment resulted in 26
sub-basins and 113 HRUs.

In SWAT model, hydrology processes simulated
include surface runoff estimated using the SCS
curve number or Green–Ampt infiltration equation;
percolation modeled with a layered storage routing
technique combined with a crack flow model;
potential evapotranspiration modeled by the Penman–
Monteith methods; snowmelt; transmission losses from
streams; and water storage and losses from ponds.
Sediment yield is calculated with theModified Universal
Soil Loss Equation (MUSLE). Nutrient outputs,
including nitrogen and phosphorus, are estimated
by tracking their movements and transformations.
The nutrient loads are principally estimated by means of
nutrient assimilation by plants and daily nutrient runoff
losses. These losses are quantified based on the nutrient
concentration in the top soil layer, theMUSLE sediment
yield equation, and an enrichment ratio that depends on
soil and land use type (Arnold et al. 1998).

There are numerous SWAT applications reported in
the literature for hydrological and water resources
assessment, in the water quantity aspects (water
discharge, groundwater dynamics, soil water, snow
dynamics, and water management), water quality
assessment (land-use and land-management change,
best management practices in agriculture), and climate
change impact. And several authors have also written
reviews about the application of SWAT model
(Arnold and Fohrer 2005; Gassman et al. 2007;
Krysanova and Arnold 2008).

Calibration and validation

The application of the model first involved the
analysis of parameter sensitivity, which was then
used for model calibration (Muleta and Nicklow
2005). The calibration was carried out with combined
auto and manual calibration using flow data from
January 2000 to December 2004. For the streamflow
and non-point source pollutant load simulation, manual
calibration was performed for monthly time steps using
measurements from the Shitoukoumen gauging station
at the catchment outlet.

The goodness-of-fit measures used were the coef-
ficient of determination (R2; Eq. (1)) and the Nash–
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Sutcliffe efficiency (ENS, (Eq. (2)) (Nasha and
Sutcliffea 1970). The R2 and ENS values are explained
in Eqs. 1 and 2:

R2 ¼ ðPn
i¼1 ðOi � O

�ÞðPi � P
�ÞÞ2

Pn
i¼1 ðOi � O

�Þ2 Pn
i¼1 ðPi � P

�Þ2
ð1Þ

ENS ¼
Pn

i¼1 ðOi � O
�Þ2 �Pn

i¼1 ðPi � OiÞ2
Pn

i¼1 ðOi � O
�Þ2

ð2Þ

where Pi are the model-predicted values, Oi are the
observed values, and O

�
is the mean of observed

values. The optimal statistical value occurs when the
R2 and ENS values are closest to 1.

Surface runoff was calibrated until average measured
and simulated values were within 15% of each other,
monthly R2 >0.6, and ENS >0.5. Organic and mineral
nitrogen and phosphorus were calibrated to within 25%
after flow calibration was completed (Santhi et al.
2001). A value greater than 0.75 for monthly ENS can
be considered very good; between 0.65 and 0.75 can
be considered good, while its value between 0.5 and
0.65 is considered satisfactory (Moriasi et al. 2007)

After model calibration was finished, model validation
followed. Model validation is the process of performing
the simulation using data collected from January 2005 to
December 2007, without changing any parameter values
that may have been adjusted during calibration.

Results and discussion

Generation of future climate data

The structure and operation of SDSM include the
following five distinct tasks (Wilby et al. 2002): (1)
screening of predictor variables, (2) model calibration,
(3) synthesis of measurement data, (4) generation of
climate change scenarios, and (5) diagnostic testing
and statistical analyses.

Selecting predictors

In SDSM, the selection of the most relevant predictor
variables was carried out through linear correlation
analysis, partial correlation analysis, and scatter plots

between the predictors and the predictand variables.
Large-scale predictor variables representing the current
climate conditions, derived from the NCEP reanalysis
data sets, were used to investigate the percentage of
variance explained by each predictand–predictor pair.
The predictors that had reasonable correlations with the
measured daily maximum and minimum temperature
and precipitation were selected from the NCEP/NCAR
variables and listed in Table 1.

Calibration and validation of SDSM

Model calibration in this case was to find the
coefficients of the multiple linear regression equation
parameters that relate the large-scale atmospheric
variables derived from the NCEP data set and local-
scale variables. The calibration period for temperature
and precipitation was from 1961 to 1975, and the
validation period was 1976–1990. The calibration and
validation results are shown in Table 2.

As is shown in Table 2, 73.8% and 75% of the
variance in maximum and minimum air temperature
could be explained by the downscaling model, while
only 16.6% of the variance in daily precipitation
could be explained. The relative errors for Tmax, Tmin,
and daily precipitation were 0.8%, 3.9%, and 3.7% in
the calibration period. The relatively low explained
variance for daily precipitation is consistent with
previous studies and underlines the difficulty of down-
scaling local precipitation series from regional-scale
predictors. Presently, the unexplained component in
daily precipitation amounts is generally treated
stochastically by the downscaling model.

Figure 2 shows the performance of the model
during the validation period. The graph shows a good
agreement between the observed and simulated mean
daily maximum and minimum temperatures for all
months of the year. However, the daily average
precipitation was overestimated. Unlike temperature,
precipitation is a conditional process that depends on
other intermediate processes such as humidity, cloud
cover, and whether a day is wet or dry. For that
reason, precipitation is identified by many researchers
as one of the most problematic variables in down-
scaling. For the validation period, the relative errors
for Tmax, Tmin, and daily precipitation were 9.1%,
12.9%, and 5.8%. The statistical relationship estab-
lished by using SDSM is suitable for the generation of
future climate change scenarios.
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Results for future climate change

The SDSM model, after sufficient calibration and
validation, was used to downscale the GCM
(HadCM3) outputs to generate future climate change
scenarios. It can be seen from Fig. 3 that there is a
general increasing trend for both minimum and
maximum temperature in the A2 scenario for the
three future periods and that the degree of increase of
the daily minimum temperature is smaller than that of
the daily maximum temperature. Compared with
baseline data of 1961–1990, the maximum tempera-
ture would increase by an average of 1.67°C, 3.44°C,
and 5.65°C in the 2020s, 2050s, and 2080s, respec-
tively, and the minimum temperature would increase
by an average of 1.07°C, 2.68°C, and 4.69°C. The
monthly changes of minimum and maximum temper-
atures for the future showed heterogeneity. The
temperature showed significant increasing trends in
most months, showing slight decreases only in April
and May in the 2020s. The average daily precipitation
showed a significant increasing trend in most months,
especially in September, and slight decreases in April
to June. Compared with the baseline of 1961–1990,
the daily precipitation increased by an average of
1.12, 0.89, and 1.72 mm in July, August, and

September in the three future periods. The daily
temperature and precipitation all showed a sharp
increase from July to September.

Characteristics analysis for future climate change

The characteristics of future climate change of the
Shitoukoumen reservoir catchment were further
analyzed using the linear regression and Mann–
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Fig. 2 Comparison between average daily precipitation (a),
maximum (b), and minimum (c) air temperature per month in
study area during validation (1976–1990)

Table 1 Large-scale climate predictors for computing surface meteorological variables with SDSM model

Predictand Tmax Tmin PRCP

Predictor mslp (mean sea level pressure) mslp (mean sea level pressure) p500 (geopotential height at 500 hPa)

p_z (surface vorticity) p_z (surface vorticity) p8_z (vorticity at 850 hPa)

p500 (geopotential height at 500 hPa) p_v (surface zonal wind) r500 (relative humidity at 500 hPa)

p8_z (vorticity at 850 hPa) p8_z (vorticity at 850 hPa) r850 (relative humidity at 850 hPa)

p850 (geopotential height at 850 hPa) p850 (geopotential height at 850 hPa) shum (near surface specific humidity)

shum (near surface specific humidity)

Table 2 Explained variances, standard errors, and relative error
for maximum and minimum air temperature and daily precipita-
tion between observed and simulated results in the calibration
period (1961–1975) and the validation period (1976–1990)

Predictant Calibration Validation

E% Er Er

Tmax (°C) 73.8 0.008 0.091

Tmin (°C) 75.0 0.039 0.129

Precipitation (mm) 16.6 0.037 0.058
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Kendall trend analysis methods. The Mann–Kendall
(M–K) test method is widely used to detect trends in
hydroclimatic time series (Chen et al. 2007; Pellicciotti
et al. 2007).

Figure 4 shows the simulated annual average
precipitation and temperature curves, the 5-year moving
average curves, and the linear regression curves. The
daily mean temperature shows a fluctuating upward
trend in future periods with two minimum values, in
2070 and 2065, and subsequently a steady rise from
2070 to 2099. For annual precipitation, there is also an
increasing trend with annual fluctuations. The precipi-
tation shows a downward trend in 2010–2040 toward a
less rainy period and a subsequent upward trend in
2040–2060 toward a more rainy period. Then, there are
upward and downward trends with slight fluctuations
from 2060 to 2090, followed by an increasing trend after
2090 toward a more rainy period.

Table 3 lists the values of the regression slope b, the
Zc values obtained from M–K test methods, and Kendall
slope β value. It can be seen that the warming trends of
average annual and seasonal daily temperature were all
significant at the >95% confidence level, and β values
were all positive numbers, which shows that this
upward trend is obvious. The increase degrees of the
four seasons are similar. The climatic change rate of
annual mean temperature is 0.63°C per decade. Annual
precipitation also shows an increasing trend, though it is
not statistically significant at the >95% confidence level,
and climatic change rate reaches 11 mm per decade. For
the seasonal change, precipitation was significantly
decreased in spring, while it showed a significantly
increasing trend in summer and winter. Compared to
other seasons, the summer precipitation and temperature
make the largest contribution to the increase in annual
precipitation and temperature. So, the future precipitation
and temperature will have significant changes in summer.

The response of non-point source pollutant loads
to climate change

SWAT model calibration and validation

Parameter sensitivity analysis was performed before
the calibration and validation of the SWAT model.
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Sensitive parameters identified by an autocalibration–
sensitivity analysis procedure embedded in SWAT
version 2005 included CN2 (curve number), soil
evaporation compensation factor, soil available water
capacity, and base flow alpha factor.

The calibration was carried out with an auto mode
combined with manual adjustment of sensitive
parameters using flow data from January 1, 2000, to
December 31, 2004. Because the nutrient loss data for
2000–2005 were not available, model performance
was evaluated through calibration for 2006 with
NH4

+-N data and validation for 2007 with both
NH4

+-N and total phosphorus (TP) data.
Figures 5 and 6 show the comparisons of the

monthly measured and simulated stream flows and
NH4

+-N and TP loads during both the calibration and
validation periods at the Shitoukoumen reservoir
inlet. Except for some years during which simulated
peaks are greater than observed ones or peak flows
are underestimated, most of the periods show a very
good agreement between the simulated and observed

streamflows, and the observed and simulated values
plotted near the 1:1 line. The statistical evaluations for
streamflow showed that ENS and R2 values were 0.76
and 0.78 in calibration and 0.71 and 0.74 in
validation, further confirming that the model captured
the monthly measured trends. Distribution of the
observed and simulated values of NH4

+-N and TP
load along with the 1:1 lines are presented in Figs. 7a, b
and 8. It revealed that the simulated values of NH4

+-N
and TP were in close agreement with the observed
values. The values of R2 and ENS for the NH4

+-N
calibration were 0.72 and 0.68, and the values were
0.71 and 0.65 for the model validation. The values
of R2 and ENS for TP were 0.74 and 0.63 for the
model validation. The relative errors for observed
and simulated streamflow and NH4

+-N and TP
loads were within the evaluation criteria. The
values of the statistical parameters indicate that
the SWAT model was successful in assessing
streamflow and NH4

+-N and TP loads for the entire
catchment.

Tmean Precipitation

b (°C/10a) Zc H0 β b (mm/10a) Zc H0 β

Annual 0.63 10.73* Reject 0.064 11 1.75 Accept 0.805

Spring 0.6 7.79* Reject 0.063 −2.15 −2.36* Reject −0.231
Summer 0.72 9.52* Reject 0.071 12.7 2.40* Reject 1.057

Autumn 0.59 9.08* Reject 0.059 −0.25 −0.25 Accept −0.049
Winter 0.55 7.68* Reject 0.055 0.6 2.92* Reject 0.043

Dry seasons 0.57 8.65* Reject 0.056 0.99 1.04 Accept 0.079

Rainy seasons 0.69 10.67* Reject 0.069 9.93 1.74 Accept 0.734

Table 3 Results of the
trend test for the series of
daily mean temperature and
precipitation

*p<0.05
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Impact of climate change on streamflow
and non-point source pollution in Shitoukoumen
reservoir catchment

To assess the impact of global warming on stream-
flow and non-point source pollution in the Shitoukou-
men reservoir catchment, daily precipitation and
temperature series obtained from a GCM (HadCM3)
grid were as input to the SWAT model. It is seen from
Fig. 9 that there is insignificant change of streamflow
or NH4

+-N and TP loads from January to May in the
three periods. The future monthly streamflow will
increase by an average of 18.5 m3/s from September
to December in the three future periods compared
with the baseline data of 1961–1990. The NH4

+-N
load entering the reservoir increases significantly in
September by an average of 137.7, 60.3, and 36.6 t,
respectively, in the 2020s, 2050s, and 2080s com-
pared with baseline data, and the TP load increases
significantly in July by an average of 63.6 and 149.7 t
in the 2050s and 2080s. It can be seen that there are
similar changes in streamflow and NH4

+-N and TP
loads from January to September. They all showed

slight or no change from January to June and then a
sharp increase in July and September. The streamflow
continued to increase from October to December,
while NH4

+-N and TP loads showed no changes. The
variations may be due to the agricultural management
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practices. To investigate the correlations between
streamflow and nutrient loads, the SPSS statistical
software was used. The results reveal that NH4

+-N and
TP loads have positive correlations with streamflow
(correlation coefficients of 0.68 and 0.684, respective-
ly, at 95% confidence level). The non-point source
pollutant loads have similar trends to that of stream-
flow, indicating that runoff plays a decisive role in the
changes of pollutant concentrations.

Characteristics analysis for future streamflow
and non-point source pollutant loads change

Long-term trends in the annual and seasonal streamflow
and non-point source pollutant loads of Shitoukoumen
reservoir catchment were tested by linear regression and
Mann–Kendall methods. Figure 10 shows the simulated

annual streamflow and NH4
+-N and TP loads. The

streamflow shows fluctuating upward trends from 2010
to 2099. The 5-year moving average curve indicates
that annual streamflow shows the following tends: an
upward trend from 2010 to 2022, a downward trend
from 2022 to 2040, a sharp increase from 2040 to
2062, a slowly declining trend from 2062 to 2078,
sharp upward and downward trends in 2082 and 2088,
respectively, and an increasing trend from 2088 to
2099. For the NH4

+-N load, there are two significant
fluctuating upward and downward trends, from 2042 to
2048 and from 2070 to 2078, with only slight
fluctuations in other years. The variations in TP load
are very similar to those of the NH4

+-N load, with
significant peak values in 2046 and 2075.

a

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

20s 50s 80s

b

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

20s 50s 80s

c

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

20s 50s 80s

-30

-20

-10

0

10

20

30

-150

-100

-50

0

50

100

150

-50

0

50

100

150

200

Q
 \m

3
·s

-1
N

H
4

+
-N

 \t
T

P 
\t

Fig. 9 The monthly response of streamflow, NH4
+-N, and TP

load change compared with the average streamflow, NH4
+-N,

and TP load from 1961 to 1990

a

2010 2020 2030 2040 2050 2060 2070 2080 2090

Year

st
re

am
fl

ow
 \m

3
·s

-1

yearly streamflow 5a moving average

linear trend

b

2010 2020 2030 2040 2050 2060 2070 2080 2090

Year

N
H

4
+
-N

 \t

yearly load 5a moving average linear trend

c

2010 2020 2030 2040 2050 2060 2070 2080 2090

Year

T
P 

\t

yearly load 5a moving average linear trend

0

200

400

600

800

1000

1200

0

400

800

1200

1600

2000

2400

2800

0

500

1000

1500

2000

2500

3000

Fig. 10 The annual average streamflow (a),NH4
+-N (b), and

TP (c) load characteristic curve in study area in the future
period (2010–2099)

590 Environ Monit Assess (2012) 184:581–594



The values of the regression slope b, the significant
level, and the Mann–Kendall statistics Zc and β values
are listed in Table 4 and Table 5. According to the M–
K statistics: ∣Zc∣>Z1-p/2=1.96, streamflow shows a
significant downward trend in spring (β<0) and an
upward trend in summer (β>0) at the p=0.05
significance level. However, the changes in trend of
annual and other seasonal streamflows are not
significant. The b values indicate annual streamflow
increase by 1.1 m3 s−1 per decade, and the rates of
seasonal streamflow change (in cubic meters per·-
second per decade) are −0.08 in spring, 1.32 in
summer, 0.15 in autumn, 0.05 in winter, −0.04 in dry
seasons, and 1.43 in rainy seasons. The contribution
to annual streamflow in summer is larger than it is in
other seasons, so measures to prevent the occurrence
of flood disaster need to be considered. As for the
NH4

+-N load into the reservoir, the decreasing trend is
significant in all periods except summer and winter.
The rates of annual and seasonal change in NH4

+-N
load are (in tons per decade): −40.6 annually, −2.526

in spring, 1.434 in summer, −9.481 in autumn, −0.095
in winter, −1.145 in dry seasons, and −5.623 in rainy
seasons. Compared with other seasons, the decreasing
trend of NH4

+-N load in autumn contributes the most to
the decrease of annual load. The TP load into the
reservoir shows a significant downward trend in spring
and dry seasons by β<0, and Zc values are −2.15
and −2.942, respectively. The annual TP load shows an
increasing, though not statistically significant,
trend, and its rate of variation is 3.77 t per
decade. The rates of seasonal TP load change
(in tons per decade) are −2.15 in spring, 6.335 in
summer, −4.2 in autumn, −0.015 in winter, −0.343
in dry seasons, and 0.971 in rainy seasons. The
upward trend of TP load in summer contributes the most
to the increase of annual load compared with other
seasons. These loads may cause further deterioration of
the water quality of Shitoukoumen reservoir.

Conclusions

In this study, the effects of potential climate change on
streamflow volume andNH4

+-N and TP load in the inlet
of the Shitoukoumen Reservoir were analyzed based on
projected climate change conditions developed using
the SDSM combined with GCM output and a complex,
physically based, distributed hydrologic model (SWAT).
The following main conclusions are drawn:

(1) The SWAT model was successfully applied in
the inlet of Shitoukoumen Reservoir through
observation data. The statistical evaluations for
streamflow show that the ENS and R2 values
were 0.71 and 0.74 in validation. Values of R2

for NH4
+-N calibration and validation were 0.72

Table 4 Results of the trend test for the series of streamflow

Streamflow

b (m3 s−1/10a) Zc H0 β

Annual 1.1 1.07 Accept 0.881

Spring −0.08 −1.98* Reject −0.059
Summer 1.32 2.08* Reject 0.942

Autumn 0.15 0.06 Accept 0.025

Winter 0.05 0.03 Accept 0.002

Dry seasons −0.04 −0.55 Accept −0.088
Rainy seasons 1.43 1.28 Accept 0.940

*p<0.05

NH4
+-N TP

b (t/10a) Zc H0 β b (t/10a) Zc H0 β

Annual −40.6 −2.86* Reject −3.554 3.77 −0.36 Accept −0.368
Spring −2.52 −3.51* Reject −0.151 −2.15 −3.17* Reject −0.058
Summer −1.43 −0.79 Accept −0.276 6.33 0.94 Accept 0.289

Autumn −9.48 −2.51* Reject −0.382 −4.23 −1.86 Accept −0.164
Winter −0.09 −0.52 Accept −0.011 −0.02 −0.33 Accept −0.002
Dry seasons −1.14 −3.19* Reject −0.098 −0.34 −2.94* Reject −0.032
Rainy seasons −5.62 −2.51* Reject −0.521 0.97 −0.20 Accept −0.037

Table 5 Results of the
trend test for the series of
NH4

+-N and TP load

*p<0.05
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and 0.71, respectively, and R2 was 0.74 for TP in
model validation. The evaluation results showed
that the SWAT model was able to simulate well
the monthly streamflow and NH4

+-N and TP
loads.

(2) The SDSM, which was calibrated and validated
using the NCEP reanalysis data sets and obser-
vational data, could well downscale GCM
(HadCM3) output to generate climate change
from 2010 to 2099 in the A2 scenario. The
projected daily temperature showed a significant
increase of 0.63°C per decade. Annual precipi-
tation also shows an increasing trend of 11 mm
per decade, but the differences are not statisti-
cally significant. Precipitation shows its most
significant increase in summer, by 12.70 mm per
decade, which makes the largest contribution to
the increase in annual precipitation compared to
other seasons.

(3) The simulated future climate change values were
used as input for the SWAT model. The annual
streamflow shows upward trends from 2010 to
2099, with an increase of 1.1 m3 s−1 per decade,
and a significant downward trend in spring and
an upward trend in summer. The increase rate of
streamflow in summer reaches 1.32 m3 s−1 per
decade. The annual NH4

+-N load into the
reservoir shows a significant downward trend
of 40.6 t per decade. Compared with other
seasons, the decreasing trend of NH4

+-N load
in autumn contributes the most to the decrease of
annual load. The annual TP load shows an
increasing, but not statistically significant, trend
of 3.77 t per decade. The increasing rate of TP
load in summer reaches 6.335 t per decade,
which contributes the most to the increase of
annual load compared with other seasons. The
NH4

+-N and TP loads also have positive
correlations with streamflow.

(4) In general, streamflow volume and TP load in
the study area are predicted to experience
dramatic changes in the future. Although the
projected changes in climate, streamflow, and
non-point source pollutant loads through GCMs
combined with the SWAT model cannot be
projected exactly because of the uncertainty in
climate change scenarios and GCM outputs, the
general results of this analysis should be identified
and incorporated into water resources management

plans and water quality remediation. The develop-
ment of a higher spatial and temporal resolution of
the GCMs and coupling of hydrological model
will be essential to further studies.
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