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Abstract Atmospheric corrections for multi-temporal
optical satellite images are necessary, especially in
change detection analyses, such as normalized differ-
ence vegetation index (NDVI) rationing. Abrupt
change detection analysis using remote-sensing tech-
niques requires radiometric congruity and atmospher-
ic correction to monitor terrestrial surfaces over time.
Two atmospheric correction methods were used for
this study: relative radiometric normalization and the
simplified method for atmospheric correction
(SMAC) in the solar spectrum. A multi-temporal data
set consisting of two sets of Landsat images from the
period between 1991 and 2002 of Penang Island,
Malaysia, was used to compare NDVI maps, which
were generated using the proposed atmospheric
correction methods. Land surface temperature (LST)
was retrieved using ATCOR3_T in PCI Geomatica
10.1 image processing software. Linear regression
analysis was utilized to analyze the relationship
between NDVI and LST. This study reveals that both

of the proposed atmospheric correction methods
yielded high accuracy through examination of the
linear correlation coefficients. To check for the
accuracy of the equation obtained through linear
regression analysis for every single satellite image,
20 points were randomly chosen. The results showed
that the SMAC method yielded a constant value (in
terms of error) to predict the NDVI value from linear
regression analysis-derived equation. The errors (av-
erage) from both proposed atmospheric correction
methods were less than 10%.
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Introduction

Satellite image analysis has provided invaluable data
for environment monitoring over the past few
decades. Repeat observations of a given study area
with spatial synchronization increases the quality of
environmental observation data, especially in change
detection analysis (Janzen et al. 2006; Du et al. 2002).
However, there is variation in the sensor’s response
over time due to changes in satellite sensor calibra-
tion, variation in atmospheric effects, changes in
target reflectance, and differences in illumination and
observation angles (Eckhardt et al. 1990).

Two levels of radiometric correction, namely
absolute and relative, have been widely applied in
change detection analysis. Absolute radiometric cor-
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rection requires either an atmospheric correction
algorithm or both atmospheric models and the related
atmospheric properties at the image acquisition time.
This allows for the conversion of the digital number
of a pixel to the percent of reflectance at the surface
of Earth (Richter 1990; Song et al. 2001). Many
studies have been carried out to improve the removal
of the scattering and absorption caused by atmospher-
ic effects. The obtained results from these studies
have been used to generate the atmospheric transfer
code for atmospheric correction purposes (Kaufman
1988). Although a fair amount of research focuses on
radiative transfer module, the atmospheric profile and
the atmospheric and sensor properties at the time of
image acquisition are still required. Thus, a problem
exists when implementing absolute radiometric cor-
rection, due to the difficulty in acquiring atmospheric
properties for the particular satellite images (Canty et
al. 2004). Furthermore, for most historical satellite
images, such data are not readily available. This
becomes the major obstacle for the application of
radiative transfer module in radiometric correction.

Inversely, alternative methods for radiometric
correction are available through a variety of relative
radiometric correction techniques when atmospheric
profiles are not available. Relative radiometric cor-
rection involves a simpler theory regarding atmo-
spheric profiles and less computationally intensive. A
variety of relative radiometric correction techniques
have been developed for multi-temporal satellite
images (Du et al. 2002; Furby and Campbell 2001).
Among these techniques, relative radiometric normal-
ization has been widely used in many studies. It
generates data that are normalized for multi-spectral
and multi-temporal images taken under different
conditions. In addition, all of the atmospheric param-
eters and sensor calibration procedures that are
compulsory for the use of absolute radiometric
correction methods are not necessary for relative
radiometric normalization. Procedures involve exam-
ining two or more multi-temporal satellite images
through the relationship between top of atmosphere
(TOA) or surface reflectance of the same study area. It
assumed that the reflectance value is consistent for the
images within the study period and can be well-
approximated by a linear function (Canty et al. 2004).
The difficulty encountered in the application of the
relative radiometric normalization technique is choos-
ing suitable and proper pseudo-invariant features

(PIF). Any selection of improper PIF may introduce
error into the obtained results after normalization.

The main purpose of radiometric correction is to
remove variation in the sensor’s response to every
target in multi-temporal satellite images. The selection
of an appropriate radiometric correction method,
which is matched with the study’s purpose, can yield
accurate results after correction.

Study area

Penang Island is located in the northern part of
Malaysia, within latitudes 5° 12′N to 5° 30′ N and
longitudes 100° 09′ E to 100° 26 E (Fig. 1). George
Town is the capital city of the state of Penang and is
also the second-largest city in Malaysia. It is located
in the eastern region of Penang Island. Additionally,
Penang Island is the most populated island in the
country, with an estimated population of 720,000 and
an area of approximately 295 km2.

Normally, Penang Island experiences a warm and
sunny equatorial climate throughout the entire year
(Tan et al. 2010). The average annual temperature
varies between 27°C and 30°C, and the mean daily
temperature is about 27°C. The average annual
relative humidity ranges between 70% and 90%.
The average annual rainfall is about 267 cm, though
the annual total can be as high as 624 cm (Ahmad et
al. 2006). During the period of monsoon winds,
weather conditions change drastically. Specifically,
there is sunshine during the day but rainfall in the
evenings.

Penang Island consists primarily of hilly terrain,
with the highest point being Western Hill (part of
Penang Hill) at about 830 m above sea level. The
terrain is mostly comprised of coastal plains, hills,
and mountains. The coastal plains are narrow; the
most extensive ones are located in the northeast and
form a triangular promontory where George Town is
located.

Remotely sensed data

Two Landsat images, acquired on January 11, 1991
(Landsat 5 TM) and January 17, 2002 (Landsat ETM
+), were used for this study. Both of these satellite
images met the basic criteria that are necessary to
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obtain accurate results, including long time series
availability and less than 10% cloud cover over the
total study area (Sun et al. 2008). Since Penang Island
is located at the equatorial region, it was impossible to
acquire the Landsat images without any cloud
coverage in the study area. The study areas are
entirely contained within path 128, and row 56.

Methodology

Image pre-processing

Using multi-temporal satellite images in change
detection analysis necessitated that all of the satellite
images be co-registered in the same coordinate system
(Chen et al. 2006). This ensures that the detection of
change for every pixel can be analyzed accurately. For
example, sometimes normalized difference vegetation
index (NDVI) analysis is based on a pixel-by-pixel
analysis. Thus, every single pixel for both satellite
images should match with one another to accurately
obtain the desired results. In co-registered images,

RMSE (root mean-square error) provides a good
indicator to measure accuracy. RMSE values of less
than 0.5 pixels indicate that the coordinates are
adequately co-registered for Landsat images (Lunetta
and Elvidge 1998). If the RMSE is greater than one
pixel, it can result in misinterpretations in change
detection analysis of satellite images at the same pixel
(Sun et al. 2008). Using PCI Geomatica 10.1 image
processing software, both satellite images were
resampled to 30 m pixel size. Then, they were
georectified using second-order polynomial equations
with the nearest neighbor method. Overall, both
satellite images were associated with RMSE values
of less than 0.5 pixels in this study (Vicente-Serrano
et al. 2008; Schroeder et al. 2006; Kabbara et al.
2008).

Radiometric calibration

The problem of non-homogeneity is common in
working with multi-temporal satellite images. This
issue affects the analysis of abrupt change in
vegetation cover (Vicente-Serrano et al. 2008). Prob-
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Fig. 1 The geographical features of the study area, input thematic layers: a slope, b aspect
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lems with heterogeneity are mainly caused by
absorption and scattering effects from aerosol par-
ticles and gases traveling to the Earth and back to the
sensor itself. In addition, they can also be caused by
noise from the surface signals. Furthermore, atmo-
spheric effects may introduce error into obtained
results due to misinterpretation of the satellite images
(Tokola et al. 1999). Therefore, sensor calibration
should be done when analyzing change detection,
especially in NDVI.

In radiometric calibration, a precise conversion of
the digital number (DN) for Landsat images to
satellite radiance units (L) (Mather 2004; Vicente-
Serrano et al. 2008; Chander et al. 2009a) is possible
by using the following equation:

Ll ¼ LMAXl � LMINl

Qcalmax � Qcalmin

� �
Qcal � Qcalminð Þ

þ LMINl ð1Þ
where

Ll Spectral radiance at the sensor’s aperture,
W m−2 sr−1 μm−1.

LMAXl Spectral radiance scaled to Qcalmax,
W m−2 sr−1 μm−1.

LMINl Spectral radiance scaled to Qcalmin,
W m−2 sr−1 μm−1.

Qcalmax Maximum quantized calibrated pixel value
(DN=255) corresponding to LMAXl.

Qcalmin Minimum quantized calibrated pixel value
(DN=0) corresponding to LMINl.

Qcal Quantized calibrated pixel value [DN].

All related constants were obtained through the
study done by Chander et al. (2009b).

Then, the obtained value of radiance was converted
to a TOA reflectance value according to Chander et
al. (2009b),

r ¼ pLd2

ESunl cos q
ð2Þ

where ρ is the TOA reflectance for band λ, d is the
Earth–Sun distance in astronomical units, ESunλ is
the mean solar-exoatmospheric irradiance for band λ,
and θ is the solar zenith angle in degrees. ESunλ
values were obtained from Chander and Markham
(2003) for the TM image, and from the Landsat-7
Science Data User Handbook for the ETM+ image.
The advantage of TOA reflectance is that it can

normalize the sensor by taking into account different
solar zenith angles at the different times and dates of
satellite images acquisition. In addition, TOA reflec-
tance compensated for variation in Earth–Sun dis-
tance between dates.

Relative radiometric normalization technique

Types of vegetation vary in their reflectance values
due to the noise caused by atmospheric effects. When
conducting change detection and monitoring with
multi-temporal images, it is necessary to consider the
atmospheric effects of absorption and scattering, solar
irradiance, and the noise caused by the detector
(Coppin et al. 2004). Thus, it is crucial to normalize
these effects. The relative radiometric normalization
technique helps to increase the homogeneity between
two multi-temporal satellite images (Yuan and Elvidge
1996; Tokola et al. 1999; Lu et al. 2004; Nelson et al.
2005). It is applied to find a linear relationship
between two satellite images for DNs, radiance,
TOA, or surface reflectance values. Output obtained
from this technique is useful in change detection
analyses, particularly with NDVI analysis. Through
linear regression analysis, the other images are
normalized to the reference image in terms of
reflectance (Vicente-Serrano et al. 2008). The selec-
tion of a reference image should choose the most
recent image that is least affected by clouds or
atmospheric effects. The relationship between the
reference and normalized images is as follow:

rreference;l ¼ aþ brnormalised;l ð3Þ

where ρreferences,λ is the reflectance value for the
reference image ρnormalised,λ is the subject image that
is to be normalized, a is the slope or gain and b is the
intercept or offset.

Relative radiometric normalization often involves
the selection of ground targets, otherwise known as
PIFs, which are chosen on the assumption that their
reflectance values are constant over the study period.
Selection of PIFs often requires the expertise and
local knowledge of the analyst (Janzen et al. 2006).
Any mistake will affect the accuracy of the results,
resulting in a poor correlation between the two
different images after regression. Normally, the
misinterpretation is caused by atmospheric effects
and the noise of the sensor itself. To complete the
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task, several criteria should be considered when
choosing constant targets as PIFs (Schott et al.
1988). Therefore, the following criteria should be
taken into consideration:

(1) Targets like water, asphalt, and sand are usually
selected as PIFs because their reflectance
remains constant for a long time and is less
affected by atmospheric effects.

(2) Targets must be found in an area that has
minimum vegetation coverage. The reflectance
for vegetation may vary or change drastically
within the time period of two multi-temporal
satellite images.

(3) If possible, targets with a wide range of
reflectance values should be to be included
(from bright to dark areas).

In this study, the Landsat image acquired on January 17,
2002 (Landsat 7 ETM+) was chosen as the reference
image, and an image from January 11, 1991 (Landsat 5
TM) was chosen as the normalized image.

ATCOR3

Usually, the absolute radiometric correction methods
that are available only correct for the atmospheric
effects of satellite imagery (Janzen et al. 2006).

Table 1 Summary of the relative radiometric normalization acquired after regression analysis

Satellite images Equation Correlation coefficient, R2

11 January 1991 was normalized to 17 January 2002 -red band (band 3) Y=0.964X−0.020 0.852

11 January 1991 was normalized to 17 January 2002 -NIR band (band 4) Y=0.768X−0.059 0.859

water areas and
cloud coverage.

Fig. 2 The map
generated based on NDVI
computation for 11 January
1991 (normalized image),
using relative radiometric
normalization
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Therefore, they may be suitable in certain flat areas or
areas with a specific kind of terrain. However, the
proposed algorithm cannot reduce topographic
effects. Hence, in mountainous terrain, these methods
may introduce some errors while applying the
algorithms to eliminate atmospheric effects.

To remove atmospheric and topographic effects
efficiently, a method has been developed and imple-
mented for satellite imagery over mountainous areas.
The proposed algorithm is based on the Richter model
(Richter 1990). It generates a three-dimensional
model of the atmosphere by considering the transmit-
tance and radiance functions of areas of different
height, including horizontal alterations in atmospheric
conditions. Consequently, the algorithm is able to
solve the problem of elevation by manipulating the
optical depths at different altitudes.

ATCOR3 is a new approach based on the ATCOR2
model, which is implemented in PCI Geomatica 10.1
image processing software. However, the ATCOR2

model was restricted to use with flat terrain for calculating
surface reflectance. Both of thesemodels use a dense dark
vegetation approach (Liang et al. 1997) and a modified
dense dark vegetation approach (Song et al. 2001).

A database containing radiative transfer code is
acquired from the calculation of values for direct and
diffuse solar flux, path radiance and atmospheric
transmittance within a wide range of weather con-
ditions (Richter 1998). Additionally, the ATCOR3
approach requires information, such as slope, orien-
tation and surface elevation, to eliminate topographic
effects on data. To be accurate, mountainous terrain
should not exceed 3.5 km in height above sea level.
Furthermore, if ATCOR3 is applied to areas of rugged
terrain, the algorithm needs to calculate the specified
atmospheric conditions based on the Lambertian
assumption. Overall, the method implemented here
is restricted only to high spatial resolution satellite
sensors with small swath angles, like Landsat and
Systeme pour I’Observation de la Terre.

water areas and
cloud coverage.

Fig. 3 The map
generated based on NDVI
computation for 17 January
2002 (reference image),
using relative radiometric
normalization
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Land surface temperature retrieval

To examine the relationship between land surface
temperature (LST) and NDVI, LST data were
retrieved from the radiometrically and geometrically
corrected images using ATCOR3_T with the PCI
Geomatica 10.1 image processing software. The
advantage of ATCOR3_T is that the module can
generate a surface thermal map using reference
elevation data. In addition, the retrieval of thematic
maps from LST becomes more accurate, especially in
high mountain terrain, because it considers the slope
and aspect images. In this study, the reference digital
elevation model produced from Shuttle Radar Topog-
raphy Mission (SRTM) data was used to retrieve the
LST. In addition, ATCOR3_T also has a built-in
function for atmospheric correction, which is only
available for band 6 (thermal band) of Landsat
images.

NDVI computation

Multi-temporal and multi-spectral satellite images
provide useful information for change detection
analysis, such as in NDVI computation (Ding et al.
2007; Raynolds et al. 2008). NDVI has been widely
used to continuously observe the growth status and
spatial density distribution of vegetations (Sun et al.
1998). In addition, vegetation is very sensitive to
reflection and absorption in infrared and red bands.
Thus, NDVI becomes a good tool to indicate and
predict the biomass and greenness in a particular area
(Chen and Brutsaert 1998). There are two methods
have been proposed to generate thematic maps for
NDVI values. One is through the obtained TOA
reflectance results (bands 3 and 4) using the relative
radiometric normalization technique. The other one is
using the method proposed by Rahman and Dedieu
(1994) called SMAC. This method correlates the

water areas and
cloud coverage.

Fig. 4 The map
generated based on NDVI
computation for 11 January
1991, using SMAC method
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TOA reflectivity to at-surface reflectivity with the use
of a linear regression correlation. Both of the
generated NDVI maps are then compared to one
another using both of these methods. In this study,
NDVI values for both satellite images were calculated
as the ratio between the measured reflectance in the
red (R) and near-infrared (NIR) bands based on the
following formula (Tucker 1979):

NDVI ¼ r band4ð Þ � r band3ð Þð Þ= r band4ð Þ þ r band3ð Þð Þ
ð4Þ

where, ρ is the surface reflectance for band 3 and
band 4, respectively.

Cloud masking

Generally, cloud coverage tends to be a problem in the
study of optical satellite images (Helmer and Ruefenacht
2007). The situation is worse when the study area is in
an equatorial region, like Penang Island. The area of the

satellite image that is covered by clouds must be
masked out since it will introduce error into the data
after processing. Thus, cloud detection techniques are
applied to mask out the cloud covered areas. Among all
of the cloud detection techniques, two cloud detection
tests were selected and carried out to produce satellite
images without any cloud coverage.

The cloud masking techniques applied for this study
included the ratio of NIR reflectance to visible reflec-
tance and a gross cloud check using brightness
temperature (Simpson and Gobat 1996). In daytime
and night-time, the gross cloud check uses brightness
temperature to detect clouds in the satellite images.
However, this technique is only appropriate for certain
applications, and is not suitable to detect warm low
clouds above the sea. Thus, the alternative cloud
detection technique chosen to mask out the cloud area,
called the ratio of NIR reflectance to visible reflectance
method, was employed. The ratio used in the test is
defined as follows (Saunders and Kriebel 1988):

water areas and
cloud coverage.

Fig. 5 The map
generated based on NDVI
computation for 17 January
2002, using SMAC method
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Q ¼ R2

R1
ð5Þ

where, Q is the ratio between R2, near-infrared
reflectance and R1, visible reflectance.

To execute the gross cloud check technique, the
brightness temperature is required. The assumption is
made that the at-sensor brightness temperature of the
Earth’s surface is a black body, including atmospheric
effects. The conversion of the brightness temperature
from the at-sensor radiance is given by Chander et al.
(2009a; b):

T ¼ K2

LN K1
Ll

þ 1
h i ð6Þ

where

T Is the effective at-sensor brightness temperature
(in Kelvin),

K2 Is the calibration constant 2 (in Kelvin)
K1 Is the calibration constant 1 [W/ (m2 sr μm)]
Ll Is the spectral radiance at the sensor’s aperture

[W/ (m2 sr μm)], and
LN Is the natural logarithm

Null (water area and
cloud coverage) 

Fig. 6 The maps of
LST retrieved using
ATCOR3_T for 11 January
1991; the indicator value
is in °C

Satellite images Equation Correlation coefficient, R2

11 January 1991 (red band) Y=1.545X−0.052 0.870

11 January 1991 (NIR band) Y=1.580X−0.091 0.894

17 January 2002 (red band) Y=1.559X−0.086 0.913

17 January 2002 (NIR band) Y=1.145X−0.100 0.902

Table 2 Summary of
the acquired results after
regression analysis using
SMAC method

Environ Monit Assess (2012) 184:3813–3829 3821



Relationship between NDVI and LST

Two methods were implemented to generate NDVI
maps. Both of the Landsat images were used to
compare the NDVI values derived from each pro-
posed method. Then, using the LST values retrieved
from ATCOR3_T, the relationship between LST and
NDVI was investigated within the two different
methods. The obtained equation from linear regres-
sion analyses was validated with the use of randomly
chosen points from the same satellite images. To
examine accuracy, the LST value was substituted in
the obtained equation to acquire the NDVI value. The
resulting NDVI value was then compared with the
NDVI value generated using the NDVI map. The
average error was calculated between the NDVI value
obtained from the equation and the satellite image. To
evaluate the value of LST retrieved from the
ATCOR3_T and NDVI methods, the error had to be
calculated for every single point based on the
following equation (Sobrino et al. 2002):

Error %ð Þ ¼ NDVIequation � NDVIsatellite
�� ��

NDVIsatellite
� 100 ð7Þ

Results and discussion

NDVI maps in 1991 and 2002

Two satellite images have been generated through the
results obtained from the relative radiometric normal-
ization technique. The relative radiometric normaliza-
tion technique yielded high accuracy, as measured by
the linear regression coefficient, R2, all of which were
greater than 0.85 for red and NIR bands. Thus, it can
be used to generate NDVI maps from the obtained
results of TOA reflectance for bands 3 and 4. Table 1
shows the results acquired from linear regression
correlation analyses. Figures 2 and 3 show the NDVI
maps for 1991 and 2002, which were generated from
Eq. 4.

Null (water area and
cloud coverage) 

Fig. 7 The maps of
LST retrieved using
ATCOR3_T for 17 January
2002; the indicator value
is in °C
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The second method used to generate NDVI values
was the SMAC method, proposed by Rahman and
Dedieu (1994). The method assumes that the TOA
reflectance is linearly correlated with the surface
reflectance. In this study, the surface reflectance value
was retrieved through ATCOR3 in PCI Geomatica
10.1 image processing software. TOA reflectance was
obtained from the data after radiometric calibration
for both images. The results show that these param-
eters are linear correlated with each other. High
accuracy was achieved for the regression analysis,
since all the correlation coefficients, R2 were greater
than 0.870. Figures 4 and 5 show the NDVI maps for
1991 and 2002, which were generated from SMAC
method. Table 2 shows the details for the results of the
SMAC method, which was used to generate NDVI
maps.

Obviously, both of the proposed method success-
fully generates NDVI maps for the satellite images on
11 January 1991 and 17 January 2002. Thematic
maps generated from NDVI computation show that
the NDVI value drastically changed within the study
period.

Relationship between LST and NDVI

All satellite images were studied to examine the
characteristics of the surface temperature. The the-
matic maps were generated from the retrieval of LST
values using ATCOR3_T in PCI Geomatica 10.1
image processing software. Figures 6 and 7 show
the LST maps retrieved using ATCOR3_T for 11
January 1991 and 17 January 2002. From 1991 until
2002, the LST value increased for the study area.
There are many reasons caused the increasing value

of LST. However, urbanization of the area is the major
reason let the LST value to be increased (Tan et al.
2010).

The relationship between LST and NDVI was
examined using linear regression correlation analysis.
NDVI values were generated from the TOA reflec-
tance, using the relative radiometric normalization
technique and the SMAC method. The surface
reflectance was retrieved from ATCOR3 using PCI
Geomatica 10.1 image processing software. Both of
the methods yielded high accuracy results since all
correlation coefficients, R2 were greater than 0.8 for
regression analysis. Totally 70 points were randomly
chosen for the NDVI value at the range from 0.1 to
0.7 for linear regression analysis. The results show
that the LST value is negatively correlated with the
NDVI value (in linear form). This means that when
the LST value increases, the NDVI should decrease,
or vice versa (Weng 2001). Figures 8 and 9 show the
graphical representations of the NDVI and LST using
the relative radiometric normalization technique on
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Fig. 10 The relationship between LST and NDVI using the
SMAC method for the 11 January 1991 image
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Fig. 9 The relationship between LST and NDVI using the
relative radiometric normalization technique for the 17 January
2002 image
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Fig. 8 The relationship between LST and NDVI using relative
radiometric normalization technique at 11 January 1991
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images from 11 January 1991 to 17 January 2002.
Figures 10 and 11 show the graphical representation

of the NDVI and LST using the SMAC method on
imagines from 11 January 1991 to 17 January 2002.

Validation of NDVI value

The equation explaining the relationship between LST
and NDVI, using both proposed methods to acquire
NDVI values was validated with the NDVI value at
that particular satellite image. In total, 25 points were
randomly chosen from which to substitute LST values
in the obtained equation. Then, after obtaining the
NDVI value; it was compared with the same chosen
point in the NDVI thematic map generated from both
of the proposed methods. The average error was
calculated for the comparison between NDVI values

Number NDVIequation NDVIsatellite |NDVIequation−NDVIsatellite| Error (%)

1. 0.7229 0.6620 0.0608 9.1868

2. 0.1978 0.2204 0.0226 10.2667

3. 0.5478 0.5875 0.0397 6.7492

4. 0.6062 0.6092 0.0030 0.5003

5. 0.6645 0.6796 0.0151 2.2148

6. 0.3145 0.3400 0.0255 7.4982

7. 0.4312 0.5182 0.0870 16.7926

8. 0.5478 0.4748 0.0731 15.3938

9. 0.1394 0.1559 0.0164 10.5518

10. 0.1978 0.2314 0.0337 14.5452

11. 0.2561 0.2184 0.0377 17.2690

12. 0.1978 0.2010 0.0032 1.5703

13. 0.0811 0.0721 0.0090 12.4782

14. 0.6499 0.6568 0.0068 1.0428

15. 0.5478 0.5455 0.0023 0.4249

16. 0.6062 0.6869 0.0807 11.7501

17. 0.6645 0.6481 0.0164 2.5270

18. 0.7374 0.7024 0.0351 4.9904

19. 0.6937 0.6627 0.0310 4.6819

20. 0.1978 0.1812 0.0166 9.1608

21. 0.0811 0.0954 0.0143 15.0062

22. 0.0793 0.0758 0.0036 4.7375

23. 0.2561 0.2406 0.0156 6.4729

24. 0.1394 0.1203 0.0191 15.8929

25. 0.3145 0.2826 0.0318 11.2660

Minimum value of the error 0.4249

Maximum value of the error 17.2690

Median value of the error 9.1608

Average of the total error (%) 8.5188

Table 3 Comparison
between NDVI values
(relative radiometric
normalization technique)
obtained from linear
regression analysis and
NDVI from the satellite
image for 11 January 1991

y = -38.269x + 49.611
R² = 0.8388
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Fig. 11 The relationship between LST and NDVI using the
SMAC method for the 17 January 2002 image
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obtained from linear regression analysis and the
NDVI value in the satellite image. Tables 3 and 4
show the comparison between NDVI values (relative
radiometric normalization technique) obtained from
linear regression analysis and NDVI obtained from
the satellite images for 11 January 1991 and 17
January 2002 using Eq. 7. Tables 5 and 6 show the
comparison between NDVI values (SMAC method)
obtained from linear regression analysis and NDVI
obtained from the satellite image for 11 January 1991
and 17 January 2002 using Eq. 7. The strong,
negative correlation between LST and NDVI implies
that the any significant change in LST value can bring
the impact on NDVI. Urban expansion does bring up
LST by converting vegetation area with non-

evaporating materials (Weng 2001). Hence, there will
be an error when calculating NDVI value generated
from both methods and the value retrieved from
satellite image.

The results show that the SMAC method, which is
used to generate NDVI thematic maps yielded more
consistent results for both of the satellite images in its
prediction of the LST value. This is shown by the
average of the total error, which, in terms of
percentage, predicted the satellite images quite accu-
rately. Although the relative radiometric normalization
technique yielded a total error average of less than 6%
in 17 January 2002, the value associated with the
other satellite image was greater than 8%. Therefore,
the SMAC method produced more consistent results

Number NDVIequation NDVIsatellite |NDVIequation−NDVIsatellite| Error (%)

1. 0.6500 0.64463 0.5000 0.8351

2. 0.4970 0.52294 0.0259 4.9551

3. 0.5735 0.56918 0.0043 0.7618

4. 0.6245 0.63114 0.0066 1.0502

5. 0.5608 0.56545 0.0047 0.8292

6. 0.5990 0.58603 0.0130 2.2168

7. 0.5480 0.52675 0.0213 4.0385

8. 0.6118 0.62732 0.0156 2.4804

9. 0.5863 0.58377 0.0025 0.4271

10. 0.5225 0.50477 0.0178 3.5276

11. 0.6118 0.58147 0.0303 5.2094

12. 0.5225 0.51224 0.0103 2.0089

13. 0.2421 0.20410 0.0380 18.6008

14. 0.1273 0.13114 0.0038 2.9055

15. 0.3058 0.32022 0.0144 4.5008

16. 0.3695 0.41095 0.0414 10.0754

17. 0.1273 0.15601 0.0287 18.3852

18. 0.2421 0.25677 0.0147 5.7276

19. 0.2421 0.24400 0.0019 0.7934

20. 0.2421 0.23688 0.0052 2.1897

21. 0.1273 0.11947 0.0079 6.5808

22. 0.0763 0.08985 0.0135 15.0361

23. 0.1911 0.19714 0.0061 3.0795

24. 0.1273 0.15963 0.0323 20.2353

25. 0.5863 0.54322 0.0430 7.9209

Minimum value of the error 0.4271

Maximum value of the error 20.2353

Median value of the error 3.5276

Average of the total error (%) 5.7748

Table 4 Comparison
between NDVI values
(relative radiometric
normalization technique)
obtained from linear
regression analysis and
NDVI from the satellite
image for 17 January 2002
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in terms of the average percentage error in predicting
the LST value.

Conclusion

In this study, an integrated approach of remote-
sensing was successfully employed for determin-
ing NDVI and LST values from satellite images.
The results indicate that Landsat multi-temporal
images can provide an accurate map and give
detailed descriptions of changes in NDVI and LST
from 1991 to 2002.As the few study done before
by other researchers, the same relationship for
results obtained from this study and their results

(Weng 2001). The strong negative correlation
between LST and NDVI indicates that the higher
the surface temperature, the lower the value of
biomass within the study area (Tan et al. 2010). The
examined techniques included relative radiometric
normalization and the SMAC method, which
yielded drastic changes in NDVI values for the
satellite images between 11 January 1991 and 17
January 2002.

Using linear regression analysis, both of the
radiometric correction methods produced high accu-
racy NDVI maps for the satellite images. NDVI
values generated from both of these methods were
also highly linearly correlated with LST values, which
were retrieved from ATCOR3_T, using PCI Geo-

Number NDVIequation NDVIsatellite |NDVIequation−NDVIsatellite| Error (%)

1. 0.2925 0.2747 0.0178 6.4817

2. 0.6436 0.6941 0.0505 7.2806

3. 0.6093 0.6485 0.0392 6.0480

4. 0.2925 0.3075 0.0150 4.8771

5. 0.7149 0.6883 0.0265 3.8544

6. 0.6621 0.6237 0.0384 6.1547

7. 0.7413 0.7206 0.0207 2.8664

8. 0.4509 0.4372 0.0137 3.1400

9. 0.7017 0.6787 0.0229 3.3804

10. 0.7017 0.7028 0.0011 0.1521

11. 0.5565 0.5771 0.0206 3.5653

12. 0.2925 0.3252 0.0327 10.0605

13. 0.4509 0.4314 0.0195 4.5105

14. 0.4509 0.4094 0.0415 10.1385

15. 0.0945 0.0979 0.0034 3.5193

16. 0.2397 0.1996 0.0401 20.0837

17. 0.3453 0.3756 0.0303 8.0720

18. 0.2925 0.2636 0.0289 10.9698

19. 0.1869 0.1854 0.0015 0.8205

20. 0.2397 0.2561 0.0164 6.3978

21. 0.1341 0.1247 0.0094 7.5635

22. 0.3981 0.3277 0.0704 21.4761

23. 0.3453 0.3556 0.0103 2.8908

24. 0.2397 0.2563 0.0166 6.4734

25. 0.7149 0.6829 0.0319 4.6758

Minimum value of the error 0.1521

Maximum value of the error 21.4761

Median value of the error 6.0480

Average of the total error (%) 6.6181

Table 5 Comparison
between NDVI values
(SMAC method) obtained
from linear regression
analysis and NDVI from
the satellite image for 11
January 1991
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matica 10.1 image processing software. Surface
reflectance was retrieved from ATCOR3, which was
utilized for SMAC method. ATCOR3 and ATCOR3_T
consider both the slope and aspect for LST and
surface reflectance retrieval. Validation was performed
on the obtained equation through a linear regression
correlation analysis of LST and NDVI. The average
total error (in percent) using the NDVI retrieved from
the relative radiometric normalization technique for
satellite images taken in 11 January 1991 and 17
January 2002, were 8.52% and 5.77%, respectively.
The average total error (in %) using NDVI retrieved
from the SMAC method for satellite images taken in
11 January 1991 and 17 January 2002, were 6.62%
and 5.79%, respectively. The relationship between

LST and NDVI was more obvious and highly
correlated using the SMAC method, due to lower
average errors of both satellite images. This means
that more consistent results were obtained from the
equation to predict LST value. There is a variation
between NDVI obtained from relative radiometric
normalization technique and SMAC method due to
the uncertainty for NDVI value, for different land
cover types (Tan et al. 2010). Measuring the LST
value from in situ measurements can be very difficult
and time-consuming and can require accurate equip-
ment. Therefore, it is beneficial to predict the LST
value from the NDVI and LST values generated from
remote-sensing technique and from the obtained
equation to relate the two.

Number NDVIequation NDVIsatellite |NDVIequation−NDVIsatellite| Error (%)

1. 0.6955 0.6446 0.0509 7.8926

2. 0.5387 0.5229 0.0157 3.0095

3. 0.6171 0.5692 0.0479 8.4168

4. 0.6694 0.6311 0.0382 6.0568

5. 0.6040 0.5654 0.0386 6.8219

6. 0.5910 0.6116 0.0210 3.4338

7. 0.5910 0.6281 0.0374 5.9706

8. 0.6563 0.6273 0.0290 4.6188

9. 0.6302 0.5838 0.0464 7.9462

10. 0.5648 0.5662 0.0014 0.2386

11. 0.6563 0.6294 0.0269 4.2690

12. 0.5648 0.5122 0.0526 10.2654

13. 0.2773 0.2904 0.0130 4.4908

14. 0.1597 0.1733 0.0136 7.8435

15. 0.3427 0.3202 0.0224 7.0071

16. 0.4080 0.4110 0.0030 0.7191

17. 0.1597 0.1560 0.0037 2.3613

18. 0.2773 0.2568 0.0205 8.0020

19. 0.5692 0.6103 0.0411 6.7389

20. 0.2250 0.2479 0.0229 9.2299

21. 0.1597 0.1762 0.0165 9.3676

22. 0.1074 0.1224 0.0149 12.2047

23. 0.2250 0.2158 0.0092 4.2673

24. 0.1597 0.1596 0.0065 0.0407

25. 0.6955 0.6084 0.0218 3.5829

Minimum value of the error 0.0407

Maximum value of the error 12.2047

Median value of the error 6.0568

Average of the total error (%) 5.7918

Table 6 Comparison
between NDVI values
(SMAC method) obtained
from linear regression
analysis and NDVI from
the satellite image for 17
January 2002
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For future studies, radiometric corrections techni-
ques will consider water vapor, aerosol absorption and
scattering to improve the results of the NDVI. A study
done by van Leeuwen et al. (2006) indicated that
NDVI values retrieved from satellite images are
affected by these parameters. Thus, NDVI computa-
tion can become more accurate if all these parameters
are considered in generating an NDVI thematic map
from satellite images.
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