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Abstract The monthly maximum of the 24-h av-
erage time-series data of ambient air quality—
sulphur dioxide (SO2), nitrogen dioxide (NO2)
and suspended particulate matter (SPM) concen-
tration monitored at the six National Ambient
Air Quality Monitoring (NAAQM) stations in
Delhi, was analysed using Box–Jenkins modelling
approach (Box et al. 1994). Univariate linear sto-
chastic models were developed to examine the
degree of prediction possible for situations where
only the past record of pollutant data are avail-
able. In all, 18 models were developed, three for
each station for each of the respective pollutant.
The model evaluation statistics suggest that con-
siderably satisfactory real-time forecasts of pol-
lution concentrations can be generated using the
Box–Jenkins approach. The developed models
can be used to provide short-term, real-time fore-
casts of extreme air pollution concentrations for
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Introduction

The deteriorating air quality is primarily at-
tributed to rise in motor vehicle population and
industrialisation and resulting exhaust emissions
in the urban regions. To implement air quality
management and public warning strategies for
pollutant levels, reasonably accurate forecasts of
the atmospheric concentration of pollutants as
function of space and time are necessary. This can
be done by air pollution models. The air quality
“predictor” for air pollution can be developed
either by analytical or by statistical means. Analyt-
ical models are, in general, more suitable for mak-
ing long-term, forecasts/planning decisions (Juda
1989; Zannetti 1989). For air pollution “episodes”
characterised typically by fast dynamics, these
models do not give satisfactory results (Cats and
Holtslag 1980; Nieuwstadt 1980; Jakeman et al.
1988; Raimondi et al. 1997). Moreover, in the
absence of additional parameters required as in-
put, such as, wind vector, temperature, traffic
characteristics (for emission factor computations),
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the analytical models fail to provide quantita-
tive description of the atmospheric pollution (e.g.
Chock 1978; Benson 1979, 1989; Petersen 1980,
etc.). Stochastic modelling of the pollution time-
series provides an alternative approach.

In the present study, an attempt has been made
to determine the extent of prediction possible
using data set restricted only to the past record
of air quality data—SO2, NO2 and SPM concen-
tration time series. For this purpose, univariate
linear stochastic models based on the Box–Jenkins
modelling techniques have been developed for
the six (NAAQM) stations run by the Central
Pollution Control Board (CPCB). The models can
be utilised for supplying real-time forecasts of ex-
treme pollutant concentrations, predicting future
concentration levels on the basis of data recorded
in previous periods.

Site and data description

The NAAQM network was started by the CPCB
during 1984–1985 at the National level. Within the
purview of this, six NAAQM stations had been
established in various parts of Delhi with the basic
idea to find the current status of air quality, its
seasonal variations with increased industrialisa-
tion and urbanisation and to understand increase
in various air pollution generation activities. The
location details and description of surrounding
area around various NAAQM stations are given
in Table 1.

The raw, daily average pollutant concentration
data, from September 1, 1987 to December 31,
2005, was collected from the NAAQM stations.
However, lot of missing values were encountered
for years 1987 and 1988. Prerequisite for time
series analysis is to have continuous time-series
data without missing values. Thus, reading for the

first two years were not included in the data
analysis. The 24-h monthly maximum time-series
for the three pollutants was formed from the raw
data. This data set was further divided into two
sample groups viz. (1) “the development sample”
from January, 1989 to December, 2003; and “the
test sample” from January, 2004 to December,
2005. As the name suggests, the former set was
used in the development of the model, while the
latter for testing various models, thereby treating
it (the test sample) as unobserved data set in
order to compare it with the predictions made by
these models. The division was done for achieving
two modelling objectives as suggested by Benarie
(1980), namely: (1) representation of observed
data; (2) prediction that is effective for other as
yet unobserved samples. The model development
sample data was further standardised, so that each
variable varies in the same scale, by subtracting
the mean values of each series from each observa-
tion of the respective series and then dividing the
result by the standard deviation of that series.

Model formulation

Theory

The Box–Jenkins modelling approach for univari-
ate models, more commonly known as ARIMA
(autoregressive integrated moving average) analy-
sis, consists of extracting the predictable move-
ments, trends and serial correlations from the
observed data until a sequence of white noise (or
shocks) remains. This is done by decomposing the
time series into several components via the autore-
gressive (AR), the integration (I; difference) and
the moving average (MA) operators, sometimes
called filters (linear). Thus, for instance, to remove
the trends or the non-stationarity in the time

Table 1 Location details
and description of
NAAQM stations

Monitoring station Location Type of area Parameters monitored

Ashok Vihar North-north west Residential SPM, NO2, SO2

Janak Puri South-west Residential SPM, NO2, SO2

Nizamuddin South-east Mixed use SPM, NO2, SO2

Shahadra North-east Industrial SPM, NO2, SO2

Shahzada Bagh North-west Industrial SPM, NO2, SO2

Sirifort South Residential CO, SPM, NO2, SO2
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series zt (defined as a sequence of N observations
equidistant in time, such as z1, z2, . . ., zN), the
difference operators, also called the integration
operators, ‘∇’ and ‘∇s’, defined as

∇zt = zt − zt−1 and ∇szt = zt − zt−s (1)

where, s denotes the period or the span, i.e. the
length of the seasonal cycle, may be applied d and
D times respectively (d and D being the order
of regular and seasonal differencing respectively).
To remove serial correlations in the series, two
operators—autoregressive (AR) and moving av-
erage (MA)—can be applied. They are expressed
as polynomials of the backward shift operators, B
and Bs, defined as

Bzt = zt−1 and Bszt = zt−1 (2)

The regular and seasonal AR operators φp (B)
and ΦP (Bs), are respectively polynomials of order
p in B and P in Bs, such that

φp (B) = 1 − φ1 B − φ2 B2 − . . . − φp Bp (3a)

and

�P
(
Bs) = 1 − �1 Bs − �2 B2s − . . . − �P BPs

(3b)

They are used to express the current values of
the series as a finite sum of the past values of the
series. The regular and seasonal MA operators are
similarly defined as:

θq (B) = 1 − θ1 B − θ2 B2 − . . . − θq Bq (4a)

and

�Q
(
Bs) = 1 − �1 Bs − �2 B2s − . . . − �Q BQs

(4b)

The MA operators express the current values of
the data as a finite sum of the current and past
values of the shock (or random noise), at.

Stepwise model building process

The Box–Jenkins method provides a unified
approach for identifying which filter(s) are most
appropriate for the series being analysed, for

estimating the parameters describing the filters
(i.e. for estimating the grid sizes of the series),
for diagnosing the accuracy and reliability of the
models that have been estimated, and finally for
forecasting. The selection of the most appropriate
model is a step-by-step procedure. The prelimi-
nary step in any time series analysis is to plot the
observations against time. The plot is often a valu-
able part of any data analysis, since qualitative
features such as trend, seasonality, discontinuities
and outliers will usually be present in the data.
Most of the probability theory of time series is
concerned with stationary time series, and for this
reason the analysis often requires to turn a non-
stationary series into a stationary one in order
to use this theory. Plotting the data may suggest
the transformation necessary to make the series
stationary. The transformations usually done for
stabilising the variance in the series are “logarith-
mic”, “square root” or “power transformations”
(Mills 1991). To remove the non-stationarity
caused by trend and seasonality, Box and Jenkins
(1970) advocate regular and seasonal differenc-
ing transformation respectively. Once the series is
made stationary by proper transformation, follow-
ing iterative model building process is followed.

The first step involves the selection of a general
class of models using the autocorrelation function
(ACF) and the partial autocorrelation function
(PACF). The ACF measures the amount of linear
dependence between observations in a time series
that are separated by lag k. The PACF plot helps
to determine how many AR terms are necessary
for the model. A tentative model may be specified,
based on the shape of the ACF and PACF and a
set of rules (Box et al. 1994; second step). The con-
cept of model parsimony is followed, for selecting
a model, i.e. a model with the smallest possible
number of parameters is preferable. The general
class of univariate Box–Jenkins models, denoted
by ARIMA (p, d, q) × (P, D, Q)s describing
the current term zt of a time series by its own
past values is obtained by combining the operators
defined in Eqs. 2 to 4a and 4b as

φp (B)�P
(
Bs) ∇D

s ∇dxt = θq (B)�
(
Bs) at + c (5)

The third step involves the estimation of the
model parameters. This is done by means of
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an iterative non-linear least-square algorithm
(Marquardt 1963) The statistical adequacy of the
model is checked by performing diagnostic tests
( fourth step). This is usually done by two criteria:
primarily by the examination of the residual series
for interdependence and a Chi-square statistics
test based on the first twenty lagged residual au-
tocorrelations, the Portmonteau goodness-of-fit-
test (Box et al. 1994). The former is accompanied
by correlation analysis through the residual ACF
plots. If the residuals are not correlated, then they
should be white noise. If any of these two criteria
are not valid, the model should be refined (step
2) and re-estimation of the parameters (step 3)
should be carried out. After the procedure has
been applied for a given time series, a calibrated
model is obtained that has encoded the basic
statistical properties of the time series into some
models parameters. Therefore, by taking condi-
tional expectations at time ‘t’ of each term of the
ARIMA model in Eq. 5 and writing wt = ∇d∇D

S zt

the minimum mean square error (MMSE) for
forecasts are:

[
wt+l

] = φ1
[
wt+l−1

] + φ2
[
wt+l−2

] + · ·
+ φp

[
wt+l−p

] + [
at+l

] − θ1
[
at+l−1

]

− θ2
[
at+l−2

] − . . . − θq
[
at+l−q

] + c

(6a)

and the forecasts for seasonal ARIMA model are

[
wt+l

] = φ′
1

[
wt+l−1

] + φ′
2

[
wt+l−2

] + · ·
+ φ′

p+sP

[
wt+l−p−sP

] + [
at+l

]

− θ ′
1

[
at+l−1

] − θ ′
2

[
at+l−2

] − . . .

− θ ′
q+sQ

[
at+l−q−sQ

] + c (6b)

where l = 1, 2, . . . is the lead time for the forecasts
wt+l; φ′

1, φ′
2, . . . are the generalised AR parameters

defined by

φ′ (B) = φp (B) �P
(
Bs) ; (7a)

and φ′
1, φ′

2, . . . are the generalised MA parameters
defined by

θ ′ (B) = θq (B) �Q
(
Bs) (7b)

Thus, the Box–Jenkins iterative approach for con-
structing linear time-series models can be sum-
marised in four steps:

(a) Identification of preliminary specifications of
the model;

(b) Estimation of parameters of the model;
(c) Diagnostic checking of model adequacy; and
(d) Forecasting further realisation

The developed models

The four standard stages of Box–Jenkins method-
ology, were followed in the formulation of uni-
variate models for each of the three pollutants.
The final estimates of the parameters with corre-
sponding standard deviation and t-ratio, which is
indicative of the statistical significance of model
parameters (|t − ratio| ≥ 2.0), for the time series
ARIMA models developed for SO2, NO2 and
SPM for each of the six NAAQM stations are
presented in Table 2. It may be specified here that
for the SO2-, NO2- and SPM-series (each using
180 observations for model formulation), the au-
tocorrelation becomes significantly different from
zero at 95% confidence level, when in absolute it
exceeds the critical value which is approximately
0.149

(= ∣
∣ 2√

n

∣
∣). Portmanteau or the modified Box–

Pierce i.e. Q-statistics was performed at differ-
ent 12, 24 and 36 lags to check the adequacy
of the various formulated models. Both the tests
indicate that the residuals can be considered as
white noise, indicating adequate model fit. Fur-
ther, stationarity, invertibility tests and the statis-
tical significance of the model parameters were
examined and were found to satisfy all model fit
requirements. Finally, metadiagnosis showed that
the models given in Table 2 are the best models.

Model performance

The forecast performance of the developed mod-
els has been evaluated by statistical means using
“the test sample” data. There are several ways
of judging forecasts, such as plotting measured
and predicted value sequences and then making
a visual inspection. This is the simplest method to
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Table 2 Final estimates
of parameters of the time
series ARIMA models

Pollutant Model Parameter Estimate Standard deviation t-ratio

Developed for the Ashok Vihar monitoring station
SO2 ARIMA (0, 1, 1) θ1 0.69 0.06 11.45
NO2 ARIMA (0, 1, 1) θ1 0.76 0.06 11.98
SPM ARIMA (1, 0, 1) φ1 0.318 0.14 2.22

θ1 −0.06 0.14 0.39
Developed for the Janak Puri monitoring station

SO2 ARIMA (0, 1, 1) θ1 0.75 0.05 15.28
NO2 ARIMA (0, 1, 1) θ1 0.76 0.05 14.43
SPM ARIMA (1, 0, 1) φ1 0.35 0.20 1.73

θ1 0.10 0.21 0.45
Developed for the Nizamuddin monitoring station

SO2 ARIMA (0, 1, 2) θ1 0.48 0.08 6.27
θ2 0.24 0.08 3.02

NO2 ARIMA (2, 1, 1) φ1 0.31 0.08 4.06
φ2 0.16 0.07 2.19
θ1 0.93 0.03 34.56

SPM ARIMA (1, 0, 1) φ1 0.27 0.14 1.89
θ1 −0.15 0.14 1.09

Developed for the Shahadra monitoring station
SO2 ARIMA (0, 1, 1) θ1 0.76 0.10 7.78
NO2 ARIMA (0, 1, 1) φ1 0.41 0.10 4.01

θ1 0.86 0.06 14.32
SPM ARIMA (1, 0, 1) φ1 0.39 0.16 2.44

θ1 0.08 0.16 0.48
Developed for the Shahzada Bagh monitoring station

SO2 ARIMA (1, 1, 1) φ1 −0.20 0.13 1.49
θ1 0.37 0.13 2.84

NO2 ARIMA (0, 1, 1) θ1 0.75 0.09 8.36
SPM ARIMA (0, 0, 3) θ1 0.44 0.06 6.84

θ2 0.12 0.09 1.38
θ3 0.34 0.08 4.35

Developed for the Sirifort monitoring station
SO2 ARIMA (0, 1, 1) θ1 0.65 0.07 8.75
NO2 ARIMA (0, 1, 1) θ1 0.71 0.07 10.70
SPM ARIMA (1, 0, 1) φ1 0.14 0.14 0.97

θ1 −0.28 0.13 2.12

evaluate the model performance and gives a phys-
ical feel of the forecast, as the ranges(s) within
which the model is performing satisfactorily can
be directly observed from the graph. However,
this analysis is not free from subjectivity. To in-
troduce objectivity in the numerical error analy-
sis, the performance should be judged by certain
statistical evaluation indices. Thus, two indicators
are used in researching the predictive skill of the
models developed in the present study. The root
mean square error (RMSE) and its decomposed
components—systematic (RMSEs) and unsystem-
atic (RMSEu)—is a very useful evaluation index

as suggested by Willmott (1981) and Willmott
et al. (1985). The RMSE is defined as follows.

RMSE =
√

RMSE2
s + RMSE2

u (8)

where

RMSEs =
[

1

n

n∑

i=1

(
P̂i − Oi

)2
]1/2

(9)

RMSEu =
[

1

n

n∑

i=1

(
P̂i − Pi

)2
]1/2

(10)
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where Oi and Pi are the observed and predicted
values, respectively and P̂i = a + bOi, a and b
being the slope and intercept of the least squares

regression of forecast variable on observed vari-
able. The simple relationship (Eq. 8) indicates
a useful decomposition of the total error into

Table 3 Model
evaluation statistics

Monitoring station Model evaluation statistics Pollutants

SO2 NO2 SPM

Ashok Vihar D Fitted 0.8930 0.9030 0.8980
Forecast 0.9160 0.9180 0.8690

R2 Fitted 0.9060 0.9065 0.9681
Forecast 0.9400 0.9380 0.9665
RMSEs Fitted 0.4306 0.3238 0.7614

RMSE Forecast 0.1865 0.2761 0.7087
RMSEu Fitted 0.2841 0.1921 0.1178

Forecast 0.0788 0.1119 0.1097
Janak Puri d Fitted 0.9090 0.9050 0.8920

Forecast 0.8810 0.8830 0.8680
R2 Fitted 0.9165 0.9073 0.9828

Forecast 0.8764 0.8738 0.9857
RMSEs Fitted 0.4568 0.4914 0.8892

RMSE Forecast 0.0393 0.1046 0.6946
RMSEu Fitted 0.2696 0.3267 0.0668

Forecast 0.0312 0.0882 0.0357
Nizamuddin d Fitted 0.9050 0.9060 0.8950

Forecast 0.8890 0.9000 0.9050
R2 Fitted 0.9528 0.9375 0.9612

Forecast 0.9372 0.9356 0.9672
RMSE RMSEs Fitted 0.5435 0.4393 0.7063

Forecast 0.1014 0.6547 0.7027
RMSEu Fitted 0.1426 0.1675 0.1344

Forecast 0.0320 0.0236 0.1170
Shahadra d Fitted 0.8900 0.8990 0.8960

Forecast 0.9190 0.9120 0.8700
R2 Fitted 0.8845 0.9537 0.9755

Forecast 0.9348 0.9805 0.9768
RMSEs Fitted 0.4370 0.6311 0.7565

RMSE Forecast 0.2399 0.2770 1.3253
RMSEu Fitted 0.3477 0.1529 0.0861

Forecast 0.1138 0.0278 0.1581
Shahzada Bagh d Fitted 0.9040 0.8990 0.9010

Forecast 0.8890 0.8820 0.9140
R2 Fitted 0.9431 0.9004 0.9437

Forecast 0.9300 0.8693 0.9715
RMSE RMSEs Fitted 0.2890 0.4029 0.4688

Forecast 0.1001 0.3798 0.8646
RMSEu Fitted 0.0952 0.2781 0.1476

Forecast 0.0377 0.3390 0.1343
Sirifort d Fitted 0.9010 0.9060 0.9000

Forecast 0.9020 0.8840 0.8720
R2 Fitted 0.9260 0.9221 0.9659

Forecast 0.9373 0.9068 0.9568
RMSEs Fitted 0.4229 0.4198 0.6923

RMSE Forecast 0.1518 0.3602 0.9196
RMSEu Fitted 0.1926 0.2180 0.1182

Forecast 0.0558 0.2595 0.1747
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systematic and unsystematic elements. Also rec-
ommended by Willmott (1981) and Willmott et al.
(1985) is the index of agreement (d), defined as

d = 1 −

n∑

i=1
(Pi − Oi)

2

n∑

i=1

(∣
∣
∣Pi − O

∣
∣
∣ +

∣
∣
∣Oi − O

∣
∣
∣
)2

0 ≤ d ≤ 1

(11)

where O being the mean of observed values. The
index d determines the extent to which magni-
tudes and the signs of the observed values about
the O are related to the predicted deviations
about O, and allows for sensitivity towards dif-
ferences in O and P as well as proportionality
changes (Rao et al. 1985). Being dimensionless
and having the limits of 0.0 (indicating no agree-
ment) and 1.0 (indicating perfect agreement), d
may be viewed as standardised (by the variability
in the predictions and observations about the ob-
served mean) measure of the mean square error.
The index d was proposed by Willmott (1981) as
an alternative to R and R2. This index is both a
relative and bounded measure, while R and R2 are
not consistently related to the accuracy of predic-
tion. Willmott and Wicks (1980) observed that the
“high”, or the statistically significant values of R
and R2 may in fact be misleading, as they often
are unrelated to the size of the difference between
Oi and Pi.

Table 3 presents the summary of the model
evaluation statistics for the various models at all
the NAAQM stations for the three pollutants i.e.,
SO2, NO2 and SPM. The index of agreement (d)

for the forecasts of the various models varies from
0.8693 to 0.9857, which is a very satisfactory fore-
cast. Thus, most of the models are able to explain
equal to or more than 86.93% of the potential for
error, i.e., at least 86.93% of the predictions are
error free.

Conclusions

The results obtained in the study reveal that linear
stochastic models such as ARIMA models provide
a useful quantitative description of air quality. The
Box–Jenkins models, though follow a “black-box”

approach, the system characteristics are intrin-
sically represented by the data themselves. The
technique is simple and requires less computa-
tional effort to provide the forecast. The only
prerequisite is the availability of sufficiently long
historical data set for model formulation (to allow
reliable empirical identification of the character of
the data generation process); if possible, at least 50
and preferably 100 successive observations should
be used (Box et al. 1994). The methodology is par-
ticularly effective for temporally autocorrelated
data, such as time-series of the air pollution con-
centration series. However, the stochastic models
being site specific, need to be used with care and
cannot answer the “what-if” questions. They can
be used as forecasting tool, for they provide a
better estimate of air quality than the analytical
models. Thus, separate models should, ideally be
developed for different AQCR, hosting monitor-
ing stations. The forecasting accuracy of stochastic
models decreases with time, Therefore, a rapid
availability of the pollutant data set is desirable to
achieve a sufficiently accurate forecast.

To develop an efficient public warning strat-
egy for pollutant levels, accurate predictors of air
quality are required. The results obtained in the
study are quite satisfactory and warrant continued
work in the area of time-series modelling.
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