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Abstract Environmental and human health risk
assessments of nanoparticle effects from coal and
bottom ash require thorough characterisation of
nanoparticles and their aggregates. In this man-
uscript, we expand the study of human expo-
sure to nanosized particles from coal combustion
sources (typically <100 nm in size), characterising
the complex micromineralogy of these airborne
combustion-derived nanomaterials. Our study fo-
cuses on bottom ash generated in the Santa
Catarina power station (Brazil) which uses coal
enriched in ashes, many potential elements (e.g.
Cr and Ni) and pyrite. Transmission electron mi-
croscope data reveal nanoscale C deposits jux-
taposed with and overgrown by slightly larger
aluminosilicate (Al–Si) glassy spheres, oxides, sili-
cates, carbonated, phosphates and sulphates. Iron
oxides (mainly hematite and magnetite) are the
main bottom ash products of the oxidation of
pyrite, sometimes via intermediate pyrrhotite for-
mation. The presence of iron oxide nanocrystals
mixed with silicate glass particles emphasises the
complexity of coal and bottom ash micromineral-
ogy. Given the potentially bioreactive nature of
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such transition metal-bearing materials, there is
likely to be an increased health risk associated
with their inhalation.
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Introduction

Human health impacts of combustion-derived
nanomaterials (CDNs, <100 nm in size) released
to the environment are gaining increasing world-
wide interest, especially since exposure to CDNs
has increased dramatically within the past century.
Epidemiological studies have clearly indicated a
relationship between increasing human morbidity
and mortality, and progressive environmental air
pollution caused by particles (e.g. Rastogi et al.
2009; Effros 2009; An et al. 2007; Liang-Che et al.
2006; Chen et al. 2004, 2005; Tatár et al. 2005;
Suzuki et al. 2002). The greater surface areas of ul-
trafine CDNs compared with larger particles with
the same chemical compositions make them more
environmentally active with respect to biouptake
and associated health risks (Gilmour et al. 2004;
Oberdoerster et al. 2005; Xia et al. 2006). Coal
combustion is a key issue in the study of CDNs,
given the complex organic and inorganic chem-
istry of the materials involved; the abundance of
coal resources throughout the world; and their
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importance to the economies of major, rapidly de-
veloping countries such as China, India and Brazil.
These findings suggest that the effect of feed coal
emissions may be important not only on a local
or regional scale but also nationally and interna-
tionally. The main drawback of coal-fired power
plants in Brazil is the high production of ash. The
coal used in Brazilian power plants is pulverised
and burned inside a boiler, producing bottom ash
(15–20 wt.% of the bulk solid combustion by-
products produced), which falls inside the boiler
(Depoi et al. 2008) and does not find at present
time a commercial application; rather, it is usually
stored in abandoned surface mine or dumped in
landfills in the vicinity of the power plant. Pre-
vious studies have shown that toxic elements are
leached from bottom ash and are transported to
natural water sources (Binotto et al. 2000; Depoi
et al. 2008; Levandowski and Kalkreuth 2009).

To provide the scientific community with initial
order-of-magnitude nanominerals and nanoparti-
cles emissions estimates from coal power plant,
we report on new research concerning the
physicochemical characterisation of coal and bot-
tom ash (BA) nanoparticles produced within a
Brazilian power plant, emphasising the impor-
tance of electron microscope investigation to the
study of CDNs.

Analytical procedures

Data provided by the Brazilian National Elec-
tricity Energy Agency (ANEEL 2006) show that
approximately 11% of the electricity generated in
Brazil is generated in seven coal-fed power plants
in the states of Rio Grande do Sul, Santa Catarina
and Paraná, which produce close to 1,500 MW
of electric power. In the generation of electricity,
these power plants produce approximately 3 Mt of
ashes every year, which are composed from 65%
to 85% of fly ash and 15% to 35% of bottom ash
(Levandowski and Kalkreuth 2009). In addition,
the existing coal-fired energy park in Brazil is
planned to grow more than 2,000 MW with the
entry into operation of five more power plants
in Rio Grande do Sul State. When in full opera-
tion, this new scenario will raise the coal produc-

tion to triple the current quantity, that is, almost
12 million tonnes/year (Rohde and Silva 2006).

Field work was performed during several
weather seasons in 2008 (June and November),
2009 (February, April and December) and 2010
(January), including a comprehensive and de-
tailed exploration of the study area around Santa
Catarina power plant. A total of 21 coal and
21 bottom ash samples were collected in the
principal Brazilian power plant (Santa Catarina
State), which uses coal and generates approxi-
mately 850 MW/h of electricity. The incineration
temperature in the combustion chamber is ca.
1,000–1,500◦C. The feed coals before pulverisa-
tion and the associated bottom ash were simul-
taneously collected over a 5-day period. Samples
containing about 15 to 20 kg of coal and ash were
collected following ASTM (D 2234-89, 1991). In
addition, coal samples from 12 coal mines in Santa
Catarina State were collected and analysed to
study local variations in chemical characteristics,
with particular reference to any health risks and
environmental concerns associated with coal use
(Silva et al. 2009a).

The mineralogical composition of 21 coal and
ash samples was determined by means of a
Siemens model D5005 X-ray diffraction (XRD)
and after XRD was selected seven samples for
future analysis (chemical, petrology, SEM, TEM,
Raman and others). Prior to the characterisa-
tion of coal and ash samples, it is important
to know not only what kind of information a
specific technique can provide (e.g. size distri-
bution, elemental information, sensitivity, struc-
tural information etc.) but also the requirements
of the sample (size range, elemental composition
etc.) for each method to make analysis possi-
ble and to guarantee meaningful results (Tiede
et al. 2009; Hower et al. 2008). Each tech-
nique has advantages and disadvantages, but only
field emission scanning electron microscope (FE-
SEM) and high-resolution transmission electron
microscope (HR-TEM) currently allow the direct
(real space) visualisation of nanoparticles. In this
investigation, morphology, structure and compo-
sition of ultrafine minerals were investigated us-
ing a FE-SEM Zeiss Model ULTRA plus with
charge compensation for all applications on con-
ductive as well as non-conductive samples and a
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200 keV JEOL-2010F HR-TEM equipped with
an Oxford energy-dispersive X-ray detector and a
scanning (STEM) unit (Silva et al. 2009a; Hower
et al. 2008). The FE-SEM was equipped with
an energy-dispersive X-ray spectrometer and the
mineral identifications were made on the basis
of morphology and grain composition using both
secondary electron and back-scattered electron
modes. Geometrical aberrations were measured
by HR-TEM and controlled to provide less than
a π/4 phase shift of the incoming electron wave
over the probe-defining aperture of 14.5 mrad.
The scanning acquisition was synchronised to the
ac electrical power to minimise 60 Hz noise, and
a pixel dwell time of 32 μs was chosen. EDS
spectra were recorded in TEM image mode and
then quantified using ES Vision software that
uses the thin foil method to convert X-ray counts
of each element into atomic or weight percent-
ages. Electron diffraction patterns of the crys-
talline phases were recorded in SAED (selected
area electron diffraction) or MBD (microbeam
diffraction) mode, and the d spacings were com-
pared to the International Center for Diffraction
Data (ICDD 2009) inorganic compound powder
diffraction file database to identify the crystalline
phases.

Different suspensions, namely hexane, acetone,
dichloromethane and methanol, were selected
to prevent possible mineralogical changes in in-
dividual solvents. The suspension dissolves this
“binder” material and breaks up aggregates to
provide physically separated individual particles
amenable for electron microscopes analysis. The
suspension was pipetted onto lacycarbon films
supported by Cu grids and left to evaporate before
inserting the sample into the SEM and TEM. This
method may have led to agglomeration but is a
widely used standard procedure including metal
sulphates (Giere et al. 2006). Before FE-SEM
and STEM analysis, the TEM specimen holder
was cleaned with a Gatan Model 950 Advanced
Plasma System to minimise contamination. A drift
correction system was used for the STEM–EDS
mapping. Mineralogical analyses of the coal bot-
tom ash subsamples were performed with ammo-
nium oxalate and water in the absence of light:
(1) 10 mg of CFA sample (five replicates) was
mixed with ammonium oxalate reagent (28 g/L

ammonium oxalate + 15 g/L oxalic acid solution,
pH ∼ 2.7). Samples were shaken in the dark for
4 h, then centrifuged (3,000 rpm, 10 min) and
filtered (<22 μm). This extraction dissolves poorly
crystalline Fe (III) oxides (e.g. ferrihydrite, schw-
ertmannite) in the presence of more insoluble
crystalline Fe (III) oxides (e.g. goethite, hematite)
(Cornell and Schwertmann 2003; Peretyazhko
et al. 2009). Sulphate-rich CDNs goethite of poor
crystallinity can also be partially dissolved by acid
ammonium oxalate; (2) 10 mg of CFA sample
(five replicates) was mixed with water. Samples
were shaken in the dark for 2 h, then centrifuged
(3,000 rpm, 15 min) and filtered (<22 μm). This
extraction dissolves gypsum, jarosite, alunogen,
chalcanthite, hexahydrite, copiapite, epsomite,
ferrohexahydrite, melanterite, rozenite and others
minerals high solubles in water.

Results and discussion

Brazilian coals have considerable concentrations
of pyrite (Silva et al. 2009b), which has recently
been shown to spontaneously generate hydrogen
peroxide (H2O2) (Cohn et al. 2005) and hydroxyl
radicals (•OH) (Cohn et al. 2004) when placed
in water. The formation of these reactive oxygen
species (ROS) also explains the recent observa-
tion that aqueous pyrite slurries degrade yeast
RNA, ribosomal RNA and DNA (Cohn et al.
2006). Pyrite is thought to form H2O2 and is a
strong oxidant (standard potential 1.80 and 0.87 V
at pH 0 and 14, respectively) through the iron-
catalysed Haber–Weiss reactions. Production of
ROS such as the hydroxyl radical can then allow
the transformation of amino acids and carbohy-
drates, initiate lipid peroxidation and oxidise nu-
cleobases, thereby affecting human health (Kelly
2003; See et al. 2007). The hydroxyl radical is a
strong oxidising agent capable of non-selectively
oxidising a variety of organic compounds (e.g.
Villa et al. 2008). In the Santa Catarina coals,
the sulphides are typical authigenic nanominer-
als (Silva et al. 2010). Pyrite was the only Fe-
containing nanomineral detected, changing grad-
ually during combustion to form a Fe-containing
glass and nanohematite. Figure 1 is a simple il-
lustration of the pyrite nanocrystals in feed coal
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Fig. 1 Pyrite and Al silicates glass in feed coals

mixed with silicate glass particles (e.g. Al–Si–K
glass) and provides a clear illustration of the com-
plexity of CDN chemistry in coal. In addition, the
toxicity of elements in Brazilian coal, ashes and
their environmental importance have been widely
researched and documented (e.g. Depoi et al.
2008; Silva et al. 2009a, b). The potential toxicity
and behaviour of nanoparticles in particular may
be affected by a wide range of factors including
particle atomic number and mass concentration,

surface area, charge, chemistry and reactivity, size
and size distribution, state of aggregation, elemen-
tal composition as well as structure and shape
(Borm et al. 2006; Chau et al. 2007; Hochella et al.
2008).

The concentrations of As, Mo and Sb in Santa
Catarina coals are lower than in coals from other
Brazilian regions; Co, Hg, Pb, Mn, Li, Se, Be,
Cd and Bi are within the range of Brazilian coals
and are similar to the coal from Rio Grande do
Sul State; concentrations of Cr, Cu, Ni, U, V
and Zn are greater than for other Brazilian coals
(Silva et al. 2009b). The HR-TEM study demon-
strates the presence of nanoscale C deposits jux-
taposed with and overgrown by slightly larger
aluminosilicate (Al–Si) glassy spheres (Fig. 2),
mullite, quartz, calcite, Fe oxides, Ca silicates,
sulphates and other nanominerals (see Table 1).
These nanocarbon agglomerates form an ultrathin
halo or shell-like deposit on the coarser inorganic
CDN. The spheres have aluminosilicate composi-
tions with moderate abundance of Ca, Fe, K and
Mg, and limited proportions of Na, Ti, S, P, Cl and
trace elements. The C shells or nanocoatings are
porous and consist of agglomerated nanometre-
sized soot particles with characteristic concentric-
onion ring structures. A majority of the Al–Si
glassy spheres were found to have a C-based
nanocoating or at least some fraction of the sur-
face coated.

Fig. 2 High-resolution transmission electron microscopy (HR-TEM) image of nanoclusters containing chromium
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Table 1 Nanominerals in
coal and coal ashes
identified by different
analytical techniques

Mineral name and formula Coal Bottom ash

Silicates
Actinolite, Ca2(Mg, Fe)5Si8O22(OH)2 a–b, d, f–g b, f
Albite, NaAlSiO8 a, c–g
Chamosite, (Fe, Mg, Al)6(Si, Al)4O10(O, OH)8 a–g a, c, g
Chlorite, (Mg, Fe, Al)6[(Si, Al)4O10][OH]8 B
Diopside, CaMg(SiO3)2 f–g
Hedenbergite, CaFeSi2O6 a–c, g
Illite, [K0.75(Al1.75R2+

0.25)(Si3.50Al0.50)O10(OH)2 b–g a–f
(R = Fe, Mg, Ti]

Kaolinite, Al2Si2O5(OH)4 c–g a–g
Microcline, KAlSi3O8 a–g f
Quartz, SiO2 a–g a–g
Zircon, ZrSiO4 b, d–g

Sulphides
Galena, PbS a–g
Pyrite, FeS2 a–g
Marcasite, FeS2 b–d, f
Pyrrhotite Fe(1−x)S a–c, f–g f–g
Chalcopyrite, CuFeS2 a, d, f–g
Sphalerite, ZnS a–g

Carbonates
Ankerite, (Fe,Ca,Mg)CO3 a–f a–c, f–g
Calcite, CaCO3 a–g
Dolomite, CaMg(CO3)2 d, f
Siderite, FeCO3 a–f
Oligonite, Fe(Mn, Zn)(CO3) c–f

Phosphates
Brushite, CaPO3(OH) · 2H2O b, d–g
Monazite, (Ce, La, Th, Nd, Y)PO4 a–g

Sulphates
Anhydrite, CaSO4 b, d–f g
Alunogen, Al2(SO4)3 · 17H2O g
Barite, BaSO4 a–g
Calcantite, CuSO4 · 5H2O c
Epsomite, MgSO4 · 7H2O c–f
Ferrohexahydrite, FeSO4 · 6H2O c
Hexahydrite, MgSO4 · 6H2O b–g b–g
Gypsum, Ca[SO4] · 2H2O a–g a–g
Jarosite, KFe3+

3 (SO4)2(OH)6 b–g a–g
Melanterite FeSO4 · 7H2O c–g f
Natrojarosite, NaFe3(SO4)2(OH)6 a–g
Rozenite, FeSO4 · 4H2O c, e
Sideronatrite, Na2Fe[SO4](OH) · 3H2O b–d, f
Schwertmannite, Fe3+

16 O16(OH)12(SO4)2 a–f c, f–g
Szomolnokite, FeSO4 · H2O b

Oxides and hydroxides
Anthophylite, (Mg,Fe2+)7Si8O22(OH)2 f
Delafossite, CuFeO2(Cu2O . Fe2O3) f–g
Brownmillerite, Ca4Al2Fe2O10

Calcium iron aluminium oxide, CaAl2Fe4O19 b–e
Chromite FeCr2O4 a, c, f
Goethite, Fe(OH)3 a–f f
Hematite, α-Fe2O3 c–g a–g
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Table 1 (continued)

(a) power plant sample
10, (b) power plant
sample 11, (c) power
plant sample 12,
(d) power plant sample
13, (e) power plant
sample 14, (f) power plant
sample 15, (g) power
plant sample 16

Mineral name and formula Coal Bottom ash

Hercynite, FeAl2O4 a–g
Maghemite γ-Fe2O3 b, f a–g
Magnesioferrite, MgFe2O4 b–f
Magnetite, Fe3O4 a–g
Rutile, TiO2 a–g b, d–g
Wuestite, FeO b, c

Others
Arrojadite, Na2(Fe, Mn)5(PO4)4 b f
Calcium ferrite, CaFe2O4 e
Columbite, (Fe, Mn)Nb2O6 b, c, f
Ilmenite, FeTiO3 a–c, f
Magnesioferrite, MgFe2O4 a–b, d–f

The nanooxides detected in bottom ash include
anatase, brownmillerite, chromite, columbite,
delafossite, hematite, hercynite, ilmenite, mag-
hemite magnesioferrite, magnetite, quartz, rutile
and wuestite. Some of these phases may be prod-
ucts of oxidation of pyrite and reactions with
calcite. In addition, Fe oxides (mainly hematite
and magnetite) are the main bottom ash products
of the oxidation of pyrite. Whereas some of our
nanohematite (e.g. Fig. 3a) suggest direct transfor-
mation of pyrite upon heating in air, others show
transformation into hematite via an intermediate
stage involving pyrrhotite growth (Bhargava et al.
2009; Bunt and Waanders 2009; Bunt et al. 2008;
Jorgensen and Moyle 1982; Schorr and Everhart
1969).

The hazard for human health caused by occu-
pational exposure to airborne inorganic particles,
such as quartz, silica and some sheet silicates, is
definitively established (Belluso et al. 2006) with
a grain size of less than 10 μm (PM10) thought
to pose a considerably greater health hazard, and
this health risk may increase as the grain size
becomes smaller (Balaan and Banks 1998). In ad-
dition, an alternative contributing factor identified
via recent ecological analysis (Tian 2005) is that
concentrations of coal-derived BA ultrafine and
nanoparticulate (<50 nm, e.g. Fig. 4a) crystalline
silica correlate with the incidence of lung cancer
(Tian 2005), and in 1997 the World Health Or-
ganization’s International Agency for Research
on Cancer reclassified quartz and crystalline silica
from a class 2 (1987 evaluation) carcinogen to a
class 1 carcinogen, stating that sufficient evidence

existed for carcinogenicity of quartz in both hu-
mans and experimental animals. This creates the
fascinating prospect that the environmental con-
ditions that resulted in the extinction event may
have produced particularly toxic coal and bottom
ash chemistry that is affecting the people using
it today. Globally, although coal is sometimes
closely associated with the boundary, no other ex-
amples of its widespread domestic utilisation are
known to us. Quartz was dominantly fine-grained
and abundant in evaluated bottom ashes (e.g.
Fig. 4a). Only a small proportion of quartz appears
to be detrital. We have proposed an effective tech-
nique to identify nanoquartz particles in coal BA
by HR-TEM/EDS because the potential ecotoxic-
ity of these nanoquartz (e.g. Fig. 4a) is already of
considerable interest (Warheit et al. 2007, 2009),
and given in the coal bottom ash they represent an
as yet unevaluated additional health risk to power
plant emissions.

One other class of nanominerals—the Fe
oxides—has arguably provided the main focus for
environmental nanoparticle research (Waychunas
et al. 2005a, b), and a large number of authors
have examined the adsorption of arsenic and
chromium by iron oxides (see reviews by Smedley
and Kinniburgh 2002; Mohan and Pittman 2007;
Silva et al. 2009a), highlighting (a) the tendency
of As (in both of its common As3+ and As5+
states) and Cr (in both of its common Cr6+ state)
to strongly bind to (hydrous) Fe oxides (as mon-
odentate or bidentate inner sphere complexes),
even at very low arsenic concentrations, and (b)
the important environmental role of amorphous,
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a

b

Fig. 3 HR-TEM image and EDS spectrum: a showing the very fine ordered hematite structures nanoparticles and
b sphalerite in feed coals

freshly precipitated Fe oxides as sorbents of ar-
senic and chromium. Brown et al. (1998) note
the successful in situ application of an acidified

solution of ferrous sulphate heptahydrate (via a
combination of wells and trenches) to remove Cr
(VI). Mohan and Pittman (2007) reviewed the

Fig. 4 a HR-TEM and
Fourier transformation
(FFT) confirm the size
of nanoquartz sphere;
b FE-SEM of sub-
micronic spheres,
containing Zr, Ni,
Mg and Al

a b
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performance of the main arsenic-removal tech-
nologies, including those utilising iron as an ad-
sorbent or precipitant.

Inorganic nanoparticles are a distinct class of
matter because their properties can be substan-
tially modified relative to the bulk material. In
addition, nanoscale minerals, such as hematite
(α-Fe2O3), are extremely common natural prod-
ucts of biomineralisation (Fowler et al. 1999)
and chemical weathering reactions (Gilbert and
Banfield 2005). Although frequently a minority
fraction, mineral nanoparticles can have a pro-
found impact on their environment (Gilbert and
Banfield 2005), having high surface areas and
hence high reactivity and total energy relative to
macroscopic minerals. Hematite, like the other
iron oxide minerals, is of particular interest be-
cause its properties at different sizes indicate a
wide range of geochemical reactivity (Madden
et al. 2006). This includes adsorption of ions
from solution, such as phosphates (Waychunas
et al. 2005a) and arsenates (Waychunas et al.
2005b), photochemical reduction in aqueous solu-
tion (Sherman 2005) and heterogeneous catalysis
(Feng et al. 2004). Atomistic simulations have
been used to describe the structure, stability and
properties of bulk minerals (Cooke et al. 2004),
mineral surfaces (Kerisit and Parker 2004) and
discrete nanoparticles (Feng et al. 2006). The
structures and stabilities of single nanoparticles
have been calculated and it has been demon-
strated that these are dependent upon environ-
mental conditions (Zhang and Banfield 2004).
Many experimental and theoretical studies have
considered the interactions between nanoparticles
and different types of surface ligands. According
to results from Zhang et al. (2007), the following
is inferred. First, nanoparticles can accommodate
more adsorbates per unit surface area than the
corresponding bulk material because the surfaces
of the former are more structurally open for co-
ordination of absorbates. Second, adsorbates may
bind with nanoparticles more strongly than with
the corresponding bulk material because the bind-
ing energy for the former is higher than for the
latter. These factors may be important for assess-
ment of the environmental roles and impact of
nanoparticles from coal and bottom ashes.

In the studied bottom ashes with regard to
Al-, Zr-, Ni- and Mg-bearing particles, these are
typically sub-micronic spherical and show a size
range of 250–350 nm (see Fig. 4b). The chemical
composition and morphology of 36 sub-micronic
spheres studied in the BA (e.g. Fig. 4b) reveal
the common presence of abundant aluminosil-
icate glass, ferrian spinel, hematite; magnetite,
mullite and quartz. The chemical composition of
these spheres is extremely variable, this being a
likely consequence of the high-temperature/low-
pressure metamorphic reactions created by the
coal combustion process. Within the studied
Brazilian feed coals burnt at this power station,
Zr is initially present predominantly as the ac-
cessory mineral zircon (ZrSiO4), whereas Ni is
mostly associated with sulphides such as mil-
lerite (NiS). Upon combustion, however, these
elements become redistributed within secondary
high-temperature minerals, notably in aluminosil-
icates such as mullite as well as aluminosilicate
glass.

The nanominerals from coal bottom ashes
(BA) and their thermodynamic stability diagrams
will be discussed in a future paper that will also
include studying the thermodynamics and by-
products of coal combustion, estimating emissions
associated with different coal ranks and examining
the potential environmental and health impacts
on residential communities near the coal power
plants. Clearly, nanominerals and nanoparticles
from feed coal and bottom ashes are a topic of ex-
panding scientific interest, and significant research
is required to fill current knowledge gaps.

Overview and conclusions

The pulmonary toxicity of airborne particles has
been well studied, and it is known that toxicity is
strongly related to particle size (Frampton et al.
2006; Geiser et al. 2005; Brown et al. 2001) and
the presence of transition metals such as iron
(Smith et al. 2007; Pritchard et al. 1996). Iron is the
most abundant transition metal in ambient partic-
ulate especially around the Santa Catarina power
plant. However, although some studies suggest
ecotoxicity, the detailed toxicity of bottom ash
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nanoparticles and their effects on human health,
as well as their environmental fate and impact in
water and soil, is still largely unknown. It has been
reported that different types of nanoparticles can
cause cytotoxicity and cross cellular layers (Koch
et al. 2005; Hardman 2006) or can accumulate in
tissue (Bullard-Dillard et al. 1996). In addition,
data clearly show that the population living in
at least one investigated area (Santa Catarina,
Brazil) has been exposed to an increased environ-
mental risk due to a coal-fired power plant. This
suggests that longer-term monitoring is needed
around coal power plants to better quantify emis-
sions of individual power plants in the world.

The combination of FE-SEM and HR-TEM/
EDS as used in this study provides a power-
ful technique to characterise nanoparticles for
environmental studies. Our study further demon-
strates the complexity of mineralogical relation-
ships between nanominerals present in coals and
bottom ashes produced during coal combustion,
yielding observations impossible to make using
more traditional characterisation methods such
as optical petrography. Our results suggest that
the volatility of chemical forms of trace metals in
raw coal and the chemical change of trace met-
als during high-temperature heat processing have
not been sufficiently addressed. Our approach is
an important step toward a realistic description
of nanoparticle structure that includes internal
strain, which is likely to be a general feature of
nanoscale solids present in coal and bottom ash.

Furthermore, given what is already known
about the health effects of airborne particulate
matter in general, and nanoparticles in particular,
it is likely that the population living close to power
plants such as Santa Catarina are being subjected
to greater health risks linked to CDNs inhala-
tion. Studies on bottom ash nanoparticles, such as
the data presented here, emphasise the need for
detailed epidemiological investigation of disease
patterns around industrial CDN point sources.
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