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Abstract Assessment and redesign of water qual-
ity monitoring networks is an important task in
water quality management. This paper presents a
new methodology for optimal redesign of ground-
water quality monitoring networks. The measure
of transinformation in discrete entropy theory
and the transinformation–distance (T–D) curves
are used to quantify the efficiency of sampling
locations and sampling frequencies in a moni-
toring network. The existing uncertainties in the
T–D curves are taken in to account using the
fuzzy set theory. The C-means clustering method
is also used to classify the study area to some
homogenous zones. The fuzzy T–D curve of the
zones is then used in a multi-objective hybrid
genetic algorithm-based optimization model. The
proposed methodology is utilized for optimal
redesign of monitoring network of the Tehran
aquifer in the Tehran metropolitan area, Iran.
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Introduction

The groundwater quality monitoring networks
should be revised from time to time in concern
with the changing data objectives and needs. The
maim objective of a monitoring network is to
gather information efficiently for various pur-
poses. This basic goal can be achieved by un-
dertaking (1) an investigation of the information
required, (2) development of design strategies for
an efficient collection of sufficient information,
and (3) optimization of the monitoring network
design according to a fixed cost. Design of water
quality monitoring networks is still a controversial
issue because there are difficulties in the selection
of temporal and spatial sampling frequencies, the
variables to be monitored, the sampling duration,
and the objectives of sampling (Harmancioglu
et al. 1999).

Essentially, available design methodologies
serve to assess the efficiency of existing wa-
ter quality monitoring networks. Although, each
method focuses on the problem from a different
perspective, using different criteria, there is still
the question of how one relates such criteria in the
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assessment process to the value of data. Within
this respect, one of the most promising methods
for network assessment purposes is based on the
entropy concept of information theory, which has
been used to evaluate not only water quality but
also other hydrometric networks.

Harmancioglu and Yevjevich (1987) used the
entropy theory to assess the goodness of infor-
mation transfer by regression using the monthly
water quality data of a polluted river basin.
Husain (1989) presented a simple entropy-based
concept to estimate regional hydrologic uncertain-
ties at both gauged and ungauged stations in a
river basin. Yang and Burn (1994) showed that en-
tropy theory can be efficiently used for evaluating
the information transmission characteristics of a
monitoring network.

Ozkul et al. (2000) presented a method us-
ing entropy theory for assessing existing water
quality monitoring networks. Discrete and ana-
lytical entropy theories were utilized by Mogheir
et al. (2004) to characterize the spatial variabil-
ity of groundwater quality. The analytical en-
tropy theory was also used by Salark and Sorman
(2006) for evaluating existing monitoring stations
in rivers. The existing salinity monitoring network
in Tehran aquifer was assessed by Masoumi and
Kerachian (2008a). They proposed a crisp opti-
mization model for proposing sampling stations
for water quality variable electrical conductiv-
ity (EC). A fuzzy version of this optimization
model has also been presented by Masoumi and
Kerachian (2008b). Karamouz et al. (2009) uti-
lized the measure of transinformation in entropy
theory for selecting the best monitoring stations
from a set of potential monitoring sites along a
river.

In this paper, a new version of the opti-
mization models proposed by Masoumi and
Kerachian (2008a, b) is proposed so that it can
consider several water quality variables. This
multi-objective optimization model can be utilized
for optimally updating the location of monitor-
ing wells and the sampling frequency of water
quality indicators. The optimization model uses
a fuzzy transinformation–distance (T–D) curve,
which is obtained using discrete entropy theory.
An entropy-based methodology, which uses the

transinformation–time lags (T–T) curves, is also
presented for updating sampling frequencies. The
proposed mythology is used for redesigning the
groundwater monitoring system of the Tehran
Aquifer, Tehran, Iran.

Entropy theory

Entropy theory has been fully described in liter-
ature (e.g., Ozkul et al. 2000 and Mogheir et al.
2004). In entropy theory, the measures of infor-
mation include the marginal entropy, joint en-
tropy, conditional entropy, and transinformation.
The measure of transinformation between two
random variables x and y is interpreted as the
information content of x that is contained in y.
Transinformation (T(x, y)) in the discrete form
can be expressed as follows:

T (x, y) = −
∞∑

i=1

∞∑

j=1

p
(
xi, y j

)
ln

[
p

(
xi, y j

)

p (xi) p
(
y j

)
]

(1)

where x and y are two discrete variables with
values xi, i = 1,2,3,...,n; yi, j = 1,2,3,...,m. p(xi) and
p(yi) are the discrete probabilities of occurrence
of xi and y j; and p(xi, y j) is the joint probability of
xi and y j.

In discrete entropy theory, the contingency
tables record the frequency for the values that fall
into each possible combination of two categories.
To construct a two-dimensional contingency table,
the following steps are involved (Mogheir and
Singh 2003):

• Consider ν categories (class intervals) for ran-
dom variable x and u categories (class inter-
vals) for random variable y. The number of
class intervals can be calculated as follows:

NCI = 1 + 1.33 Ln (n) (2)

where NCI is the number of class intervals,
and n is the size of the time series of the
variables.
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Table 1 A two-dimensional contingency table (Mogheir and Singh 2003)

y
1 2 3 · · · u Total

x 1 f11 f12 f13 · · · f1u f1.

2 f21 f22 · · · · · · f2u f2.

3 f31 · · · · · · · · · f3u f3.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

v fv1 fv2 fv2 · · · fvu fv.

Total f.1 f.2 f.3 · · · f.u fx or fy

• The joint frequencies (cell densities) for (i, j)
is denoted by fij, where the first subscript is re-
lated to the row, and the second one is related
to the column. The cell density is the count of
measurements with the corresponding u class
interval of variable y and ν class interval of
variable x.

• The marginal frequencies are denoted by fi

and f j, which are the summation of the cell
densities for each category of variables x and
y, respectively (see Table 1 for more details).

• P(xi, y j) is calculated by dividing the cell den-
sity by total number of the data recorded in
one monitoring well.

In this paper, the transinformation is calculated
for each pair of the existing monitoring wells,
and the values of the transinformations are plot-
ted against distance between the monitoring wells
(Fig. 1). An exponential T–D curve is usually
fitted to these points because the initial transinfor-
mation decreases and reaches a minimum value
of Tmin at a distance equal to the range (d*). d*

can be considered as the optimal distance between
two adjacent monitoring wells.

Model formulation

To incorporate the existing uncertainty in the
transinformation–distance (T–D) curve, the fuzzy
set theory is used and for each distance; a tri-
angular membership function is considered for
the corresponding transinformation. As shown in
Fig. 1, upper and lower bounds are considered for
the T–D curve to set the membership functions.

The objective functions of the proposed opti-
mization model are as follows:

1. Maximizing the satisfaction level ( f ) in the
fuzzy membership functions

2. Minimizing the redundant information in the
system

3. Maximizing the coverage of the monitoring
system

Fig. 1 A typical
transinformation–
distance curve (adopted
from Masoumi and
Kerachian 2008b)
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The second and third objective functions are
quantified using the variables L̄2 and L̄3. The
objective functions are standardized between 0
and 1 and weighed to provide a single objective
function:

Maximize Z = w1 f + w2L̄2 + w3L̄3 (3)

L̄2 =
K∑

k=1

αk

Z∑

z=1

nz∑

i=1

L2,i,k,z

nz
(4)

L̄3 =
K∑

k=1

αk

Z∑

z=1

nz∑

i=1

L3,i,k,z

nz
(5)

L2,i,z,k =
⎧
⎨

⎩
Xi,z × Tmax,z,k − Ti,z,k

Tmax,z,k − Tmin,z,k
if di,z,k < d∗

i,z,k

Xi,z if di,z,k ≥ d∗
i,z,k

∀i , z, k (6)

L3,i,z,k =
⎧
⎨

⎩
Xi,z × di,z,k − d∗

z,k

dmax,k,z − d∗
z,k

if di,z,k > d∗
i,z,k

Xi,z if di,z,k ≤ d∗
i,z,k

∀i, z, k (7)

Xi,z ∈ [0, 1] (8)

Z∑

z=1

Iz∑

i=1

Xi,z = n (9)

Ti,z,k = g
(
di,z,k, f

) ∀i, z, k (10)

K∑

k=1

αk = 1 (11)

I∑

i=1

wi = 1 (12)

where

wi relative importance weight of objec-
tive function i, i = 1,2,3

K Total number of water quality
variables

Z Total number of zones
ak Relative importance weight of water

quality variable k, k = 1, 2
nz Total number of required monitoring

wells in zone z
n Total number of required monitoring

wells in the study area
di,z,k Distance between potential well i and

its nearest neighboring potential well
in zone z for water quality variable k

Ti,z,k The transinformation value corre-
sponding to distance di for potential
well i in zone z for water quality
variable k

Tmax,z,k Maximum value of the transinforma-
tion on the T–D curve in zone z for
water quality variable k

Tmin,z,k Minimum value of the transinforma-
tion on the T–D curve in zone z for
water quality variable k

d∗
z,k Minimum distance corresponding to

Tmin in zone z for water quality
variable k (see Fig. 1)

f The satisfaction level in the fuzzy
membership functions (see Fig. 1)

dmax,k,z Maximum distance between two
neighboring potential wells in zone z
for water quality variable k

L2,i,z,k Value of the second objective func-
tion, which is less than 1 when di

is less than d* in zone z for water
quality variable k

L3,i,z,k Value of the third objective function,
which is less than 1 when di is greater
than d* in zone z for water quality
variable k

Xi,z An integer variable with the values of
0 or 1. Its value is one when a moni-
toring well is located in the potential
well i in zone z

g(di,z,k, f ) A function which is presented by the
fuzzy T–D curve
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Flowchart of the proposed methodology is pre-
sented in Fig. 2. Different components of this
flowchart are described in following sections. As
shown in Fig. 2, entropy theory can also be used
for updating the existing sampling frequencies
of water quality variables. Transinformation–time
lags (T–T) curves can be calculated for water
quality variables at some indicator monitoring
wells. Variations of T–T curve of a water quality
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Fig. 2 Flowchart of the proposed methodology for optimal
redesign of groundwater quality monitoring systems

variable can be used for selecting the best sam-
pling frequency. In a typical T–T curve for a water
quality variable, when transinformation decreases
and reaches a minimum value of Tmin at a time lag
equal to the range t*. t* can be considered as the
optimal sampling frequency for the water quality
variable.

Hybrid genetic algorithms

In this study, a hybrid genetic algorithm is used to
solve the proposed optimization problem. Genetic
algorithm is a method for solving both constrained
and unconstrained optimization problems that is
based on natural selection, the process that drives
biological evolution. The genetic algorithm re-
peatedly modifies a population of individual solu-
tions. At each step, the genetic algorithm selects
individuals randomly from the current popula-
tion to be parents and uses them to produce the
children for the next generation. Over successive
generations, the population “evolves” toward an
optimal solution.

One can apply the genetic algorithm to solve
a variety of optimization problems that are
not well suited for standard optimization algo-
rithms, including problems in which the objec-
tive function is discontinuous, non-differentiable,
stochastic, or highly nonlinear. More detailed in-
formation about GAs can be found in Gen and
Cheng (2000).

In the hybrid genetic algorithm (HGA), a pat-
tern search algorithm is run after the genetic algo-
rithm terminates in order to improve the value of
the fitness function. The hybrid function uses the
final point from the genetic algorithm as its initial
point.

Pattern search algorithms compute a sequence
of points that get closer and closer to the optimal
point. At each step, the algorithm searches a set
of points, called a mesh, around the current point,
the point computed at the previous step of the
algorithm. If the pattern search algorithm finds
a point in the mesh that improves the objective
function at the current point, the new point be-
comes the current point at the next step of the
algorithm.
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C-means clustering method

Clustering is the process of grouping a set of
objects into classes of similar objects. One of the
most popular clustering techniques is C-means,
to the extent that it is hardly possible to find a
clustering software that would not offer C-means
as a method of classification. The C-means al-
gorithm minimizes the sum of squared distance
of all points included in a cluster space to the
center of the cluster. The distance between the
center of cluster i and kth data sample (dkj) can
be calculated as follows:

dik =
⎡

⎣
m∑

j=1

(
xkj − vij

)2

⎤

⎦
0.5

∀i, k (13)

where xkj is the jth coordinate of kth data sample
( j = 1, 2, . . . , m) and vij is the ith coordinate of
the center of cluster i. In this paper, the C-means
method is used to cluster the study area to some
homogenous zones considering the groundwater
quality and the spatial location of potential moni-
toring wells.

Case study

The proposed methodology is utilized for opti-
mal redesign of the groundwater quality monitor-
ing system in Tehran Aquifer, Iran. More than
eight million people are living in the Tehran City,
and about 60% of domestic water consumption
in this region returns to the Tehran aquifer via
traditional absorption wells. Total domestic wa-
ter demand in Tehran metropolitan area is about
one billion cubic meters per year. This water de-
mand is supplied from Tehran aquifer and Karaj,
Lar, and Latyan Dams. The share of groundwater
in water supply to Tehran is raised up to 60%
during drought conditions (Karamouz et al. 2004,
2007).

The Tehran aquifer is mainly recharged by in-
flows at the boundaries, precipitation, local rivers,
and return flows from domestic, industrial, and
agricultural water users. The discharge from the

aquifer is through water extraction from wells,
springs, and qanats as well as groundwater outflow
and evapotranspiration. Wastewater disposal in
Tehran is carried out through more than three
million absorption wells, which are often 15–20 m
deep. The use of absorption wells has caused
groundwater pollution and a significant rise of
the water table in the southern part of Tehran
(Bazargan-Lari et al. 2009). Comparison between
the average groundwater table in April 1985 and
April 2007 shows that there is about a 10 m
increase in water table level in the central and
the Southern parts of the aquifer that is mainly
due to aquifer recharge by domestic wastewater
and return flows (Masoumi and Kerachian 2008a,
b). According to the existing groundwater quality
data, some water quality variables such as total
dissolved solids, nitrate, and caliform bacteria are
violating the standards. In this study, the exist-
ing groundwater quality monitoring systems is
assessed and redesigned considering the water
quality variables of EC and sodium absorption
ratio (SAR). The available data about the other
water quality variables is limited so that they
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Fig. 3 Variation of the transinformation versus distance in
the study area for the water quality variables EC and SAR
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cannot be considered for evaluating the effective-
ness of the proposed methodology.

Results and discussion

As the Tehran aquifer supplies the water demands
of several agricultural zones in the southern part
of Tehran, EC and SAR are considered as water
quality variables. The available water quality data
are used for developing the contingency tables
and the T–D curves.

Figure 3 shows the variation of transinforma-
tion versus distance in the study area. To find
the equation of the T–D curve and its upper and
lower bounds, three exponential curves are fitted
to the data presented in Fig. 3. To improve the ac-
curacy of the T–D curves, the existing monitoring
wells are clustered to three classes (zones), con-
sidering the criteria of the location of monitoring
wells, total number of upstream wells, the average,
and standard deviation of the concentrations of
EC and SAR (Fig. 4).

Figure 5 presents the variations of transinfor-
mation versus distance in each zone. Tables 2 and
3 present the equations of T–D curves and their
upper and lower bounds for the study area and
each zone. These tables also present the optimal
distance between monitoring wells (d*).

As shown in Fig. 4, the existing groundwater
quality monitoring system does not completely
cover the Tehran aquifer, and the distances be-
tween some of the wells are much more or less
than the optimum distance d*.

As mentioned before, a HGA is used to solve
the proposed optimization model. In the HGA,
each gene, which shows the value of the decision
variables Xi (i = 1,..., m), has one bit. Therefore,
for m potential monitoring wells, each chromo-
some has m genes. In order to find a robust so-
lution, the probability of mutation and crossover
were calculated through a trial and error process
as 0.001 and 0.8, respectively. For a population
size of 80, the HGA-based optimization model
converges to the optimal or near optimal solu-
tion after 120 generations. The total run-time of

Fig. 4 Clustering of
monitoring wells in the
Tehran Aquifer using
the C-means method
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Fig. 5 Variation of transinformation versus distance in different zones in Tehran aquifer

the optimization model is less than 120 min in
the MATLAB environment using a Pentium 4,
3.2 GHz computer. Figure 6 shows the optimal
location of the monitoring wells when the total

number of monitoring wells is equal to 62 and
the clustering method is utilized. Figure 7 also
presents the location of the monitoring wells when
the clustering method is not used. Comparing

Table 2 The equations of T–D curves for EC and SAR variables in Tehran Aquifer (d is distance between two monitoring
wells (meter))

Water quality variable Curve Curve equation d*(m)

EC Upper T = 0.5 × (exp (−0.001 × d)) + 0.79 1,000
Lower T = 0.55 × (exp (−0.002 × d)) + 0.05
Middle T = 0.92 × (exp (−0.0015 × d)) + 0.4

SAR Upper T = 0.7 × (exp (−0.001 × d)) + 0.65 8,000
Lower T = 0.7 × (exp (−0.002 × d)) + 0.05
Middle T = 1.05 × (exp (−0.0015 × d)) + 0.25



Environ Monit Assess (2010) 161:247–257 255

Table 3 The equations of T–D curves for different zones in Tehran Aquifer (d is distance between two monitoring wells
(meter))

Zone Water quality variable Curve Curve equation d*(m)

1 EC Upper T = 0.6 × (exp (−0.001 × d)) + 0.8 10,000
Lower T = 0.9 × (exp (−0.002 × d)) + 0.1
Middle T = 0.8 × (exp (−0.0015 × d)) + 0.4

SAR Upper T = 0.55 × (exp (−0.001 × d)) + 0.8 6,500
Lower T = 0.6 × (exp (−0.002 × d)) + 0.12
Middle T = 0.8 × (exp (−0.0015 × d)) + 0.4

2 EC Upper T = 0.5 × (exp (−0.001 × d)) + 0.9 7,000
Lower T = 0.75 × (exp (−0.002 × d)) + 0.03
Middle T = 0.98 × (exp (−0.0015 × d)) + 0.4

SAR Upper T = 0.38 × (exp (−0.001 × d)) + 0.9 6,000
Lower T = 0.62 × (exp (−0.002 × d)) + 0.03
Middle T = 0.88 × (exp (−0.0015 × d)) + 0.42

3 EC Upper T = 0.53 × (exp (−0.001 × d)) + 0.95 8,000
Lower T = 0.67 × (exp (−0.002 × d)) + 0.17
Middle T = 0.15 × (exp (−0.0015 × d)) + 0.40

SAR Upper T = 0.5 × (exp (−0.001 × d)) + 0.9 10,000
Lower T = 0.7 × (exp (−0.002 × d)) + 0.18
Middle T = 1.03 × (exp (−0.0015 × d)) + 0.27

Figs. 4 and 6 shows that 30 new monitoring wells
should be added to the monitoring system, and 30
existing monitoring wells should be omitted.

As mentioned before, entropy theory can also
be used for updating sampling frequencies. The
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Fig. 6 The location of the selected existing and potential
monitoring wells based on the result of the optimization
model with zoning

existing sampling interval in Tehran Aquifer is
6 months. The T–T curves are developed for
water quality variables in each zone (Fig. 8). As
shown in Fig. 8, by increasing the sampling inter-
val from 6 months to 1 year, the transinformation
is significantly reduced. However, this increase
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Fig. 7 The optimal location of the monitoring wells based
on the result of the optimization model without zoning
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Fig. 8 The
transinformation–time
lags (T–T) curves for
water quality indicators in
different zones
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in sampling interval is not recommended due to
significant seasonal variation of the concentration
of water quality variables in the study area.

Summary and conclusions

Entropy method is basically a network assessment
procedure that focuses on the variability of water
quality in time and space. Its basic advantages are
that it (1) provides a quantitative measure of the
information content of a sampling site and of an
observed time series; (2) assesses, again in quanti-
tative terms, transfer of information in space; and
(3) can be used to assess jointly several features of
a network.

In this paper, a new optimization model was
developed for optimal redesign of groundwa-
ter quality monitoring systems. The measure of
transinformation in discrete entropy theory was
used to find the optimal distance between the
monitoring wells. The existing uncertainty in the
transinformation–distance (T–D) curve was also
incorporated using the fuzzy set theory. The fuzzy
T–D curve was then used in a HGA-based op-
timization model. To improve the accuracy of
the T–D curves, the C-means clustering method
was also used to cluster the study area to some
homogenous zones, and different T–D curves
were calculated for different zones. The sampling
frequency of water quality variables can also be
updated using transinformation–time lags (T–T)

curves.
The proposed methodology was applied to

groundwater resources in the southern part of
Tehran, Iran. The results show the efficiency

of the model for the optimal redesign of the
groundwater monitoring systems. In future stud-
ies, this methodology can be extended so that
the sampling sites and sampling frequencies are
jointly optimized using an integrated optimization
model. The proposed approach can also be used
for designing an integrated groundwater monitor-
ing network that covers all objectives related to
groundwater quality and quantity.
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