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Abstract The catastrophic earthquake, 7.3 on the
Richter scale, occurred on September 21, 1999 in
Central Taiwan. Much of standing vegetation on
slopes was eliminated and massive, scattered land-
slides were induced at the Jou-Jou Mountain area of
the Wu-Chi basin in Nantou County. We evaluated
three methods for assessing landslide hazard and
vegetation recovery conditions. (1) Self-organizing
map (SOM) neural network coupled with fuzzy
technique was used to quickly extract the landslide.
(2) The NDVI-based vegetation recovery index
derived from multi-temporal SPOT satellite images
was used to evaluate vegetation recovery rate in the
denudation sites. (3) The spatial distribution index
(SDI) based on land-cover topographic location was
employed to analyze vegetation recovery patterns,

including the invading, surviving and mixed patterns
at the Jou-Jou Mountain area. On September 27,
1999, there were 849.20 ha of landslide area extracted
using the self-organizing map and fuzzy technique
combined model. After six years of natural vegetation
succession, the landslide has gradually restored, and
vegetation recovery rate reached up to 86%. On-site
observation shows that many native pioneer plants
have invaded onto the denudation sites even if
disturbed by several typhoons. Two native surviving
plants, Arundo formosana Hack and Pinus taiwanen-
sis Hayata, play a vital role in natural vegetation
succession in this area, especially for the sites on
ridgeline and steep slopes.

Keywords Landslide hazard assessment .

Vegetation recovery pattern analysis . Self-organizing
map (SOM) . Fuzzy technique

Introduction

Landslides are very common natural hazards and can
be very damaging in steepland areas, resulting in a
variety of human and environmental impacts (Perotto-
Baldiviezo et al. 2004). On September 21, 1999, a
catastrophic earthquake with a Richter magnitude of
7.3 occurred at Chi-Chi area of Nantou County in
Taiwan. Massive landslides were induced and more
than 20,000 sites, with a total landslide area of
15,977 ha, were identified in Central Taiwan (Chang
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2000), including the slopeland along the East–West
Expressway in the Da-Chia River basin, in the Jou-
Jou Mountain area of the Wu-Chi River basin (Fig. 1),
which is located at Tasoling near the border between
Yunlin and Chiai counties, and Chiufenershan in
Nantou county (Lin et al. 2001). According to the
geological data from Taiwan’s Central Geological
Service, the geology of the study area was chiefly
formed by high percentage of gravel, rock and minor
sandstone, and the surface was only covered by shallow
and fragile topsoil. Therefore, the risk of landslides
in the Jou-Jou Mountain area are especially serious.

The Taiwan Forestry Bureau has established a
1198 ha plan for natural reservation purposes at the
Jou-Jou Mountain. In accordance with the on-site
investigation in this area from Taiwan’s Endemic
Species Research Institute in September, 2000, the
quake significantly affected the ecosystem, including
the elimination of habitats for a number of birds and

extinction of Acronychia pedunculata, a native plant
in Taiwan. Ou and Liu (2000) pointed out that
without human interference many plants have natu-
rally invaded into the landslide one year after the
earthquake and some of surviving plants can quick
cover the landslides during rainy seasons.

Succession is a natural process that determines
consecutive changes in species composition of the
vegetation resulting from developmental changes in the
ecosystem itself or initiated by a disturbance (Myster
et al. 1997; Roovers et al. 2005). In general, vege-
tation recovery is generally regarded as a slow process
(Brown and Al-Mazrooei 2003), several environmen-
tal factors such as soil properties and moisture, slope
gradient, typhoon disturbances and microclimate
affect the rate of natural vegetation succession.

The scope of such tremendous, scattered landslides
and the vegetation recovery could not be assessed
using traditional methods, such as field surveys, a
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Fig. 1 Jou-Jou Mountain area in Central Taiwan
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variety of measuring equipment, or airborne photo
interpretation by available manpower. Fast growing
progress in technologies including remotely sensed
data and digital elevation models (DEMs) coupled
with geographic information systems (GIS) are now
being widely used for the landslides disaster assess-
ment (Mantovani et al. 1996; Dikau et al. 1996;
Carrara et al. 1999; Dhakal et al. 2000; Claessens et
al. 2006). The frequently used methods for landslide
classification include ISODATA, Minimum Distance,
Mahalanobis Distance and Maximum Likelihood
Estimation (MLE) and fuzzy c-mean algorithms. The
fuzzy classifier is an unsupervised classification
method, which has proven useful in post-classification
processing, the detection of high-risk confusion
zones, and the correction of flagrant misclassification
(Andrefouet et al. 2000; Keuchel et al. 2003). For
temporal and spatial dynamics of vegetation, the
normalized difference vegetation index (NDVI) de-
rived from remotely sensed data is a popular method
(Teillet et al. 1997; Kumar et al. 2002; Larchevêque et
al. 2005). Higher NDVI indicates a greater level of
photosynthetic activity (Sellers 1985), which can be
used to evaluate the amount of vegetation cover and
biomass.

There have been over six years since the earth-
quake. Most research on the Chi-Chi earthquake-
induced landslides mainly focused on the landslide
disaster statistics and surveys (Wang et al. 2000;
Chang 2000; Wang et al. 2003) and on the vegetation,
which has been investigated via field observation or a
variety of measuring equipment (Ou and Liu 2000;
Lin and Huang 2000).

For massive, scattered landslides, it is essential to
develop the quantitative methods coupled with re-
motely sensed data and GIS for effective the landslide
hazard and long-term vegetation recovery conditions

assessment for decision making and policy planning.
Therefore, three procedures were evaluated in this
study. Firstly, self-organizing map (SOM) neural
networks coupled with fuzzy techniques were used
to identify landslides from pre- and post-quake SPOT
images. Secondly, an NDVI-based index, the vegeta-
tion cover index (C) was derived to assess vegetation
recovery conditions at landslides. Finally, three
vegetation recovery patterns were analyzed using a
spatial distribution index (SDI) based on topographic
distribution. Additionally, on-site investigation can be
used to verify landslide distributions, to evaluate the
characteristics of surviving and invading plants at
different patterns, and to monitor the natural rate of
vegetation succession on landslide areas.

Study area

The Jou-Jou Mountain area is located at the north
shore of the Wu-Chi River in central Taiwan (Fig. 1).
The area lies between 20°59′59″ N and 23°59′12″ N
latitudes and between 120°44′51″ E and 120°48′12″ E
longitudes. The study area is 4,396 ha with altitudes
from 123 to 776 m, an average slope of 39% and an
average precipitation of 1684 mm/year. The geologi-
cal data from Taiwan’s Central Geological Service
shows that the rock formation occurring in the target
area is the Tou-Ke-Shan stratification, chiefly formed
by high percentage of gravel, rock and minor sand-
stone. Over time, the slopes adjacent to active stream
channels have eroded by torrential water flows from
theWu-Chi River. A cliff terrain results from this
geomorphic activity. The major grass species and trees
are Formosan giantreed, Arundo formosana Hack,
Taiwan Red Pine, Pinus taiwanensis Hayata, and
Taiwan Shortleaf Pine, Pinus morrisonicola Hayata.

1999/4/1 1999/9/27 2005/9/17 Fig. 2 SPOT satellite
images at the Jou-Jou
Mountain area
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Methods

Three SPOT satellite images with 20-m pixels were
used to identify post-quake landslides (Fig. 2). The
first imagery was taken before the earthquake on
April 1, 1999. The second imagery soon after the
earthquake was on September 27, 1999. The third
imagery was taken on September 17, 2005, over
6 years after the earthquake. The upper left corner is
golf course in the studied image and some areas were
undergoing vegetation works and had a positive
change value.

Landslide image analysis

Landslide spectral characteristics

The SPOT imagery has green, red and near-infrared
wavebands. In green and red wavebands, the landslide
has a stronger reflectance (brightness) than vegetation
and water land covers (Fig. 3). However, in the near-
infrared waveband, vegetation can reflect the near-

infrared stronger than water and landslide bare soil.
Areas of bare soil from landslides, vegetation and
water are major land covers distributed through the
study area in post-quake images. In this study, a new
evaluating index, the average brightness index (ABI),
was proposed to substitute for near-infrared waveband.
The ABI can be written as:

ABI ¼ Gþ Rþ NIRð Þ
3

ð1Þ

where G is the reflectance radiated in the visible green
waveband of the satellite radiometer, R is the reflec-
tance radiated in the visible red waveband and NIR is
the reflectance radiated in the near-infrared waveband.
The ABI will have higher values (strong reflectances)
for landslide areas.

Image differencing algorithm

Image differencing is based on a pair of coregistered
images of the same area collected at different times.
The process simply subtracts one digital image, pixel-
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quency for major three
land covers in post-quake
image
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by-pixel, from another, to generate a third image
composed of the numerical differences between the
pairs of pixels (Ridd and Liu 1998). The differenced
image can be derived from pre- and post-quake images
by applying the image differencing algorithm. In this
study, the land cover change types were categorized by
the method of image subtraction, brightness value after
hazard subtracted from that before the hazard. The
three major change types are positive change, no
change and negative change. (1) Positive change has
a differencing brightness value larger than 0 because
vegetation is replacing bare land surface. (2) No
change is the differencing brightness value close to 0,
which suggest areas not affected by the hazard such as
undamaged buildings, unchanged vegetated areas and
bare land. (3) Negative change is the differencing
brightness value smaller than 0, which indicates areas
where denudation of vegetation cover has occurred
since the time of the earthquake. In this study, the focus
in on the recovery of denuded landslides caused the
earthquake, hence, pixels with differencing brightness
value smaller than 0 were excluded while performing
landslide image analysis of vegetation recovery rates.

Landslide extraction using self-organizing map
and fuzzy technique combined model

Self-organizing map neural network

The Self-organizing Map (SOM), originally proposed
by Kohonen in 1997, is a popular feed-forward
artificial neural network based on unsupervised
learning, which has properties of both vector quanti-
zation and vector projection algorithms (Kohonen
1997). The network consists of an input layer and an
output layer (also called the competitive layer; Fig. 4).
The input layer is fully connected to the output layer.
In SOM, the high-dimensional input vectors are
projected in a nonlinear way to a low-dimensional

map (usually a two-dimensional spaces), and SOM
can perform this transformation adaptively in a
topologically ordered fashion. Therefore, the neurons
are placed at the nodes of a two-dimensional grid.
Each neuron i has an associated d-dimensional
prototype vector, mi ¼ mi1;mi2; :::;mid½ �, where d
denotes the dimension of the input vectors.

The SOM is trained iteratively. In each training step,
one sample vector x from the input data set is chosen
randomly and the similarity between it and all proto-
types of the map are calculated using the Euclidian
distance measure. The unit whose incoming connection
weights have the greater similarity with the input pattern
x is the winner unit c (best matching unit, BMU):

x� mck k ¼ min
i

x� mik kf g ð2Þ

where �k k is the Euclidian distance measure.
After finding the BMU, the prototype vectors (or

connection weights) are adjusted. The SOM not only
updated the BMU’s weights, but also adjusted the
weights of the adjacent output units in close proximity
to the neighborhood of the winner. The update
equation for applying the weight vector of neuron i is:

mi t þ 1ð Þ ¼ mi tð Þ þ a tð Þhci tð Þ x tð Þ � mi tð Þ½ � ð3Þ

where t is the time of iteration, α(t) is the learning rate
and is a decreasing function of time, hci(t) is called the
neighborhood function, which will decrease in time.
The Gaussian function was used as the neighborhood
function in this study:

hci tð Þ ¼ exp � ri � rck k2
2σ2 tð Þ

 !
ð4Þ

where σ(t) is called the neighborhood radius;
ri � rck k is the topological distance between unit i

and winner unit c.
In this study, the dimension of the input vector is

three because two wavebands, G and R, and one
brightness index, ABI, in satellite image were chosen
as the data sources. In SOM, the learning is broken
down into two phases: the ordering phase and tuning
phase. In the ordering phase, the neighborhood radius
decreases linearly from 5 to 1, and the value of 1 was
maintained over the tuning phase. The initial learning
rates were 0.9 and 0.25, and the training lengths were

output
layer

input layer

Fig. 4 The self-organizing map structure
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2,000 and 10,000 epochs for the ordering phase and
tuning phase, respectively. The learning rate de-
creased linearly from 0.25 to zero during training in
the tuning phase. Additionally, a rectangular grid with
81 (9×9) neurons was used in the Kohonen map.
When the training is over, the map should be
topologically ordered and similar input vectors can
map to the same or adjacent neurons. Because
landslides have larger brightness values in three input
vectors, similar trend for the trained weight vectors
can be found in the Kohonen map. The landslide land
cover can be rapidly extracted based on the derived
weight vectors. The larger the weight vectors, the
higher the possibility of pixel belonging to the
landslide. Therefore, the ordered weight vectors
coupled with fuzzy technique can be used to rapidly
identify post-quake denudation sites.

Landslide extraction using fuzzy technique

The GIS-based fuzzy classifier consists of a fuzzy c-
mean algorithm and the geo-link technique of GIS.
The former is a nonhierarchical clustering algorithm,
which randomly assigns pixels to classes and then, in
an iterative process, moves cases to other classes so as
to minimize the generalized least-squared error
(Bezdek 1981). The latter is a spatial link technique
that displays the extracting results on a GIS platform,
which are compared with ground truth or aerial photos.
By the combination of GIS and fuzzy techniques, areas
with landslides can be quickly extracted.

After training in SOM, the landslide has larger
weight vectors in neurons. Therefore, the trained
weight vectors can be divided into two classes. The
first class is the landslide having larger weight values,
and the second class is the non-landslide having
smaller weight values. The larger the weight vectors,
the higher the possibility of a pixel being a landslide.
As a result, fixed cluster centers for two classes are
assigned: maxðWG;WR;WABIÞ for the first class and
minðWG;WR;WABIÞ for the second class, in which
WG, WR and WABI are the trained weight vectors of
differenced G, R and ABI in SOM, respectively.

The fuzzy c-partition U of a given data set Y can be
found by applying:

Jm U ; vð Þ ¼
Xc
i¼1

Xn
j¼1

uij
� �m

yj � vi
�� ��2 ð5Þ

where Y ¼ y1; y2; :::; ynf g � R=the data, c = the num-
ber of clusters identified, 2 � c < n, m = weighting
exponent, 1 � m < 1, U = fuzzy c-partition of Y,
U � Mfc, uij=the degree of membership of pattern yj
in cluster vi, uij ¼ 1Pc

k¼1

wbyj�vik k2
�

yj�vkk k2
� � 1

m�1
, vi=

(v1,v2,…,vc) = vectors of cluster centers, vi ¼Pn
j¼1

uijð ÞmyjPn
j¼1

uijð Þm
, kk2= the Euclidean distance from a pattern

yj to the cluster center vi.
After calculating fuzzy membership function for

each neuron in SOM, areas of landslide can be rapidly
identified according to membership values in descend-
ing order. Optimal threshold membership value deci-
sion for landslide extraction can be rapidly chosen
from the neurons of output vector in SOM after
compared with compared with ground truth data such
as aerial photos or field surveys. The classification
accuracy for the extracted landslides can be assessed
using Kappa coefficient, which is a measure of
agreement or accuracy for land cover classification
(Congalton 1991).

Vegetation recovery rate assessment

The SPOT satellite image shows green, red and near-
infrared as the three major wavebands. Because
vegetation can reflect the near-infrared stronger than
bare soil, this characteristic was used to investigate
and explore the vegetation using its photosynthetic
conditions. The normalized difference vegetation
index (NDVI) is one of the most popular methods
for vegetation monitoring. The NDVI calculation
(Justice et al. 1985) can be obtained as:

NDVI ¼ NIR� R

NIRþ R

where NIR is the reflectance radiated in the near-
infrared waveband and R is the reflectance radiated
in the visible red waveband of the satellite radiometer.
The higher the NDVI value, the higher the photosyn-
thesis activity. It has been reported that multi-
temporal NDVI is useful for classifying land cover
and dynamics of vegetation (Senay and Elliott 2000;
Birky 2001; Tsai and Philpot 2002).

In this study, an NDVI-based index, the vegetation
cover index (C) was inferred using remote sensing
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combined with ground-truthing based on the verifica-
tion for several Taiwan’s watersheds (Lin 2002). The
proposed vegetation cover index relating to NDVI can
be expressed as:

C ¼ 1� NDVI

2

� �1þNDVI

ð7Þ

The C values range from 0 to 1. The lower the C
value, the higher the vegetation cover. The variation
in C values was used to explain the degree of vegeta-
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Fig. 6 The weight vectors mapped on the Kohonen maps
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tion recovery at landslides from pre- and post-quake
satellite images. The rate of vegetation recovery (v)
can be written as:

n %ð Þ ¼ C1 � C2

C1 � C0
� 100% ð8Þ

where C0 is the pre-quake vegetation cover index; C1

is the vegetation cover index soon after the earth-
quake; and C2 is the vegetation cover index at the
time of assessment. The values for vegetation recov-
ery v were grouped into four categories, including
poor (<0), average (0–50), good (50–100), and
excellent (>100). Based on v values, three conditions
can be obtained: (1) Vegetation recovery became
worse if v is less than 0; (2) Vegetation recovery is
gradually enriched if v ranged from 0 to 100; (3)
Vegetation recovery is superior to that before the
earthquake if v is greater than 100.

Vegetation recovery pattern analysis

The Jou-Jou Mountain area was chiefly formed by
high percentage of gravel and rock. A unique cliff
terrain resulted from this geomorphic activity, which
caused special vegetation recovery pattern at the post-
quake landslides. Due to the differences among
topographic characteristics, plant formation and soil
moisture, three main vegetation recovery patterns
were observed from field surveys, including the
invading pattern, the surviving pattern and the mixed
pattern. The invading pattern, located near gentle toe-

slopes along stream, can preserve sufficient water in
the topsoil for establishing pioneer plants. The
surviving pattern, located along steep slope, is
unstable and the plants cannot readily attach to the
surface. Therefore, the denudation sites were recov-
ered on the basis of the original surviving vegetation.
The mixed pattern is located on ridgelines having
insufficient soil moisture. The vegetation cover is a
mix of original and invading plants.

In order to assess the location of different
vegetation recovery patterns on landslides, an evalu-
ating index, the spatial distribution index (SDI), was
developed to calculate land-cover distribution, includ-
ing on ridgeline, along hillslope and near stream
(Fig. 5) from upstream source to downstream area.
The SDI formula can be expressed as:

SDI ¼ L1
L1 þ L2

ð9Þ

where L1 is the distance from the evaluated site to the
ridgeline, and L2 is the distance from the evaluated site
to the stream. By GIS analysis, both distances can be
derived from DEMs using site position and calculated
drainage flow direction. The required terrain data,
such as drainage flow direction and drainage network,
can be automatically derived by using the algorithms
proposed by Chou et al. (2004) and Lin et al. (2006).

The SDI value ranges from 0 to 1. If the value is
close to 1, the evaluated site is near a stream. If the
value ranges from 0.1 to 0.9, the evaluated site is
located on the hillslope. If the value is close to 0, the
evaluated site is located on the ridgeline.
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Fig. 7 The calculated fuzzy membership function mapped on
the Kohonen maps

Fig. 8 Landslide distribution at the Jou-Jou Mountain area
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Results and discussion

Landslide extraction and topographic characteristics

In accordance with the geological data from Taiwan’s
Central Geological Service, the geology of study area
was chiefly formed by high percentage of gravel, rock
and minor sandstone. The surface was only covered
by shallow and fragile topsoil. It would be collapsed

and cause large-scale scattered landslides during
catastrophic earthquakes. The SPOT imagery on
September 27, 1999, about 1 week after the earth-
quake, shows that much of standing vegetation was
eliminated, and massive landslides are widely distrib-
uted throughout the study area (Fig. 8).

Three input vectors, the differenced G, R and ABI,
can be transferred as weight vectors after iteratively
training in SOM and the converged weight vectors
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mapped on a Kohonen map (Fig. 6). SOM is a useful
tool for the visualization of association of similar land
covers distribution, and with the help of Kohonen
map, the associations of similar land covers can be
observed very clearly. In accordance with high
reflectance characteristic of the landslide, the larger
the pixel brightness value, the higher the possibility
belonging to the landslide. The weight vector trained
in SOM has the same association with the darker
color represents larger weight value; that is, higher
possibility belonging to the landslide. Based on the
distribution of trained weight vectors, the landslide
soon after the earthquake (1999/9/27) was concen-
trated near the lower-left side of neurons.

When the training process was finished and the
prototype vectors were obtained, fuzzy technique was
utilized to calculate fuzzy membership function of
neurons of the SOM. The larger the membership
function value of neurons, the higher the possibility of

pixel belonging to the landslide. The fuzzy member-
ship function of neurons for post-quake images was
calculated (Fig. 7), and compared with ground truth
data such as aerial photos and field survey, the
minimum threshold of fuzzy membership function for
landslide extraction on September 27, 1999 is 0.126.
Pixels greater than the threshold were identified as
landslide (Fig. 8). The extracted landslide area was
849.20 ha with a high Kappa coefficient of 0.9453.

The topographic characteristics of the landslide
sites can be calculated on the basis of location analysis.
The percentages of the landslide distributed on
ridgeline, along steep slope and near stream are
45.13%, 50.34% and 4.52%. The steep sites on
ridgeline and along steep slope belong to the collapsed
area of the landslide, with worse environmental
conditions for plants growing, including bare gravel
and rock, infertile collapsed land and insufficient soil
moisture. The sites with gentle slope near stream
belong to the heap area of the landslide, with gentler
slope and sufficient soil moisture for plants growing.

Vegetation recovery pattern assessment

The C frequency distribution for sites before the Chi-
Chi earthquake indicates excellent vegetation condition
with an average C value of 0.187 (Fig. 9), but much of
the vegetation was eliminated soon after the earth-
quake as indicated by an average C value of 0.433.
After 6 years of monitoring, the average C value has
declined to 0.209 on September 17, 2005, indicating
that vegetation on landslides has been gradually
recovered by 86%.

Most poor recovery sites were spatially distributed
along stream banks (Fig. 10), which was verified by
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Fig. 12 The distance analysis of the poor vegetation recovery
sites

Table 1 Statistics of classified vegetation recovery conditions at different dates

Category v (%) Distribution by date (2005/9/17)

Near stream Along hillslope On ridgeline Total

Area in hectare (%)
Excellent >100 6.05 (0.71) 144.41 (17.01) 136.56 (16.08) 287.02 (33.80)
Good 50∼100 25.31 (2.98) 254.66 (29.99) 239.47 (28.20) 519.44 (61.17)
Average 0∼50 6.54 (0.77) 19.59 (2.31) 13.36 (1.57) 39.49 (4.65)
Poor <0 0.76 (0.09) 2.31 (0.13) 1.36 (0.16) 3.25 (0.38)
Total 38.66 (4.55) 419.79 (49.44) 390.75 (46.01) 849.20 (100)
Average v 71.32% 85.97% 87.42% 85.96%
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field surveys. The reason is that scoured slope bases
next to the concave banks of river were easily eroded
during rainfall seasons (Fig. 11). The distance
analysis from poor recovery sites to stream indicates
that up to 82.59% of poor sites concentrated around
stream banks with distance less than 50 m (Fig. 12).
Additionally, from 1999 through 2005, several
typhoons, such as Toraji (2001/7/30), Mindulle
(2004/7/2), Aere (2004/8/25) and (2005/7/18), have
stroke the Jou-Jou Mountain area and caused debris
flow disasters. The assessed results show that the
impact on vegetation recovery at landslides is
insignificant and the nature itself has strong vegeta-
tion recovery ability for the denudation sites.

In accordance with vegetation recovery pattern
assessment, the v values for the sites of invading,

surviving and mixed patterns are 71%, 86% and 87%,
respectively (Table 1). It is obvious that the vegetation
recovery declined along landforms from ridgeline to
stream (Fig. 13) with on ridgelines and along steep
slopes having superior vegetation recovery than sites
near streams. Three vegetation recovery patterns were
analyzed and described as follows:

1. The invading pattern is mainly located at gentle
toe-slopes near stream, where sufficient water is
preserved in topsoil for native pioneer plants to
establish. The dominated plants include Rhus
chinesis, Mallotus Japonicus, Broussonetia papy-
rifera, Trema orientalis and Miscanthus floridu-
lus. They are the commonly found pioneer plants

Fig. 15 The restoring Arundo formosana Hack on steep slopes
(2005/8)

Fig. 14 The vegetated buffer strips formed by the invading
pioneer plants (2005/8)

Fig. 16 The surviving Pinus taiwanensis Hayata and invading
vegetation on ridgeline (2005/8)
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Fig. 13 Vegetation recovery rate for three patterns
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on infertile collapsed lands in Taiwan. The seeds
of pioneer plants with lighter weights could be
transported to the denudation sites at gentle slopes
via wind power from other areas. From field
observations, once sufficient water supplied, they
can rapidly grow, and expand as stable plant
communities within three years. Those natural
vegetated buffer strips protect the collapsed earth
and stones from being eroded (Fig. 14). Addi-
tionally, because the scoured slope bases next to
the concave banks caused unstable vegetation
condition during rainfall seasons, the sites might
need foundation engineering at first to establish a
stable habitat for plants.

2. The surviving pattern occurs along steep hillslope
because the invading seeds cannot be attach on
the surface in the cliffs. The vegetation remains
simple and composed mainly of the original
surviving vegetation, especially Arundo formo-
sana Hack (Fig. 15), one of the native grass
species with robust vitality in Taiwan. Arundo
formosana is a pioneer plant that can survive in
harsh environments, such steep cliff, which
typically have insufficient soil moisture and
infertile topsoil. Due to its robust rootstalk, it
can subsist and rapidly grown along steep
collapsed slopes during rainfall seasons. The
tendency of vegetation to recover increased from
slope surface to ridgeline. Over six years of
natural succession, most collapsed slopes have
recovered. Our results indicate that slope gradient
is not a limiting environment factor for vegetation
recovery on landslides.

3. The mixed pattern is located on ridgelines where
there is often insufficient soil moisture for plant
growth. The vegetation cover is mainly Arundo
formosana and trees such as Pinus taiwanensis
Hayata and Pinus morrisonicola Hayata (Fig. 16).
The Pinus taiwanensis not only can endure
drought environments but can also develop
mycorrhiza symbiosis. These pines obtain enough
nitrogen and other essential minerals from humus
decomposition, aided on mycorrhiza functions.
Meanwhile, the plants provide carbohydrate and
amino acid to support the mycorrhiza. The
invading plants mainly consist of Mallotus japo-
nicus, Macaranga tanarius and Miscanthus flo-
ridulus, whose seeds endure long-term droughts
on ridgelines and wait for rains.

Conclusions

Assessment of landslide hazard and monitoring its
vegetation recovery is an important task for decision
making and policy planning in landslide prone area.
We evaluated three methods for assessing the occur-
rence of landslides and their vegetation recovery,
including a combined SOM neural network and fuzzy
technique, a NDVI-based vegetation recovery index,
and a spatial distribution index. After six years of
natural succession, excellent vegetation recovery had
occurred on landslides. Based on field surveys, the
original surviving plants with robust vitality played a
vital role in the process of natural vegetation
succession in the Jou-Jou Mountain study area.
During rainy seasons, landslides can rapidly recover
to protect fragile lands from being eroded and
avoiding debris flow disasters. Additionally, most
poor vegetation recovery sites were mainly distributed
at scoured slope bases next to the concave stream
banks, which might need initial engineering to
establish a stable habitat for plant establishment.
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