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Abstract In this study, landslide risk assessment for
Izmir city (west Turkey) was carried out, and the
environmental effects of landslides on further urban
development were evaluated using geographical in-
formation systems and remote sensing techniques. For
this purpose, two different data groups, namely
conditioning and triggering data, were produced. With
the help of conditioning data such as lithology, slope
gradient, slope aspect, distance from roads, distance
from faults and distance from drainage lines, a
landslide susceptibility model was constructed by
using logistic regression modelling approach. The
accuracy assessment of the susceptibility map was
carried out by the area under curvature (AUC)

seismic region, earthquake data were considered as
primary triggering factor contributing to landslide
occurrence. In addition to this, precipitation data were
also taken into account as a secondary triggering
factor. Considering the susceptibility data and trigger-
ing factors, a landslide hazard index was obtained.
Furthermore, using the Aster data, a land-cover map
was produced with an overall kappa value of 0.94.
From this map, settlement areas were extracted, and
these extracted data were assessed as elements at risk
in the study area. Next, a vulnerability index was
created by using these data. Finally, the hazard index
and the vulnerability index were combined, and a
landslide risk map for Izmir city was obtained. Based
on this final risk map, it was observed that especially
south and north parts of the Izmir Bay, where
urbanization is dense, are threatened to future land-
sliding. This result can be used for preliminary land
use planning by local governmental authorities.

Keywords Landslide . Risk . GIS . Remote sensing .
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Introduction

Landslides cause enormous casualties and severe
economic losses in mountainous regions worldwide
(Schuster 1996). Preventing or reducing mass move-
ments always involves systematic and rigorous
processes to stabilize or manage slopes (Fell and
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approach, and a 0.810 AUC value was obtained. This
value shows that the map obtained is successful. Due
to the fact that the study area is located in an active



Hartford 1997). Since this is seldom sufficiently
recognized, new and more effective methodologies
need to be developed in order to increase the
understanding of landslide risk and to enable rational
decisions to be made on the allocation of funds for
landslide risk management (Guzzetti 2000; Sterlacchini
et al. 2007).

The risk concept for landslide hazard assessment
was discussed by many authors (Varnes 1984; Brabb
1984; Einstein 1998; Carrara et al. 1991; Fell 1994;
Soeters and van Westen 1996; Aleotti and Chowdhury
1999; Chung and Fabbri 1999; Hearn and Griffiths
2001; Cardinali et al. 2002; Dai et al. 2002; Gorsevski
et al. 2003; Glade and Crozier 2005; Guzzetti et al.
2006; Lee and Pradhan 2006; Remondo et al. 2008;
Van Westen et al. 2008; Zezere et al. 2008; Guzzetti et
al. 2009; Wu et al. 2009; Pradhan and Youssef 2010;
Das et al. 2011; Jaiswal et al. 2011a, b; Peters-Guarin
et al. 2011; Nefeslioglu and Gokceoglu 2011; Pradhan
et al. 2011; Tang et al. 2011). Briefly, risk is a function
of hazard and vulnerability parameters, which are
obtained from elements at risk. Hazard means the
probability of occurrence within a specified period of
time and within a given area of a potentially
damaging phenomenon (Varnes 1984). The popula-
tion, properties and economic activities (including
public services) at risk in a given area correspond to
the “elements at risk” parameter (Newman and
Strojan 1998). “Vulnerability”—commonly expressed

on a scale of 0 (no loss) to 1 (total loss)—is often
placed in context using either monetary terms, such as
loss experienced by a given property, or to loss of life
(Glade and Crozier 2005; Jaiswal et al. 2010).

Landslide risk assessment must also be considered in
urban planning strategies due to the fact that landslides
adversely affect settlement areas. The landslides in the
Izmir city are generally located in residential and new
urban areas. This circumstance therefore requires a
comprehensive landslide risk management study. For
this purpose, this paper aimed to create a landslide risk
map for Izmir city. Landslide susceptibility assessment
has been carried out using landslide-conditioning param-
eters based on the logistic regression model. Landslide-
conditioning parameters were collected and transformed
into a spatial database. Logistic regression values for
each of these parameterswere computed usingGIS tools.
Landslide occurrence areas were detected in Izmir city
by interpreting aerial photographs and detailed field
surveys. Then, a landslide inventory map was obtained
and was used to assess the frequency and distribution of
shallow landslides in the study area. The methodological
approach is shown schematically in Fig. 1.

Study area

Izmir is the third largest metropolitan city located on
the western coast of Turkey (Fig. 2) with a population

Fig. 1 Flow diagram
showing the approach used
to model landslide risk in
this study
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of 3.5 million and has become well-known as a centre
for art, culture, tourism and trade activities throughout
the 5,000 years of its history. The Bornova Melange,
which overlies the basement rocks in the Izmir region,
underwent intense tectonic deformation during and
after sedimentation (Erdoğan 1990; Koca 1995;
Kıncal 2005). Bornova melange rocks are made up

of interbedded sandstone–shale, limestone lenses,
limestone and serpentinite bodies, mafic volcanics,
chert and their complexes such as Dededağı and
Kızılkalesi Formations. Neogene sedimentary rocks,
consisting of conglomerate, sandstone, siltstone,
mudstone and limestone, discordantly overlie the
melange, and the contact between the melange and

Fig. 2 Location map of the
study area
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the Neogene units is faulted within the study area
(Fig. 3). The Upper Miocene and Pliocene volcanic
rocks are widespread in and around the city of Izmir
and discordantly overlie the sedimentary rock units
(Fig. 3). The volcanic rocks mainly consist of dacitic
tuffs, dacitic lava, andesitic tuff, agglomerate and lava
subunits (Fig. 3). Andesitic volcanics in the southern
part of Izmir Bay overlie the clayey and marly levels
of sedimentary rocks (Kıncal and Koca 2009). These
volcanics generally have tuffs at the base and are
continuous with agglomerate and andesitic lavas, in that
order (Kıncal et al. 2009; Akgun 2011). Slope failures
in natural slopes have been observed as a result of
seismic activity in the region. An earthquake withMS=
6.0 in 1992 and a sequence of three earthquakes with
MS=5.5, 5.9 and 5.9 in 2005 occurred in the region
(KOERI 2008). Slope instability can develop after
earthquakes with magnitudes of ≥4.0 on the Richter
scale in the shale mountain slopes, particularly rock
mass slides on steeply dipping slopes, greater than 35°
(Keefer 1984). Although there are no any records
about the relationship between the landslides and the
occurred earthquakes in the area, it is considered as the
most powerful triggering factor. This result should be

concluded because Aegian region is one of the most
earthquake prone continental region in the world. In
this context, earthquake should be considered as a
primary triggering factor for landslide occurrence
rather than precipitation.

Landslide information of the area

To carry out a landslide hazard assessment, the
primary data are the landslide inventory. In order to
produce a detailed and reliable landslide inventory
map, extensive field surveys and detailed observa-
tions in the study area were performed. A total of 30
landslides were identified and mapped in the period
from 1995 to 2008, and the mode of failure was
observed to be planar slide, toppling and rotation for
the slide masses according to the landslide classifica-
tion proposed by Varnes (1978). The areal extent of
the smallest observable slide is approximately
0.236 km2 and the largest 3.957 km2 (Fig. 3). The
range of failure depth of the rotational and planar
slides change between 2 and 3 m. The landslides
mapped in the area were separated into two groups

Fig. 3 Geology map of the study area (landslide locations written by red were used for calibration data and written by black were
used for validation data) (modified from MTA 2000 and Avsar 1997)
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that occurred in the south and the north parts of the
study area. It is observed that ten landslides that had
occurred in the northern part and seven that are
observed in the south part of the area (60% of the
total of landslides) were used to calibrate the logistic
regression analysis; the remainder (40% of the total of
landslides) were used for validation.

During the landslide inventory mapping of the
area, landslide locations were prepared through the
drawing of main scarp distinguished from the accu-
mulation/depletion zone or rupture zone (Yılmaz
2009; Akgun 2011). All of the mapped landslides
are presented in Fig. 3, and some site characteristics
can be found in Table 1. Landslides which occurred in
the area have a close relationship to the settlement
areas. This situation constitutes a considerable engi-
neering problem for Izmir city. In Fig. 4, this
relationship is shown. On close inspection of Fig. 4,
it is clearly seen that the most landslides have
occurred in the suburb areas. This is also evidence
for a lack of planning during the process of
urbanization and its consequences. Uncontrolled

slope cutting for constructing building foundations
and other civil structures accelerated the landslide
occurrence on the slopes where the lithology is
susceptible to landslides, and this situation adversely
affected to these structures.

Hazard modelling

In this study, landslide risk assessment started with the
creation and assessment of a probabilistic susceptibil-
ity model, and then the developed susceptibility map
was transformed into a hazard index model. Suscep-
tibility analysis was performed by correlation between
known shallow-seated landslides and six spatial
parameters which controls the instability: lithology,
slope gradient, slope aspect, distance to drainage,
distance to roads and distance to fault lines (Fig. 5).
These data were chosen as landslide-conditioning
parameters because of the fact that landslides which
occurred in the area are frequently seen in the
weathered rocks, on the steep and north facing slopes.

Table 1 Some characteristics of the landslides in the study area (Kıncal et al. 2009)

Landslides in the northern part of Izmir Bay Landslides in the southern part of Izmir Bay

Landslide
no.

Location Geological
unit

Affected
area (km2)

Sliding
direction

Landslide
no.

Location Geological
unit

Affected
area (km2)

Sliding
direction

7 Sarnic Dcr 1.021 S04E-S05W 1 Narbel SnSh 1.996 N55W

8 Camici Vlr 0.531 S28W 2 Limontepe SnSh 0.96 S14E

9 Camici-2 Vlr 0.31 S30W 3 Uzundere Dcr 1.021 N01–15E and
N01–10W

10 Domuzdere SnSh 0.373 N10W 4 Asansor Vlr 0.392 N20E

11 Harmandalı SnSh 0.999 S42W 5 Kadifekale-Zafertepe-
Vezirağa

Vlr 2.226 S22E and S30E

12 Yamanlar SnSh 0.497 N12E 6 Kozagac Dcr 1.877 N76W and
N05W

13 Karagöl Vlr 0.919 N16E 25 Işıklar-1 Lms 0.237 N09W

14 Sancaklı Vlr 1.28 N68W 26 Işıklar-2 Lms 0.345 N04E

15 Çatal Hill Vlr 1.731 N72E 27 Altindag Dcr 3.203 N30W

16 Çiçekliköy Lms 1.428 S40E 28 Arapdere Dcr 0.33 N82E

17 Doğançay Vlr 0.476 S72E 29 Kocacay Vlr 3.957 N80–88E
and S30E

18 Cigli Vlr 1.476 S34W 30 Dede Mountain SnSh 0.25 N24E

19 Cigli Vlr 0.334 S80E

20 Cigli Vlr 0.236 S82E

21 Zeytinlidağ Vlr 0.523 N80W

22 Naldöken Lms 0.46 S64E

23 Palamut Mountain Lms 0.173 N22E

24 Kale Hill SnSh 0.294 N26E
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Additionally, these landslides are close to the
drainage lines and roads in the area. Due to the
cataclastic deformation along the fault zones, some
of which are active and some of which are dormant
faults, the rocks are crushed and weathered which
causes the instability of the slopes. Because of all
these reasons, the mentioned parameters were
chosen to be use as landslide controlling parame-
ters, and it was thought that they should be taken
into account in detail.

A susceptibility model was created by using
logistic regression method, which reflects the relative
spatial probability of landslide occurrence. In the case
of landslide susceptibility mapping, the purpose of
logistic regression is to find the best fitting model to
describe the relationship between the presence or
absence of a landslide, which is the dependent
variable, and a set of independent parameters, such
as slope angle, lithology and distance to drainage
(Ayalew and Yamagishi 2005; Lee 2005; Duman et al.
2006; Lee 2007; Akgun and Bulut 2007; Nefeslioglu

et al. 2008; Pradhan et al. 2008, 2010, 2011; Nandi
and Shakoor 2009; Oh and Lee 2010; Pradhan 2010a,
b, 2011; Pradhan and Lee 2010a, b; Akgun 2011; Gao
and Yin 2011). In logistic regression, the dependent
variable is coded as “1” or “0” to indicate the
presence or absence of a landslide, respectively.
Coefficients determined in the logistic regression can
be used to estimate ratios for each of the independent
variables. The logistic model representing the maxi-
mum likelihood regression model can be expressed in
its simplest form as:

P ¼ 1=1þ ez ð1Þ

where P is the probability of an event occurring. P is
the estimated probability of occurrence in the current
situation. Since z can vary from −∞ to +∞, the
probability varies from 0 to 1 on an S-shaped curve
and Z is defined as:

Z ¼ Bo þ B1X1 þ B2X2 þ . . . . . .þ BnXn ð2Þ

Fig. 4 Some views from the mapped landslides and settlement–landslide occurrence relationships
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where Bo is the intercept of the model and n is the
number of independent variables. The Bi (i=0, 1, 2,…,
n) are the slope coefficients of the logistic regression
model and the Xi (i=0, 1, 2, …, n) are the independent
variables. Based on Eqs. 1 and 2, the equation of
logistic regression can be written in the following
extended form:

LogitðPÞ ¼ 1=1þ e�BoþB1 X1 þB2 X2þ......þBn Xn ð3Þ
Using the equations given above, coefficients of

each parameter’ type and a constant were determined,
and the results are shown in Eq. 4.

Y ¼ �3:8079� 0:000170 distance to roadsð Þ
þ slope aspectb

� 0:000620 distance to drainage linesð Þ
� 0:0005110 distance to fault linesð Þ
þ lithologyb þ 0:014862 slope gradientð Þ ð4Þ

where the logistic regression coefficients of slopeb and
lithologyb parameters are given in Table 2. In the
logistic regression assessment, slope aspect and lithol-
ogy data were processed as categorical data, whereas
the remaining data were processed as numerical data.

With the help of these coefficients, a landslide
susceptibility index map was produced. For the purpose
of easy visual interpretation of this index map, the
values in the map were classified into five classes by
equal area approach, and the final landslide susceptibil-
ity map was produced (Fig. 6). Based on this
susceptibility map, 11.57% of the total area is found
to have a very low susceptibility. Low, medium and
high susceptibility zones constitute 30.65%, 24.44%
and 19.81% of the area, respectively. The very high
susceptibility area is 13.53% of the total study area
(Akgun 2011). To test the predictive capability of the
susceptibility model, an assessment was carried out by
comparing the susceptibility map with the past land-
slides that were separated for validation step. For this
purpose, the AUC method (Lee et al. 2004) was used.
The AUC is a good indicator to check the prediction
performance of the model, and the largest AUC,
varying from 0.5 to 1.0, is the most ideal model
(Fig. 6). The AUC value of ROC curve for logistic
regression-based landslide susceptibility map was
found to be 0.810. This result shows that there is a
fair agreement between the prediction accuracy and the
occurrence of landslides in the study area.

The transformation of landslide susceptibility map
into a hazard map requires consideration of landslide

Fig. 5 Landslide-conditioning parameters for the study area (a slope gradient, b slope aspect, c distance from drainage, d distance from
fault lines, e distance from roads) (Akgun 2011)
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triggering parameters (Prabu and Ramakrishnan 2009;
Kouli et al. 2010; Nefeslioglu et al. 2011). For this

purpose, two triggering parameters were taken into
account: precipitation and seismicity. Seismicity is

Table 2 Logistic regression coefficient values and spatial characteristics of the conditioning parameters (modified from Akgun 2011)

Parameter Class Pixels with
landslide

Landslide
density (%)

Numbers of pixels
in domain

Percentage of
domain (%)

Logistic regression
coefficient

Slope 0–10 11,907 37.56 1,156,293 57.93 0.014862
10–20 12,909 40.72 479,064 24.00

20–30 5,522 17.42 288,524 14.46

30–40 1,328 4.19 66,993 3.36

>40 38 0.12 5,132 0.26

Slope aspect Flat 0 0.00 227,953 11.40 −0.00001
0–45 2,442 7.70 192,438 9.62 0.01374

45–90 2,370 7.48 141,240 7.06 0.01356

90–135 3,593 11.33 168,284 8.41 0.01961

135–180 5,254 16.57 227,969 11.40 0.02138

180–225 5,378 16.96 316,384 15.82 0.01956

225–270 4,540 14.32 243,749 12.19 0.01845

270–315 4,292 13.54 241,753 12.09 0.01721

315–359 3,835 12.10 240,230 12.01 0.01564

Lithology Detritic carbonates 7,372 23.25 40,632 2.03 0.02310

Quaternary sediments 2,454 7.74 71,875 3.59 0.00431

Volcanosedimantary rocks 0 0.00 825 0.04 −0.00001
Serpentinite 0 0.00 1,845 0.09 −0.00021
Sandstone–shale
intercalations

6,070 19.15 61,758 3.09 0.01292

Limestone olistolite 3,248 10.24 16,712 0.84 0.02513

Kızılkalesi Formation 0 0.00 2,061 0.10 −0.00002
Yaka formation 0 0.00 2,688 0.13 −0.00011
Volcanic rocks 12,559 39.61 31,411 1.57 0.05159

Dededağı formation 0 0.00 2,015 0.10 −0.00001
Distance to
drainage

0–100 7,089 22.36 407,374 20.37 −0.000620
100–200 5,078 16.02 275,574 13.78

200–300 4,137 13.05 201,736 10.09

300–400 3,697 11.66 159,723 7.99

>400 11,703 36.91 955,593 47.78

Distance to road 0–100 272 0.86 23,390 1.17 −0.000170
100–200 244 0.77 19,957 1.00

200–300 287 0.91 18,924 0.95

300–400 300 0.95 20,557 1.03

>400 30,601 96.52 1,917,172 95.86

Distance to fault 0–100 2,610 8.23 72,492 3.62 −0.0005110
100–200 2,573 8.12 64,975 3.25

200–300 2,590 8.17 59,197 2.96

300–400 2,551 8.05 61,052 3.05

400–500 1,917 6.05 51,110 2.56

>500 19,463 61.39 1,691,174 84.56

5460 Environ Monit Assess (2012) 184:5453–5470



considered as the main triggering factor for landslides
recorded in the landslide inventory database. Due to
the fact that the resulting seismic hazard curve in
terms of maximum peak ground acceleration (PGA) is
called the “best estimate” seismic hazard for Izmir, the
PGA data were used as a primary landslide triggering
data in this study (Fig. 7) (RADIUS 1997; Deniz et al.
2010). Corresponding to a return period of 475 years
(10% probability of exceedance in 50 years), a PGA
map was reproduced, considering the analysis com-
bination composed of the most likely assumptions
(Deniz et al. 2010). In order to produce the PGA map,
the attenuation relationships of Gulkan and Kalkan
(2002) and Boore et al. (1997) were used. These
equations are stated below.

ln Y ¼ �0:682þ 0:253 M � 6ð Þ
þ 0:036 M � 6ð Þ2

� 0:562 ln r þ 0:202 ð5Þ

ln Y ¼ �0:242þ 0:527 M � 6ð Þ
� 0:778 ln r þ 0:301: ð6Þ

where r=(rcl
2+h2)1/2, Y = horizontal component of the

peak ground acceleration (PGA) in grams, M =
moment magnitude, rcl = the closest horizontal
distance to the surface projection of the rupture in
kilometres and h = fictitious depth, computed by
regression analysis as 4.48 and 5.57 km, respectively,
for Eqs. 5 and 6. When reproducing the PGA map, the
only mentioned PGA map, which was produced for
rock sites, was initially optimized to the scale of study
because the scale of the used map is less than the scale
of the study area. For this purpose, the used map was
georeferenced according to the study area frame. Then,
some of the PGA contours, which cannot be obtained
from the used PGA map due to the scale mismatch,
were reproduced by using projection approach. After
these processes, the reproduced PGA contours were
interpolated by triangulation interpolation method
using the ArcGIS software, and finally, the reproduced
PGA map for the study area was obtained. Based on
the reproduced PGA map, the values obtained for
Izmir city and its close vicinity range between 0.05 and
0.35 g with a mean of 0.20 g (Fig. 7).

Although there are no rainfall-induced landslides
recorded in the incomplete national landslide inventory,
precipitation was also considered as a secondary

Fig. 6 Landslide susceptibility map obtained by logistic regression model and the AUC assessment of the produced susceptibility
map (Akgun 2011)
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triggering factor. Precipitation in Izmir city causes
extreme events such as flooding and overflowing. For
that reason, we analysed the annual long-term average
precipitation values for the period 1975–2006 (General
Directory ofMeteorological Services 2010). The annual
long-term average precipitation density map was made
by the data obtained from seven rainfall stations in and
around Izmir city. For the distribution of the rainfall
values in the range 587 to 700 mm, the inverse
distance interpolation method was used (Fig. 8).

After obtaining the two landslide triggering param-
eters, the landslide susceptibility map and the trigger-
ing parameters were overlaid. Before overlaying the
triggering parameters and landslide susceptibility
map, they must be standardized to a common
dimensionless scale because the scales of these data
were different from each other. To perform this
process, the Eq. 7 was used (Malczewski 1999).

Xij ¼ Xj � Xij=Xmax�j � Xmin�j ð7Þ

where Xij is the standardized score for the ith
alternative and jth attribute, Xij is the raw score and
Xmax− j and Xmin− j is the maximum and minimum
score for the jth attribute, respectively (Malczewski
1999; Sener et al. 2006). In the new scale, 0
corresponded to the lowest value and 1 corresponded
to the highest value. As a result of this process, the
hazard index map was obtained (Fig. 9). In the hazard
map, the potential event and its probability of
occurrence were combined. The hazard levels were
expressed as probability in quantitative forms, namely
from low (0) to high (1). The accuracy of the hazard
map was evaluated by the AUC assessment method-
ology. For this purpose, the landslide inventory data,
which were separated as test data, were compared
with the hazard map. Based on this assessment, the
AUC value for the hazard map obtained was found to
be 0.85 (Fig. 9) and the prediction accuracy of
85.42%. Overall, the case of the hazard map showed
a higher accuracy than the susceptibility map.

Fig. 7 Peak ground acceleration map of the study area for a return period of 475 years (modified from Radius 1997 and Deniz et al.
2010)
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Fig. 8 Annual long-term average precipitation density map of the study area

Fig. 9 Landslide hazard index map of the study area and the AUC assessment of the produced hazard map
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Vulnerability assessment

When attempting to assess landslide risk, vulnerabil-
ity to landslides is often considered as equivalent to
complete loss of the assets or total destruction of the
elements at risk, for all landslides and landslide types
and for all assets or elements at risk in an investigated
area (Carrara et al. 1991). The simplification is made
to make the problem more manageable because
information on the vulnerability of specific assets or
individual elements at risk is generally lacking (Galli
and Guzzetti 2007). Mathematically, landslide vulner-
ability (VL) can be expressed as;

VL ¼ P DL � 0jL½ �; 0 � DL � 1ð Þ ð8Þ

where DL is the assessed (definite) or the expected
(forecasted) damage to an element given the occur-
rence of a hazardous landslide (L) (Einstein 1998). In
Eq. 8, vulnerability is the probability of total loss to a
specific element or the proportion of damage to an
element, given the occurrence of a landslide (Vandine
et al. 2004). In both cases, vulnerability is expressed
on a scale from 0 to 1, 0 meaning no damage and 1
expressing complete loss or destruction (Galli and
Guzzetti 2007). Vulnerability to landslides is
expressed in economic (monetary, quantitative) and
heuristic (qualitative) scales (Alexander 2005). When
using economic measurements, vulnerability is most
commonly expressed in terms of the element value
such as monetary, intrinsic and utilitarian values.
When expressed heuristically, landslide vulnerability
is described in a qualitative (descriptive) term, which
means the expected or definite damage to an element
at risk (Alexander 2005). Considering all the concepts
mentioned above, a vulnerability dataset was prepared
for the study area. Initially, a land-cover map based on
remote sensing approach was created. For this
purpose, Aster Level 3A satellite image data acquired
in 2004 was used. The image was rectified based on a
1:25,000-scale topographical sheet. The data were
resampled using the first-degree polynomial transfor-
mation and the nearest neighbour algorithm so that
the original brightness values of pixels were kept
unchanged (Sunar and Kaya 1997; Chen 2002). The
resultant root mean square error (RMSE) for the
image was found to be 0.5526 pixels. This value is
acceptable as the maximum tolerable RMSE value
(Jensen 2000). To classify the image, the multi-layer

perceptron (MLP) classifier of the Idrisi software was
applied (Eastman 2004). The MLP classifier is a
machine-learning classifier and has been used effec-
tively in various single-date land-cover mapping
studies (Huang and Jensen 1997; De Fries and Chan
2000; Kavzoglu and Mather 2003). In almost all
cases, this classifier has proven superior to conven-
tional classifiers such as maximum likelihood and
minimum distances and often provides overall accu-
racy improvements of 10–20% (Rogan and Chen
2004). At the end of the classification process of the
image, a land-cover map of the area was obtained
with a 94.00% overall kappa accuracy index. This
was calculated by the kappa analysis, which is a
discrete multivariate technique used in accuracy
assessment (Congalton and Mead 1983) (Table 3).
As a result of the classification process, six land-cover
classes such as settlement, dense and sparse vegeta-
tion, bare land, coastal wetland and wetland were
identified (Fig. 10). Among these classes, “settle-
ment” was extracted from the classified land-cover
map to produce a vulnerability map. The settlement
class includes buildings, roads, airports, pipelines,
powerlines, access for remote facilities etc. Based on
the classified image data, the developed areas cover
an area of 197.95 km2. This extracted data constituted
the elements at risk data. Due to a lack of required
information about the direct loss inventory for the
study area, all the developed area data were evaluated
as elements at risk data. Therefore, the developed
areas were assigned to 1, with remaining areas
assigned as 0 (Fig. 10).

Risk modelling and results

Risk analysis aims to determine the probability that a
specific hazard will cause harm, and it investigates the
relationship between the frequency of damaging
events and the intensity of the consequences (Guzzetti
et al. 2009). Varnes (1984) explained the application
of risk concept to landslide and other mass move-
ments. With reference to this study, landslide risk
assessment aims to determine the expected degree of
loss due to a landslide and the expected number of
lives lost, people injured, damage to property and
disruption of economic activity. The first explanation
refers to “specific risk” (Rs), and the second explana-
tion corresponds to “total risk” (Rt) concepts. Specific
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landslide risk is commonly expressed by the product
of landslide hazard (HL) and landslide vulnerability
(VL), or:

RS ¼ HL � VL ð9Þ

proach aims to establish the probability of loss of life
(Fell and Hartford 1997; Guzzetti 2000; Guzzetti et al.
2005), or the expected damage due to a slope failure
(Bunce et al. 1997; Guzzetti et al. 2004). Establishing
the probability of a loss requires a catalogue of
landslides and their consequences.

In order to determine landslide risk in the Izmir city,
the quantitative approachwas used. For this purpose, the
obtained landslide hazard and vulnerability maps were
combined with each other in a direct specific risk map
using the Eq. 9, and a final landslide risk index map
was obtained. To aid visual interpretation, the produced
risk index map was divided into categorical risk areas.
Thus, the landslide risk classes were clearly identified.
When classifying the landslide risk index into categor-
ical classes, a standard deviation method was applied.
This classifier is generally proposed for this purpose
because it uses the mean values to generate class
breaks (Ayalew and Yamagishi 2005). Based on this

method, five risk classes were distinguished, very low,
low, moderate, high and very high (Fig. 11). According
to this risk map, 9.83% (19.41 km2) of the settlement
areas is very low risk and the low-, moderate- and
high-risk zones form 49.29% (97.34 km2), 25.64%
(50.64 km2) and 9.34% (18.44 km2) of the settlement
areas, respectively. About 5.90% (11.67 km2) of the
settlement areas is estimated to be very high risk.

Concluding remarks

In international landslide literature, it is possible to
find a huge number of studies performed on landslide
susceptibility. However, the number of studies on the
assessment of landslide hazard and risk in literature is
limited. Even though the algorithms for landslide
hazard and risk evaluations are able to be defined
exactly, they involve highly complex processes during
the application stage. Uncertainties in calculation of
runout distances, transformation of susceptibility
values to hazards rates and determination of vulner-
ability functions for the elements at risk constitute the
main limitations for landslide hazard and risk studies
(Nefeslioglu and Gokceoglu 2011). According to
Gokceoglu and Sezer (2009), one of the important
topics to be considered in the near future is landslide
risk. Even though there are limitations in this study,
the aim was to produce a landslide risk map for the
Izmir city. The Izmir city was chosen for such a study

Table 3 Error matrix analysis of the image classification procedure

Classified data

Classes 1 2 3 4 5 6 Total ErrorC KIA

Control data 1 392 0 0 207 0 216 4,365 0.096 0.896

2 14 5,641 0 0 0 0 5,655 0.003 0.997

3 6 33 346 0 0 0 385 0.101 0.893

4 2,209 0 2 7,887 0 7 10,105 0.220 0.759

5 30 0 0 0 61,586 0 61,616 0.001 0.998

6 103 0 0 0 0 9,742 9,845 0.010 0.988

Total 6,304 5,674 348 8,094 61,586 9,965 91,971 –

ErrorO 0.374 0.006 0.006 0.025 0.000 0.022 – 0.030 Overall KIA=0.941

90% confidence interval=±0.0009 (0.0298–0.0317), 95% confidence interval=±0.0011 (0.0296–0.0319), 99% confidence
interval=±0.0015 (0.0293–0.0322)

ErrorO errors of omission (expressed as proportions), ErrorC errors of commission (expressed as proportions, 1 settlement, 2 dense
vegetation, 3 sparse vegetation, 4 bare land, 5 coastal wetland, 6 wetland)
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In this equation, HL and VL are the probabilities.
To determine landslide risk, risk assessment proce-

dures can be separated into two categories; quantita-
tive (probabilistic) and qualitative (heuristic)
approaches (Guzzetti et al. 2009). Quantitative ap-



Fig. 10 Land-cover map obtained by classification of Aster satellite data and vulnerability map of the study area
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because there are several landslides which were
triggered by both earthquakes and rainfalls, in the
city, and these landslides have adversely affected the
existing and newly planning residential areas. Land-
slide susceptibility was firstly produced for the study
area, and these data constituted the base of the risk
mapping studies. Since Izmir city is one of the most
active areas in Turkey in terms of seismicity, finding
good earthquake data are relatively easy. In addition
to this, due to the fact that there were an adequate and
appropriate number of meteorological stations, suffi-
cient rainfall data could be collected. After all these
data production stages, to produce a landslide risk
map for the study area was possible. According to the
obtained risk map, the most risky areas were
determined to be located on the southern and
southeastern parts of the Izmir Bay. At the same time,
these parts are the most populated areas of Izmir city.
The areas with high and moderate risk generally
concentrate on the northern parts of the Izmir Bay.
These areas should be focused for detail study
because this is where current processes of urbaniza-
tion are concentrated. Finally, although several land-

slide susceptibility studies were carried out in Turkey,
this study is one of the pioneer attempts for the Izmir
city in terms of landslide risk mapping studies for
Turkey. It is evident that the quantitative risk
approach is based on probabilistic calculations and
the numerical parameters. High-quality data and
determination of suitable parameters for the assess-
ment of landslide risk of a region have crucial
importance. Moreover, the risk assessment is more
dynamic process when compared with the suscep-
tibility or hazard assessments because the risk
values and the elements at risks can be changed
depending on urban development, infrastructure
construction etc. In addition, it is possible that the
necessary data for the landslide risk assessments
can be collected by simple and applicable methods
if the technological facilitates are used. As a final
conclusion, the landslide risk assessment tools can
be designed as dynamic systems. This idea can be
realized because the developments in computer and
GIS technologies provide these facilities.

The final stage of the landslide risk assessment is
the risk management. As stated by van Westen et al.

Fig. 11 Landslide risk map of the study area
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(2006), the various components of landslide risk
assessment should be integrated in risk information/
management systems which should be developed as
spatial decision support systems for local authorities
dealing with risk management. If the landslide risk
assessments are considered by the local authorities
and/or decision makers, the risk assessments will
contribute to increase in the quality of the daily life of
the communities.
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