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Abstract Aquatic vegetation is an important com-
ponent of wetland and coastal ecosystems, playing
a key role in the ecological functions of these
environments. Surveys of macrophyte communi-
ties are commonly hindered by logistic problems,
and remote sensing represents a powerful alter-
native, allowing comprehensive assessment and
monitoring. Also, many vegetation characteristics
can be estimated from reflectance measurements,
such as species composition, vegetation struc-
ture, biomass, and plant physiological parameters.
However, proper use of these methods requires
an understanding of the physical processes behind
the interaction between electromagnetic radiation
and vegetation, and remote sensing of aquatic
plants have some particular difficulties that have
to be properly addressed in order to obtain
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successful results. The present paper reviews the
theoretical background and possible applications
of remote sensing techniques to the study of
aquatic vegetation.
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Introduction

Aquatic plants are an important component of
wetland and coastal ecosystems, playing a key role
in ecological function (Marion and Paillison 2003;
Junk 1997). Many macrophyte communities are
characterized by high growth rates, rapid biomass
accumulation and, in seasonal ecosystems such as
wetlands and floodplains, by a tight connection
with the flooding pattern of the landscape (Junk
1997). These plants have a large capacity to absorb
harmful substances and pollutants, and can be
indicators of the eutrophic status of a water body
(Onaindia et al. 1996).

Surveys of macrophyte communities are com-
monly hindered by limited accessibility (Vis et al.
2003). Hence, remote sensing is a valuable tool for
assessment of macrophyte stands and associated
biophysical and ecological parameters. The use
of remotely sensed images allows multitemporal
studies and provides comprehensive information
from surrounding areas. With the advance of
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sensor technology and processing techniques, veg-
etation characteristics such as species composi-
tion, leaf area index, biomass, photosynthetically
active radiation absorbed and even chemical com-
position can be determined by analysis of radio-
metric data (Tilley et al. 2003; Peñuelas et al.
1993).

Aquatic plants and their properties, however,
are not as easily detectable as terrestrial vegeta-
tion. Proper understanding of the physical interac-
tion between electromagnetic energy and both the
vegetation and its environment, as well as careful
application of pre-processing steps prior to the
analysis of remotely sensed data are requirements
for obtaining successful results. Most remote sens-
ing techniques have been employed to assess
macrophyte properties: field spectrometry, aerial
photography, aerial/orbital multispectral systems,
hyperspectral systems, microwave sensors, digital
airborne videography and sonar systems. In the
present paper, the theoretical background and
applications of remote sensing to aquatic plants
are examined, in order to provide a comprehen-
sive perspective on its present and future capabil-
ities and needs.

Optical remote sensing

The principles behind aquatic vegetation spectral
characteristics are the same as behind its ter-
restrial counterparts. At the leaf level, presence
and concentration of leaf pigments determine the
response in the visible region of the spectrum, and
leaf morphology and water content are the main
factors acting on the infrared wavelengths (Fig. 1).

At the individual level, biophysical factors such
as leaf distribution, leaf density and orientation,
and overall canopy structure are important. Ver-
tically oriented plants or reduced leaf area offer
less available surface to interact with the down-
welling radiation, while highly branched canopies
and broadleaved plants have a more effective
reflective area (Williams et al. 2003). At the
community level, plant biomass and density are
also important variables. Although the spectral
response of aquatic vegetation resembles that of
terrestrial vegetation, the submerged or flooded
conditions introduce factors that alter its overall
spectral characteristics. It is therefore useful to

distinguish between submerged and floating or
emergent plants, as these factors act differently in
each case.

Spectral behavior of submerged vegetation

The green region of the spectrum is considered as
the most suitable for sensing submerged macro-
phytes, followed by the red and red edge regions.
Several studies highlight the same narrow spec-
tral regions as optimal for submerged macrophyte
discrimination (Table 1). This convergence indi-
cates that common underlying conditions such as
pigment concentration and cellular structure are
responsible for the main differences among
macrophyte species. Also, the green region pro-
vides greater light penetration in waters with
higher concentrations of suspended and dissolved
material (Kirk 1994).

Water strongly absorbs the electromagnetic
radiation in the optical spectral region, resulting
in significant dampening of the radiometric sig-
nal. Because of this, reflectance measurements for
submerged species are usually very low, on the
order of 10×10−2 (Pinnel et al. 2004; Dierssen and
Zimmerman 2003; Fyfe 2003; Han and Rundquist
2003; Heege et al. 2003; Paringit et al. 2003;
Everitt et al. 1999). In the absence of water (i.e.
laboratory conditions), higher reflectance values
can be obtained (Paringit et al. 2003; Armstrong
1993). The main challenge of remote sensing of
submerged aquatic plants is thus to isolate plant
signal from the overall water column interference.

Due to the reduced magnitude of the signal, a
careful and adequate correction of atmospheric
effects is necessary prior to the analysis of sub-
merged vegetation radiometry derived from air-
borne and orbital data. This correction is usually
obtained through (1) image-based procedures,
which employ pixels with known spectral char-
acteristics to correct for atmospheric noise; and
(2) model based procedures, which use radiative
transfer equations to model atmospheric condi-
tions and the radiation pathway, and then pre-
dict the expected surface reflectance for these
conditions.

Image-based methods usually consist of Dark
Object Subtraction (DOS) (Chavez 1988), which
uses objects with near zero reflectance to
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Fig. 1 Leaf-radiation
interactions at
microscopic level. Arrow
thickness is proportional
to the magnitude of
radiation fluxes

estimate and correct for atmospheric haze, or
some of its improved versions, which also correct
atmospheric transmittance (Chavez 1996). The
major drawback associated with this approach is
that often the existing dark objects within a scene
are in fact the water bodies, and a poor choice
of haze values can actually cancel out the water-
leaving radiance.

Radiative transfer models are based on param-
eterization of atmospheric conditions. However,
these parameters are seldom available for specific
locations, and the model applications thus rely on
estimated or average parameters, which can result
in erroneous corrections (Song et al. 2001). Com-
mon methods include the MODTRAN (Berk et al.
1999), and 6S algorithms (Vermote et al. 1997).

Table 1 Appropriate spectral regions for discriminating submerged macrophyte species, as suggested by different authors

Wavelength (nm) Plant species

Williams et al. (2003) 574 / 681 Vallisneria americana, Myriophyllum spicatum
Fyfe (2003) 530–580 / 520–530 / 580–600 Zostera capricorni, Posidonia australis, Halophila ovalis
Pinnel et al. (2004) 550 / 656 Chara spp., Naja marina, Nitellopsis obtusa, Potamogeton spp.
Han and Rundquist (2003) 538 / 706 Ceratophyllum demersum
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Ultimately, the choice of methods should be
based on the amount and reliability of available
atmospheric data. If available, then model-based
procedures are the logical choice. If not, image-
based procedures are expected to yield more accu-
rate results and minimize error introduction; refer
to Zilioli and Brivio (1997) and Song et al. (2001)
for further information.

Apart from water, the presence of optically
active material (i.e. plankton, sediment, organic
molecules) affects the scattering and absorption of
radiation (Han and Rundquist 2003; Kirk 1994).
In addition, bottom reflectance is a factor to be
considered when interpreting the radiometric sig-
nal of macrophyte beds in shallow waters.

Ackleson and Klemas (1987) used a single-
scattering volume reflectance model to represent
the interaction between the three main compo-
nents of the signal from submerged vegetation
(water, bottom, plants). Using this physical repre-
sentation and a set of pre-determined, represen-
tative parameter values, the authors showed that,
in shallow depths, the overall reflectance signal
is determined mainly by the vegetation density,
assuming that bottom reflectance is constant and
differs significantly from the vegetation. As depth
increased, dominance of reflectance shifted to the
water column components. Hence, Ackleson and
Klemas (1987) suggested that incorporating depth
information into the classification method can
reduce the influence of water column variation.
Armstrong (1993) accomplished this for Landsat
TM visible bands through a linearization proce-
dure developed by Lyzenga (1978), which yields
depth invariant bands.

Water column optical models also include
bathymetric information as one of the vari-
ables used to correct water and bottom effects
(Dierssen and Zimmerman 2003; Heege et al.
2003). Paringit et al. (2003) attempted to develop
a seagrass canopy model to predict the spectral
response of submerged macrophytes in shallow
areas. The model considered not only the effects
of the water column through radiative transfer
modeling, but also viewing and illuminating con-
ditions, leaf and bottom reflectance, leaf area in-
dex and the vertical distribution of biomass. With
model inversion, plant coverage and abundance

were estimated with the use of IKONOS satellite
imagery, and compared to field measurements.

Finally, another important source of varia-
tion for submerged vegetation reflectance is the
presence of epibiont organisms, especially epi-
phytes, which can cover the plant surface. Fyfe
(2003) showed significant differences between the
reflectance of cleaned and fouled leaves, in all
wavelengths, for different macrophyte species.
These effects were more significant between 570
and 590 nm (Fyfe 2003; Williams et al. 2003). The
presence of epiphytes can also smooth the spec-
tral curve, reducing the difference in reflectance
between wavelengths and masking subtle spectral
features (Armstrong 1993).

Spectral behavior of emergent species

With the absence of water attenuation, the av-
erage reflectance of emergent macrophytes is
usually higher than the observed for submerged
plants. Values can range between 0.02 and 0.1
in the visible spectrum (with an usual peak in
the green region) and 0.06–0.65 in the near in-
frared (Tilley et al. 2003; Jakubauskas et al. 2000;
Malthus and George 1997; LaCapra et al. 1996;
Peñuelas et al. 1993; Best et al. 1981).

The presence of flooding, however, introduces
variability in reflectance values due to the mixing
of plant and water signals (Malthus and George
1997). This mixing usually results in a decrease
in total reflected radiation, especially in the near
to mid infrared regions where water absorption is
stronger. The intensity of such effect will be deter-
mined by vegetation density and canopy structure
(Jakubauskas et al. 2000) (Fig. 2), as well as by
the nature of the water signal. As noted before,
the latter is a function of the amount and nature
of suspended materials and depth of the water
column, plus substratum composition for shallow
depths.

Physiological status of vegetation can be
another source of variation in plant spectral signa-
tures. Best et al. (1981) demonstrated that a single
species, in different phenological stages, exhibited
significant variation in its reflectance. In addition,
physiological stress can lead to spectral variability
(Tilley et al. 2003; Peñuelas et al. 1997; Bajjouk
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Fig. 2 Effect of plant density in the spectral profile
of Nuphar polysepalum. On higher densities, the spec-
tral curve is similar to what is expected from a veg-
etated surface. As it decreases, reflectance values are
reduced, especially in the 700–1,000 nm region, and the
overall response approaches the one for a water sur-
face (Adapted from Jakubauskas et al. (2000): Interna-
tional Journal of Remote Sensing, Taylor & Francis Ltd,
http://www.tandf.co.uk/journals)

et al. 1996; Peñuelas et al. 1993; Best et al. 1981).
Stress usually implies alterations on biochemical
status and morphological characteristics, which in
turn determine the spectral response in the differ-
ent regions of spectra. Factors such as chlorosis,
desiccation or disease can be detected in the spec-
tral signature of plants.

Because of the wide range of reflectance val-
ues, the spectral signature of emergent aquatic
vegetation often overlaps the signals from terres-
trial vegetation, water and occasionally soil. This
variability can lead to poor results from simple
automated classification procedures and hinder
visual interpretation (Silva 2004; Ozesmi and
Bauer 2002; Best et al. 1981). In such cases, the
use of alternative image classification algorithms
such as decision tree (Baker et al. 2006) or neural
network classifiers (Filippi and Jensen 2006) may
help.

Optical remote sensing applications to aquatic
vegetation studies

Aerial photography was the first remote sensing
method to be employed for studying and map-
ping plant stands, and early studies date back to
the 1960s and 1970s (Austin and Adams 1978;

Benton and Newman 1976; Edwards and Brown
1960). Although most airphoto analyses rely on
visual interpretation, plant species can be often
discriminated due to its high spatial resolution
(Moore et al. 2003; Schulz et al. 2003). Digitiza-
tion of aerial photography may allow the appli-
cation of computer aided classification algorithms
(Valta-Hullkonen et al. 2003; Marshall and Lee
1994). Aerial photography, however, often lacks
the capacity to record in multiple spectral bands,
a hindrance especially significant for submerged
vegetation.

Digital multispectral airborne systems can pro-
vide high spatial resolution coupled with an
increased number of spectral bands. Its spectral
refinement can support more accurate quantita-
tive analysis and classification of data (Malthus
and George 1997). Nevertheless, as data acquisi-
tion from these sensors can be more expensive
than the acquisition of aerial photography, the
latter remain as a common data source when
information at high spatial resolution (meter to
sub-meter range) is required (Maheu-Giroux and
de Blois 2005).

Another alternative to airphoto surveying is
the use of videographic systems, which employ
a digital video camera instead of photographic
sensors. These devices can attain fine spatial res-
olutions (sub-meter), and by using filters and
multiple cameras, acquire simultaneous images in
different spectral bands. Videography has been
employed with success to map both emergent and
submerged vegetation (Sprenkle et al. 2004; Hess
et al. 2002; Everitt et al. 1999).

In recent years, numerous studies employ-
ing hyperspectral imaging sensors have been
performed (Pinnel et al. 2004; Dierssen and
Zimmerman 2003; Thomson et al. 2003; Williams
et al. 2003; Anstee 2001; Alberotanza 1999;
Thomson et al. 1998; Bajjouk et al. 1996;
Lacapra et al. 1996; Zacharias et al. 1992).
These sensors offer good spatial resolution (about
1–4 m) and the capacity of recording full spectra
for each pixel. Such richness of data is of special
interest to the study of submerged vegetation,
since the overall signal is low and an acceptable
degree of discrimination can be only obtained by
the examination of subtle spectral characteristics.

http://www.tandf.co.uk/journals
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Specific features in the reflectance curves can
often be related to physiological and biophysical
parameters, allowing the indirect estimation of
these. The application of hyperspectral imagery is
one of the most promising uses of remote sensing
to the study of aquatic vegetation. Specifications
of some of the more widely used hyperspectral
sensors are listed in Table 2.

Satellite systems have also been successfully
applied to the study of aquatic vegetation.
Although the spatial resolution of these systems
is, in most cases, incapable of discriminating
aquatic vegetation at the species level (Jensen
et al. 1993), satellite imagery is useful for map-
ping macrophytes communities. Landsat MSS
and TM images have been employed for map-
ping submerged (Zhang 1998; Armstrong 1993;
Ackleson and Klemas 1987) and emergent vege-
tation. Images with spatial resolutions higher than
Landsat have also been applied to both vege-
tation types, e.g., SPOT data (Pasqualini et al.
2005; Jensen et al. 1995, 1993, 1986) and IKONOS
images, with 1m resolution (Sawaya et al. 2003).
Coarser resolution data have been proved useful
as well, e.g. the Indian IRS-LISS I, with ground
resolution of 72.5 m (Pal and Mohanty 2002;
Chopra et al. 2001), and MODIS images (250 and
500 m resolution) have been shown to be able
to map macrophyte occurrence after the use of
spatial resolution enhancement techniques (Silva
2004).

The usual application of remote sensing
imagery is to produce cover maps for aquatic
plants, in general or for different populations or
communities. Considering both airborne and or-
bital imaging sensors, accuracies ranging between

70 and 96% can be achieved (Pasqualini et al.
2005; Sawaya et al. 2003; Valta-Hullkonen et al.
2003; Anstee 2001; Everitt et al. 1999; Malthus and
George 1997; Bajjouk et al. 1996). High overall
accuracy can be obtained with the correct choice
and application of mapping techniques. Another
inherent advantage of satellite imagery is the reg-
ular temporal acquisition, allowing utilization of
time series to analyze seasonal patterns (Silva
2004; Jensen et al. 1993) or landscape changes
(Moore et al. 2003; Jensen et al. 1995). Instru-
ments such as the Landsat series provide almost
30 years of imagery, which is a valuable and
unparalleled source of temporal data.

Remote sensing can be employed as a tool for
estimating biophysical measures. Plant biomass
can be estimated by means of spectral data, mainly
through the use of regression analysis, with bands
or band combinations (ratios, indexes) as predic-
tor variables. It is important to note that with
increases in biomass, the relationship between the
spectral signal and the actual biomass approaches
an asymptote (Peñuelas et al. 1993).

Zhang (1998), using the first and second princi-
pal components of a PCA transformed TM image,
estimated the biomass of submerged stands in the
Honghu Lake (China), obtaining a coefficient of
determination of R2 = 0.85. Also, submerged veg-
etation biomass has been estimated by Armstrong
(1993), using depth normalized TM images and
obtaining an overall R2 = 0.79. This high degree
of agreement, considering the radiometric (8 bit),
spectral (few, broad bands) and spatial (30 m) lim-
itations of such images, suggests that even better
results could be acquired with the use of systems
with more resolving power. Other biophysical

Table 2 Some of the most widely used hyperspectral sensors currently in operation

Sensor Number Spectral interval Bandwidth Spatial Platform Manufacturer
of bands (excl. thermal) resolution

MIVIS 102 430–2,500 nm 8–20 nm Variable Airborne Daedalus Enterprises
CASI-2 19–288 400–1,050 nm 1.9 nm Variable Airborne ITRES research
PHILLS 128 380–1,000 nm 0.5–3 nm Variable Airborne Naval Research Laboratory, US
HyMap 100–200 450–2,500 nm 10–20 nm Variable Airborne Integrated Spectronics
AVIRIS 224 400–2,500 nm 10 nm Variable Airborne Jet Propulsion Lab
Hyperion 220 400–2,500 nm 10 nm 30 m NASA EO-1 TRW Inc.
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indexes can also be estimated through the use of
remote sensing, such as percentage cover (Heege
et al. 2003; Pinnel et al. 2004) and Leaf Area In-
dex (Dierssen and Zimmerman 2003). These mea-
sures represent important ecological variables,
and are often employed as inputs to ecosystem
models. Physiological characteristics can also be
inferred from the spectral response of macro-
phytes, due to alterations in optically active sub-
stances. Examples are chlorophyll concentration
(Peñuelas et al. 1993), photosynthetic efficiency
(Peñuelas et al. 1997, 1993), chemical composition
(LaCapra et al. 1996) and environmental pres-
sures (Tilley et al. 2003).

Synthetic aperture radar (SAR) systems

The use of SAR data have been long acknowl-
edged as a valuable tool for studying wetlands.
In the microwave range, differences in the signal
recorded from dry and flooded vegetation allow
the mapping of flooding extent (Costa 2004; Hess
et al. 1995). In addition, numerous studies have
shown that SAR images can be utilized to study
aquatic vegetation (Costa 2005; Kasischke et al.
2003; Moreau and Le Toan 2003; Costa et al.
2002; Novo et al. 2002; Noernberg et al. 1999;
Le Toan et al. 1997; Pope et al. 1997; Kasischke
and Borgeau-Chavez 1997; Hess et al. 1995).

Synthetic Aperture Radar data offers infor-
mation about canopy biophysical characteristics
and dielectric properties (a proxy for water con-
tent), instead of biochemical and morphologi-
cal features. The longer microwave wavelengths
penetrate into the canopy, resulting in a “volu-
metric” signal. Coupled with its active source of
energy, image acquisition can be performed re-
gardless of weather conditions or time of day.
Such capability is valuable as wetland environ-
ments frequently occur in cloudy locations. How-
ever, as radar wavelengths do not penetrate into
water, these systems can only be applied to emer-
gent macrophytes.

Radar systems operate in specific regions of the
electromagnetic spectrum, and radar bands are
usually coded by a single letter. The most common
bands used are X (3 cm wavelength), C (5.6 cm),
S (10 cm), L (23 cm) and P (75 cm). Longer

wavelengths tend to have deeper canopy pene-
tration and less sensitivity to smaller biophysical
variations. In addition to wavelength, every radar
system has defined polarizations for sending and
receiving the radiation pulse, either vertically (V)
or horizontally (H). Same-polarization systems
are usually referred as HH and VV systems, and
cross-polarization systems as HV or VH. Differ-
ent polarizations, as well as ratios or differences in
polarizations can highlight specific characteristics
for some types of targets (Lewis and Henderson
1998).

Many of the current applications of SAR sys-
tems are derived from satellite-borne sensors,
such as the Japanese Earth Resources Satellite 1
(JERS-1), the Canadian Radarsat 1, and the Euro-
pean systems Earth Resources 1 and 2 (ERS-1 and
ERS-2) and Envisat ASAR. Important research
has been also generated by data collected from the
SIR-C/X-SAR instrument flown on a space shuttle
in 1994, and applications of airborne SAR systems
are also significant (Table 3).

To understand the radiometric responses in
SAR data, it is necessary to realize that radar
sensors are side-looking systems, meaning that the
electromagnetic pulse hits the surface in a sub-
nadir angle. For this reason, it is expected that,
for smooth plain surfaces, most of the radiation
is reflected specularly and does not return to the
sensor. With increasing surface roughness and
addition of volume components, such as vegeta-
tion, the backscattered radiation increases (Lewis
and Henderson 1998).

The overall radar signal from aquatic vege-
tation is composed primarily of the volumetric
backscatter from the canopy elements, the sur-
face backscatter from the ground surface, and the
double-bounce interaction from radiation that is
forward scattered from the surface but bounces
off the canopy elements and returns to the sensor
(Fig. 3).

The geometry of the canopy, moisture content
and the presence of strongly vertically or hori-
zontally oriented features may affect the result-
ing signal at some wavelength and polarization
combinations. For instance, dense, tall (1.5 m
or more), vertically-oriented wetland herbaceous
plants show double-bounce in L band (HH and
VV), and even C-HH at low incidence angles



138 Environ Monit Assess (2008) 140:131–145

T
ab

le
3

P
as

t,
cu

rr
en

ta
nd

pl
an

ne
d

sp
ac

eb
or

ne
ra

da
r

sy
st

em
s

(e
xp

ec
te

d
la

un
ch

da
te

in
pa

re
nt

he
si

s)

Se
ns

or
B

an
ds

P
ol

ar
iz

at
io

n
In

ci
d.

an
gl

e(
◦ )

Sp
at

.s
es

.(
m

)
Sw

at
h

w
id

th
(k

m
)

O
rb

it
cy

cl
e

(d
ay

s)
A

ge
nc

y

E
R

S-
1a

C
V

V
23

28
10

0
35

E
ur

op
ea

n
Sp

ac
e

A
ge

nc
y

(E
SA

)
JE

R
S-

1a
L

H
H

38
18

74
44

N
at

io
na

lS
pa

ce
D

ev
el

op
m

en
t

A
ge

nc
y

of
Ja

pa
n

(N
A

SD
A

)
-

cu
rr

en
tl

y
JA

X
A

SI
R

-C
/X

-S
A

R
a

L
,C

,X
F

ul
lP

ol
.

15
–5

0
10

–2
6

15
–6

0
–

Je
tP

ro
pu

ls
io

n
L

ab
,U

SA
(L

,C
)

V
V

(X
)

E
R

S-
2

C
V

V
23

28
10

0
35

E
ur

op
ea

n
Sp

ac
e

A
ge

nc
y

(E
SA

)
R

ad
ar

sa
t-

1
C

H
H

10
–5

9
10

–1
00

50
–5

00
24

R
ad

ar
sa

tI
nt

er
na

ti
on

al
E

nv
is

at
A

SA
R

C
H

H
,V

V
,

15
–4

5
30

–1
,0

00
60

–4
05

35
E

ur
op

ea
n

Sp
ac

e
A

ge
nc

y
(E

SA
)

H
V

,V
H

R
ad

ar
sa

t-
2

(2
00

7)
C

F
ul

lP
ol

.
10

–6
0

3–
10

0
10

–5
00

24
R

ad
ar

sa
tI

nt
er

na
ti

on
al

A
lo

s
P

A
L

SA
R

L
F

ul
lP

ol
.

8–
60

10
–1

00
20

–3
50

46
Ja

pa
n

A
er

os
pa

ce
E

xp
lo

ra
ti

on
A

ge
nc

y
(J

A
X

A
)

M
A

P
SA

R
(2

01
0)

L
H

H
,V

V
,

20
–4

5
3–

20
20

–5
5

7
B

ra
zi

lia
n

N
at

io
na

lI
ns

ti
tu

te
H

V
,V

H
fo

r
Sp

ac
e

R
es

ea
rc

h
(I

N
P

E
)/

G
er

m
an

A
er

os
pa

ce
C

en
te

r
(D

L
R

)

a
C

ur
re

nt
ly

de
ac

ti
va

te
d



Environ Monit Assess (2008) 140:131–145 139

Fig. 3 Schematic
representation of the
scattering mechanisms at
C and L bands for aquatic
vegetation (Adapted
from Costa 2004)

(Costa et al. 2002; Pope et al. 1997). Double-
bounces are caused by the interaction of the
radiation with the stem/trunk, followed by a
change in direction towards the surface (water)
and a strong bounce back towards the radar an-
tenna (dihedral corner reflector behavior). The
inverse is also possible.

The characteristics from both the plants and
the sensor are needed to explain double-bounce
interaction. The combination of a long wave-
length (L band), horizontal polarization (HH),
and steep incidence angle allows higher penetra-
tion of the radiation through the canopy. At L
band plant leaves are quasi-transparent; hence
the radiation interacts mostly with the stem and
the underlying water. For the same configura-
tion of radiation/target, but with VV polarization,
the interaction is mostly with the upper canopy
(Ulaby et al. 1986). Double-bounce mechanisms
are enhanced for radiation at lower incidence
angles (i.e. closer to nadir) when compared with

higher incidence angles (Hess et al. 1990; Ford
and Casey 1988). At lower angles, the pathway of
the incident wave through the canopy is minimal;
therefore, the radiation is less attenuated by the
canopy.

For less dense herbaceous plants in flooded
wetlands, backscattering values are not as high
as those observed for high density stands, due
to the increase in the forward scattering of
water patches (Pope et al. 1997). For herba-
ceous plants (varying densities), at either C-VV or
cross-polarized and low incidence angles, double-
bounces were not observed, but signals related
to canopy volume-scattering (Pope et al. 1997;
Kasischke and Borgeau-Chavez 1997; Hess et al.
1995) were observed.

Volume-scattering mechanisms are character-
ized by the interaction of the radiation within the
vegetation canopy, i.e. leaves and stems. The radi-
ation is scattered by the elements in all directions
within the volume, and the resulting backscatter-



140 Environ Monit Assess (2008) 140:131–145

ing towards the antenna is not as strong as it
is for double-bounce mechanisms (Ulaby et al.
1982).

The backscatter from aquatic vegetation stands
usually has low values, in all wavelengths and
polarizations. The low return is caused mainly
by forward scattering from the water surface
and the attenuation of the signal from the
canopy. Some controversy exists about the factors
affecting aquatic vegetation signal in different
configurations and about which is the most
appropriate configuration to remotely sense
macrophytes. Costa et al. (2002) showed that
a combination of L and C band signal was
sensitive to stand height and biomass, while
C band alone responded only to the latter,
and presented a lower signal saturation value.
Rosenthal et al. (1985), however, suggested that
C band should be more sensitive to plant height
than biomass. For a more comprehensive dis-
cussion of the microwave radiometric behavior
of aquatic vegetation, the reader is suggested
to refer to Kasischke et al. (2003); Costa et al.
(2002); Noernberg et al. (1999); Pope et al. (1997);
Kasishcke and Borgeau-Chavez (1997).

Overall, the total backscattering from wetland
herbaceous plants is dependent on the interaction
of the microwave energy with both the canopy and
the canopy-ground. Not only plant characteris-
tics, such as density, distribution, orientation, leaf
shape, dielectric constant, height and components
of the canopy, but also the sensor parameters
(polarization, incidence angle and wavelength)
play an important role in determining the amount
of radiation backscattered toward the radar an-
tenna. Due to this multitude of factors, visual
interpretation usually requires more training and
familiarity with radar imagery than optical data.

One of the main hindrances of spaceborne
radar systems is that most have a single band/
polarization configuration, reducing the data
available for an accurate identification of macro-
phyte stands (Hess et al. 2003). This limitation can
be overcome with the combination of different
satellite imagery (Costa et al. 2002) or the use of
textural and contextual measures (Simard et al.
2000, 2002; Noernberg et al. 1999). Also, the use
of multitemporal, multi-incidence angle or multi-
polarization data could offer some improvement

in overall discrimination (Proisy et al. 2000; Hess
et al. 1995). The new generation of full polarimet-
ric sensors, for example, does not suffer from this
limitation (Table 3). Multiple bands and/or po-
larization are also more commonly found among
airborne SAR systems.

For macrophyte mapping, accuracies ranging
from 65 to 97% can be achieved (Costa 2004; Hess
et al. 2003, 1995; Novo et al. 2002), and species can
be differentiated in some degree, such as grasslike
versus broadleaved (Noernberg et al. 1999).
Another promising application for radar remote
sensing is biomass estimation. Studies show re-
lationships between stand biomass and radar
backscatter ranging from R2 = 0.59 to 0.78
(Moreau and Le Toan 2003; Costa et al. 2002;
Novo et al. 2002). Saturation values range from
470 g m−2 to 2000 g m−2 of above water biomass,
depending on community characteristics (Moreau
and Le Toan 2003; Costa et al. 2002).

To overcome the issue of signal saturation,
radar interferometry has also been used as an
alternative to backscatter signal analysis. In-
terferometry is a technique where two radar
images taken at different locations are used to
map ground elevation (topography). Each pixel
at the radar scenes contains not only amplitude
but also the phase information, corresponding
to the distance between platform and a given
place at the Earth’s surface. The phase differences
between these two images are used to derive
precise information on surface height (Lu et al.
2007). Vegetation height can be also determined
by interferometry, and later on be used as a proxy
for biomass determination (Simard et al. 2006;
Dutra et al. 2007; Santos et al. 2004).

A somewhat less developed application of
radar is the merging of both optical and radar
data by image fusion techniques. Since the infor-
mation content in each one differs, there is low
redundancy when joining these sources, permit-
tin better mapping and discriminative results.
At usual land cover mapping, accuracies can be
increased by as much as 10% by optical-radar
fusion (Haack and Bechdol 2000). For aquatic
macrophytes, the fusion between Radarsat-1
and Landsat TM allowed species-level discrimi-
nation of macrophyte stands (Graciani and Novo
2003).
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Other remote sensing systems

Optical and radar remote sensing together com-
prise the vast majority of systems and applica-
tions. However, other methods can also provide
valuable information about macrophyte commu-
nities. For submerged vegetation mapping, suc-
cessful results have been obtained by the use
of side-scan (Pasqualini et al. 2005) and multi-
beam sonar systems (Komatsu et al. 2003). Multi-
beam systems offer the advantage of generating
three-dimensional information, including vertical
height distribution, and allowing visualization of
the community structure.

Recently, airborne LiDAR(Light Detection
and Ranging) systems have been applied with
success to the study of aquatic vegetation. These
sensors employ a high-frequency laser pulse, us-
ing differences between the return time of each
beam to derive height and terrain information and
produce 3-D datasets. The accuracy of LiDAR
systems is usually very high, attaining meter to
sub-meter spatial resolution and less than 0.5m
vertical accuracy (Brennan and Webster 2006;
Rosso et al. 2006; Hopkinson et al. 2005). These
systems were initially utilized for the generation
of digital terrain models, but vegetation mapping
and estimation of biophysical parameters have
been successful (Kotchenova et al. 2004; Maltamo
et al. 2004; Patenaude et al. 2004; Popescu et al.
2002).

As with other optical systems, a major factor
affecting the LiDAR response is water absorp-
tion. As most LiDAR systems operate in the
infrared region, saturated soils and free water sur-
faces will dampen the returning signal. The result-
ing reduction on the number of returns from the
substratum then affects the proper determination
of canopy heights (Hopkinson et al. 2005). On
the other hand, signal penetration in the canopy
may generate the same problem; if canopy is
sparse or too vertically oriented, lesser returns are
expected from the top elements, thus underesti-
mating height. Hopkinson et al. (2005) studied
both aquatic and terrestrial grasses, and found
that these factors combined resulted in a mean
difference of 53% between LiDAR estimations
and ground measured height, against only 33% for
terrestrial plants. In tidal systems, differences in

tide levels both during and between flights must
be acknowledged, as it introduces significant mea-
surement errors (Brennan and Webster 2006).

The overall precision of the system in use is
a factor that must be considered, as vegeta-
tion heights shorter than the minimum mea-
surable return difference cannot be properly
determined (Hopkinson et al. 2006). For the
same reason, proper calibration and validation of
LiDAR heights from ground truth is paramount.
Nonetheless, differences in the signal from veg-
etated and non-vegetated areas can still be use-
ful for thematic classification, as shown by Rosso
et al. (2006) for Spartina spp.

Wang and Philpot (2007) applied bathymetric
LiDAR to map submerged vegetation. Again, the
effect of the water column on the LiDAR signal is
the main source of interference to be dealt with.
For bathymetric systems, green wavelengths are
used instead of infrared, as they offer the best
trade off between water absorption and scattering
due to suspended material (Wang and Philpot
2007).

Conclusions

The use of remote sensing for studying aquatic
vegetation is well established. From the ear-
lier mapping applications, employing analog aer-
ial photography and visual interpretation, to the
use of modern digital high resolution systems
and complex automated classification algorithms,
there are many opportunities and advantages in
applying remote sensing techniques to obtain a
synoptic view of macrophyte communities and its
properties. Plant cover and distribution, biomass
and other biophysical and physiological parame-
ters can be estimated from field spectral data, or
by images. This information can then be used for
environmental assessment and modeling, and for
better understanding of the ecological dynamics of
aquatic plant communities.

Among the new developments of remote sens-
ing science, the use of hyperspectral imagery
appears to be a very promising tool for studying
aquatic vegetation in the present and near future.
Many airborne hyperspectral systems are avail-
able nowadays (AVIRIS, CASI, HyMap), and
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orbital hyperspectral sensors are becoming avail-
able, such as NASA Hyperion. The coupling of
spatial data with rich spectral information allow
better treatment of the main problems associated
with the usual multispectral systems, and provide
more detailed and sensitive information. Medium
resolution sensors, such as MODIS, MERIS and
SPOT-Vegetation can provide useful information
for regional and global scale studies. Although
SAR orbital sensors were restrained to only a
few bands and polarizations, new multi-polarized
and full polarimetric systems are currently avail-
able (Envisat ASAR, ALOS Palsar) or expected
to become operational in the upcoming years
(Radarsat-2, MAPSAR). This type of informa-
tion, especially if combined with optical data, can
supply a good set of data for the study of emergent
macrophytes. Remote sensing is a powerful tool
to be considered when studying large scale phe-
nomena in aquatic vegetation communities, and is
capable of delivering information unmatched by
any other surveying techniques.

References

Ackleson, S. G., & Klemas, V. (1987). Remote sensing of
submerged aquatic vegetation in lower Chesapeake
bay: A comparison of Landsat MSS to TM imagery.
Remote Sensing of Environment, 22, 235–248.

Alberotanza, L., Brando, V. E., Ravagnan, G., &
Zandonella, A. (1999). Hyperspectral aerial images. A
valuable tool for submerged vegetation recognition in
the Ortobello lagoons, Italy. International Journal of
Remote Sensing, 20(3), 235–248.

Anstee, J., Dekker, A., Brando, N., Pinnel, N., Byrne, G.,
Danieal, P., et al. (2001). Hyperspectral imaging for
benthic species recognition in shallow coastal waters.
In Proceedings of the International Geoscience and
Remote Sensing Symposium ’01 (Vol. 6. pp. 2513–
1515).

Armstrong, R. A. (1993). Remote sensing of submerged
vegetation canopies for biomass estimation. Interna-
tional Journal of Remote Sensing, 14(3), 621–627.

Austin, A., & Adams, R. (1978). Aerial color and color
infrared survey of marine plant resources. Pho-
togrammetric Engineering and Remote Sensing, 44(4),
469–480.

Bajjouk, T., Guillaumont, B., & Populus, J. (1996).
Application of airborne imaging spectrometry system
data to intertidal seaweed classification and mapping.
Hydrobiologia, 326/327, 463–471.

Baker, C., Lawrence, R., Montagne, C., & Patten, D.
(2006). Mapping wetlands and riparian areas us-
ing Landsat ETM+ imagery and decision-tree-based
models. Wetlands, 26(2), 465–474.

Benton, A. R., & Newman, R. M. (1976). Color aerial
photography for aquatic plant monitoring. Journal of
Aquatic Plant Management, 14, 14–16.

Berk, A., Anderson, G., Bernstein, L., Acharya, P.,
Dothe, H., Matthew, M., et al. (1999). MODTRAN4
radiative transfer modeling for atmospheric correc-
tion. In Proceedings of SPIE – The International So-
ciety for Optical Engineering (Vol. 3756, pp. 348–353).

Best, R. G., Wehde, M. E., & Linder, R. L. (1981). Spectral
reflectance of hydrophytes. Remote Sensing of Envi-
ronment, 11, 27–35.

Brennan, R., & Webster, T. L. (2006). Object-oriented land
cover classification of lidar-derived surfaces. Canadian
Journal of Remote Sensing, 32(2), 162–172.

Chavez Jr., P. S. (1988). An improved dark-object subtrac-
tion technique for atmospheric scattering correction of
multi-spectral data. Remote Sensing of Environment,
24, 459–479.

Chavez Jr., P. S. (1996). Image-based atmospheric cor-
rections – revisited and improved. Photogrammetric
Engineering and Remote Sensing, 62(9), 1025–1036.

Chopra, R., Verma, V. K., & Sharma, P. K. (2001).
Mapping, monitoring and conservation of Haruke
wetland ecosystem, Punjab, India, through remote
sensing. International Journal of Remote Sensing,
22(1), 89–98.

Costa, M. (2005). Estimate of net primary productivity of
aquatic vegetation of the Amazon floodplain using
Radarsat and JERS-1. International Journal of Remote
Sensing, 26(20), 4527–4536.

Costa, M. P. F. (2004). Use of SAR satellites for mapping
zonation of vegetation communities in the Amazon
floodplain. International Journal of Remote Sensing,
25(10), 1817–1835.

Costa, M. P. F., Niemann, O., Novo, E., & Ahern, F. (2002).
Biophysical properties and mapping of aquatic veg-
etation during the hydrological cycle of the Amazon
floodplain using JERS-1 and Radarsat. International
Journal of Remote Sensing, 23(7), 1401–1426.

Dierssen, H. M., & Zimmerman, R. (2003). Ocean color
remote sensing of seagrass and bathymetry in the
Bahamas Banks by high-resolution airborne imagery.
Limnology and Oceanography, 48(1), 444–455.

Dutra, L. V., Treuhaft, R., Mura, J. C., Santos, J. R. D.,
& Freitas, C. D. C. (2007). Estimating 3-dimensional
structure of tropical forests from radar multi-
baseline interferometry: The Tapajós FLONA case. In
Anais do XIII Simpósio Brasileiro De Sensoriamento
Remoto. Florianópolis, Brasil (pp. 1657–1662).

Edwards, R. W., & Brown, M. W. (1960). An aerial photo-
graphic method for studying the distribution of aquatic
macrophytes in shallow waters. Journal of Ecology, 48,
161–163.

Everitt, J. H., Yang, C., Escobar, D. E., Webster, C. F.,
Lonard, R. I., & Davis, M. R. (1999). Using remote
sensing and spatial information technologies to detect



Environ Monit Assess (2008) 140:131–145 143

and map two aquatic macrophytes. Journal of Aquatic
Plant Management, 37, 71–80.

Filippi, A. M., & Jensen, J. R. (2006). Fuzzy learning vec-
tor quantization for hyperspectral coastal vegetation
classification. Remote Sensing of Environment, 100(4),
512–530.

Ford, J., & Casey, D. (1988). Shuttle radar mapping with
diverse incidence angles in the rainforest of Borneo.
International Journal of Remote Sensing, 9(5), 927–
943.

Fyfe, S. K. (2003). Spatial and temporal variation in spec-
tral reflectance: Are seagrasses spectrally distinct?.
Limnology and Oceanography, 48(1), 464–479.

Graciani, S. D., & Novo, E. M. L. M. (2003). Determinação
da cobertura de macrófitas aquáticas em reservatórios
tropicais. In Anais do XI Simpósio Brasileiro de Sen-
soriamento Remoto. (pp. 2509–2516).

Haack, B., & Bechdo, M. (2000). Integrating multisensor
data and RADAR texture measures for land cover
mapping. Computers & Geosciences, 26, 411–421.

Han, L., & Rundquist, D. (2003). The spectral responses
of Ceratophyllum demersum at varying depths in an
experimental tank. International Journal of Remote
Sensing, 24(4), 859–864.

Heege, T., Bogner, A., & Pinnel, N. (2003). Mapping of
submerged aquatic vegetation with a physically based
process chain. In SPIE Proceedings on Remote Sensing
(Vol. 5233). CD-ROM.

Hess, L., Melack, J., Filoso, S., & Wang, Y. (1995).
Delineation of inundated area and vegetation along
the Amazon floodplain with the SIR-C synthetic aper-
ture radar. IEEE Transactions on Geoscience and Re-
mote Sensing, 33(4), 896–904.

Hess, L., Melack, J., Novo, E. M. L. M., Barbosa, C. C. F.,
& Gastil, M. (2003). Dual-season mapping of wetland
inundation and vegetation for the Central Amazon
Basin. Remote Sensing of Environment, 87, 404–428.

Hess, L., Melack, J., & Simonett, D. S. (1990). Radar detec-
tion of flooding beneath the forest canopy: A review.
International Journal of Remote Sensing, 11(7), 1313–
1325.

Hess, L. L., Novo, E. M. L. M., Slaymaker, D. M., Holt, J.,
Steffen, C., Valeriano, D. M., et al. (2002). Geocoded
digital videography for validation of land cover map-
ping in the Amazon basin. International Journal of
Remote Sensing, 23(7), 1527–1555.

Hopkinson, C., Chasmer, L., Lim, K., Treitz, P., &
Creed, I. (2006). Towards a universal lidar canopy
height indicator. Canadian Journal of Remote Sensing,
32(2), 139–152.

Hopkinson, C., Chasmer, L. E., Sass, G., Creed, I.,
Sitar, M., Kalbfleisch, W., & Treitz, P. (2005). Vege-
tation class dependent errors in lidar ground elevation
and canopy height estimates in a boreal wetland envi-
ronment. Canadian Journal of Remote Sensing, 31(2),
191–206.

Jakubauskas, M., Kindscher, K., Fraser, A., Debinski, D.,
& Price, K. P. (2000). Close-range remote sensing
of aquatic macrophyte vegetation cover. International
Journal of Remote Sensing, 21(8), 3533–3538.

Jensen, J. R., H. M. E., & Christensen, E. (1986). Remote
sensing inland wetlands: A multispectral approach.
Photogrammetric Engineering and Remote Sensing,
52(1), 87–100.

Jensen, J. R., Narumalani, S., Weatherbee, O., & Mackey,
J. H. E. (1993). Measurement of seasonal and yearly
cattail and waterlily changes using multidate SPOT
panchromatic data. Photogrammetric Engineering and
Remote Sensing, 59(4), 519–525.

Jensen, J. R., Rutchey, K., Koch, M., & Narumalani, S.
(1995). Inland wetland change detection in the
Everglades water conservation area 2A using a time
series of normalized remotely sensed data. Pho-
togrammetric Engineering and Remote Sensing, 61(2),
199–209.

Junk, W. (Ed.) (1997). The Central Amazon Floodplain:
Ecology of a Pulsing System, Vol. 126 of Ecological
Studies. Springer.

Kasischke, E. S., & Borgeau-Chavez, L. L. (1997). Mon-
itoring south Florida wetlands using ERS-1 SAR
imagery. Photogrammetric Engineering and Remote
Sensing, 63(3), 281–291.

Kasischke, E. S., Smith, K. B., Borgeau-Chavez, L. L.,
Romanowicz, E. A., Brunzell, S., & Richardson, C. J.
(2003). Effects of seasonal hydrologic patterns in
south Florida wetlands on radar backscatter measured
from ERS-2 SAR imagery. Remote Sensing of Envi-
ronment, 88, 423–441.

Kirk, J. T. O. (1994) Light and Photosynthesis in Aquatic
Ecosystems, 2nd edn. Cambridge University Press.

Komatsu, T., Igarashi, C., Tatsukawa, K., Sultana, S.,
Matsuoka, Y., & Harada, S. (2003). Use of multi-beam
sonar to map seagrass beds in Otsuchi Bay on the
Sanriku coast of Japan. Aquatic Living Resources, 16,
23–230.

Kotchenova, S. Y., Song, X., Shabanov, N. V., Potter, C. S.,
Knyazikhin, Y., & Myeni, R. B. (2004). Lidar remote
sensing for modeling gross primary production of
deciduous forests. Remote Sensing of Environment, 92,
158–172.

LaCapra, V. C., Melack, J. M., Gastil, M., & Valeriano, D.
(1996). Remote sensing of foliar chemistry of inun-
dated rice with imaging spectrometry. Remote Sensing
of Environment, 55(1), 50–58.

Le Toan, T., Ribbes, F., Wang, L., Floury, N., Ding, K.,
King, J. A., et al. (1997). Rice crop mapping and mon-
itoring using ERS-1 data based on experiment and
modeling results. IEEE Transactions on Geoscience
and Remote Sensing, 35(1), 41–56.

Lewis, A., & Henderson, F. M. (1998). Manual of
Remote Sensing, Vol. 2, Chapt. Radar fundamentals:
The geoscience perspective (3rd edn., pp. 131–187).
New York: Wiley.

Lu, Z., Kwoun, O., & Rykhus, R. (2007). Interferometric
synthetic aperture radar (InSAR): Its past, present
and future. Photogrammetric Engineering and Remote
Sensing, 73(3), 217–221.

Lyzenga, D. R. (1978). Passive remote sensing techniques
for mapping water depth and bottom features. Applied
Optics, 17, 379–383.



144 Environ Monit Assess (2008) 140:131–145

Maheu-Giroux, M., & de Blois, S. (2005). Mapping the
invasive species Phragmites australis in linear wetland
corridors. Aquatic Botany, 83, 310–320.

Maltamo, M., Eerikainen, K., Pitkainen, J., Hyppa, J., &
Vemas, M. (2004). Estimation of timber volume and
stem density based on scanner laser altimetry and
expected size distribution functions. Remote Sensing
of Environment, 90, 319–330.

Malthus, T. J., & George, D. G. (1997). Airborne remote
sensing of macrophytes in Cefni reservoir, Anglesley,
UK. Aquatic Botany, 58, 317–332.

Marion, L., & Paillison, J. M. (2003). A mass balance
assessment of the contribution of floating-leaved
macrophytes in nutrient stocks in an eutrophic
macrophyte-dominated lake. Aquatic Botany, 75,
249–260.

Marshall, T. R., & Lee, P. F. (1994). Mapping aquatic
macrophytes through digital image analysis of aerial
photographs: An assessment. Journal of Aquatic Plant
Management, 32, 61–66.

Moore, K., Wilcox, D., Anderson, B., & Orth, R. (2003).
Analysis of historical distribution of SAV in the Easter
Shore coastal basins and Mid-Bay island complexes
as evidence of historical water quality conditions
and a restored bay ecosystem. Special Report in Ap-
plied Marine Science and Ocean Engineering 383,
Virginia Institute of Marine Science, Annapolis,
Maryland.

Moreau, S., & Le Toan, T. (2003). Biomass quantifica-
tion of Andean wetland forages using ERS satel-
lite SAR data for optmizing livestock management.
Remote Sensing of Environment, 84, 477–492.

Noernberg, M. A., Novo, E., & Krug, T. (1999). The use
of biophysical indices and coefficient of variation de-
rived from airborne synthetic aperture radar for mon-
itoring the spread of aquatic vegetation in tropical
reservoirs. International Journal of Remote Sensing,
20, 67–82.

Novo, E. M. L. M., Costa, M. P. F., Mantovani, J. E., &
Lima, I. B. T. (2002). Relationship between macro-
phyte stand variables and radar backscatter at L and C
band, Tucurui reservoir, Brazil. International Journal
of Remote Sensing, 23, 1241–1260.

Onaindia, M., Bikuña, B. G., & Benito, I. (1996).
Aquatic plants in relation to environmental factors in
Northern Spain. Journal of Environmental Manage-
ment, 47, 123–137.

Ozesmi, S. L., & Bauer, M. E. (2002). Satellite remote sens-
ing of wetlands. Wetlands Ecology and Management,
10, 381–402.

Pal, S. R., & Mohanty, P. K. (2002). Use of IRS-1b data
for change detection in water quality and vegetation of
Chilka lagoon, east coast of India. International Jour-
nal of Remote Sensing, 23, 1027–1042.

Paringit, E. C., Nadaoka, K., Fortes, M. D., Harii, S.,
Tamura, H., Mistui, J., et al. (2003). Multiangular and
hyperspectral reflectance modeling of seagrass beds
for remote sensing studies. In Proceedings of the Inter-
national Geoscience and Remote Sensing Symposium
’03 (Vol. 3. pp. 21–25).

Pasqualini, V., Pergent-Martini, C., Pergent, G., Agreil, M.,
Skoufas, G., Sourbes, L., et al. (2005). Use of SPOT 5
for mapping seagrasses: An application to Posidonia
oceanica. Remote Sensing of Environment, 94, 39–45.

Patenaude, G., Hill, R. A., Milne, R., Gaveau, D. L. A.,
Briggs, B. B. J., & Dawson, T. (2004). Quantifying
forest above ground content using LiDAR remote
sensing. Remote Sensing of Environment, 93, 368–380.

Peñuelas, J., Filella, I., Gamon, J. A., & Field, C. (1997).
Assessing photosynthetic radiation-use efficiency of
emergent aquatic vegetation from spectral reflectance.
Aquatic Botany, 58, 307–315.

Peñuelas, J., Gamon, J. A., Griffin, K. L., & Field, C. B.
(1993). Assessing community type, plant biomass,
pigment composition and photosynthetic efficiency of
aquatic vegetation from spectral reflectance. Remote
Sensing of Environment, 46, 110–118.

Pinnel, N., Heege, T., & Zimmermman, S. (2004).
Spectral discrimination of submerged macrophytes
in lakes using hyperspectral remote sensing data. In
SPIE Proceedings on Ocean Optics XVII (Vol. 1. pp.
1–16).

Pope, K. O., Rejmankova, E., Paris, J. F., & Woodruff, R.
(1997). Detecting seasonal flooding cycles in marshes
of the Yucatán peninsula with SIR-C polarimetric
radar imagery. Remote Sensing of Environment, 59,
157–166.

Popescu, S. C., Wynne, R. H., & Nelson, R. F. (2002).
Estimating plot-level tree heights with LiDAR: Local
filtering with a canopy-height based variable window
size. Computers and Electronics in Agriculture, 37,
71–95.

Proisy, C., Mougin, E., Fromard, F., & Karam, M. A.
(2000). Interpretation of polarimetric radar signatures
of mangrove forests. Remote Sensing of Environment,
71, 56–66.

Rosenthal, W., Blanchard, B., & Blanchard, A. J. (1985).
Visible/infrared/microwave agriculture classification,
biomass and plant height algorithm. IEEE Transac-
tions on Geoscience and Remote Sensing, 23, 84–89.

Rosso, P. H., Ustin, S. L., & Hastings, A. (2006). Use of
lidar to study changes associated with Spartina inva-
sion in San Francisco Bay marshes. Remote Sensing of
Environment, 100, 295–306.

Santos, J. R. D., Neeff, T., Dutra, L. V., Araujo, L. S.,
Gama, F. F., & Elmiro, M. A. T. (2004). Tropical
forest biomass mapping from dual frequency SAR
interferometry (X And P-bands). In ISPRS – Inter-
national Society For Photogrammetry And Remote
Sensing – Technical Commission VII (Vol. 35. pp.
1682–1777).

Sawaya, K., Olmanson, L. G., Heinert, N. J.,
Brezonik, P. L., & Bauer, M. (2003). Extending
satellite remote sensing to local scales: Land and
water resource monitoring using high-resolution
imagery. Remote Sensing of Environment, 88, 144–
156.

Schulz, M., Rinke, K., & Köller, J. (2003). A combined
approach of photogrammetrical methods and field
studies to determine nutrient retention by submersed



Environ Monit Assess (2008) 140:131–145 145

macrophytes in running waters. Aquatic Botany, 76,
17–29.

Silva, T. S. F. (2004). Imagens EOS-MODIS e Land-
sat 5 TM no estudo da dinâmica das comunidades
de macrófitas na várzea amazônica. Master’s thesis,
Instituto Nacional de Pesquisas Espaciais, São José
dos Campos, São Paulo, Brazil.

Simard, M., Grandi, G. D., Saatchi, S., & Mayaux, P.
(2002). Mapping tropical coastal vegetation using
JERS-1 and ERS-1 radar data with a decision tree
classifier. International Journal of Remote Sensing,
23(7), 1461–1474.

Simard, M., Saatchi, S. S., & De Grandi, G. (2000). The
use of decision tree and multiscale texture for clas-
sification of JERS-1 SAR data over tropical for-
est. IEEE Transactions on Geoscience and Remote
Sensing, 38(5), 2310–2321.

Simard, M., Zhang, K., Rivera-Monroy, V. H., Ross, M.
S., Ruiz, P. L., Castaneda-Moya, E., et al. (2006).
Mapping height and biomass of mangrove forests in
Everglades National Park with SRTM elevation data.
Photogrammetric Engineering and Remote Sensing,
72(3), 299–311.

Song, C., Woodcock, C. E., Seto, K. C., Lenney, M. P.,
& Macomber, S. A. (2001). Classification and change
detection using Landsat TM data: When and how to
correct atmospheric effects?. Remote Sensing of Envi-
ronment, 75, 230–244.

Sprenkle, E. S., Smock, L. A., & Anderson, J. E. (2004).
Distribution and growth of submerged aquatic veg-
etation in the piedmont section of the James river,
Virginia. Southeastern Naturalist, 3(3), 517–530.

Thomson, A., Fuller, R., Sparks, T., Yates, M., &
Eastwood, J. (1998). Ground and airborne radiometry
over intertidal surfaces: Waveband selection for cover
classification. International Journal of Remote Sensing,
19(6), 1189–1205.

Thomson, A., Fuller, R., Yates, M., Brown, S., Cox, R.,
& Wadsworth, R. (2003). The use of airborne
remote sensing for extensive mapping of inter-
tidal sediments and saltmarshes in eastern England.
International Journal of Remote Sensing, 24(13), 2717–
2737.

Tilley, D. R., Ahmed, M., Son, J. H., & Badrinayanan, H.
(2003). Hyperspectral reflectance of emergent macro-
phytes as an indicator of water column ammonia in an

oligohaline, subtropical marsh. Ecological Engineer-
ing, 21, 153–163.

Ulaby, F., Moore, R. K., & Fung, A. K. (1982). Microwave
Remote Sensing: Radar remote sensing and surface
scattering and emission theory (Vol. II). Norwood,
MA: Artech House.

Ulaby, F., Moore, R. K., & Fung, A. K. (1986). Microwave
Remote Sensing: From theory to applications. Artech
House.

Valta-Hullkonen, K., Pellika, P., Tanskanen, H.,
Ustinov, A., & Sandman, O. (2003). Digital false
colour aerial photographs for discrimination of
aquatic macrophyte species. Aquatic Botany, 75,
71–88.

Vermote, E. F., Tanre, D., Deuze, J. L., Herman, M., &
Morcrette, J.-J. (1997). Second simulation of the satel-
lite signal in the solar spectrum, 6S - An overview.
IEEE Transactions on Geoscience and Remote Sens-
ing, 35(3), 675–686.

Vis, C., Hudon, C., & Carignan, R. (2003). An evaluation
of approaches used to determine the distribution and
biomass of emergent and submerged aquatic macro-
phytes over large spatial scales. Aquatic Botany, 77,
187–201.

Wang, C.-K., & Philpot, W. D. (2007). Using airborne
bathymetric lidar to detect bottom type variation in
shallow waters. Remote Sensing of Environment, 106,
123–135.

Williams, D. J., Rybicki, N. B., Lombana, A. V., O’Brien,
T. M., & Gomez, R. B. (2003). Preliminary investiga-
tion of submerged aquatic vegetation mapping using
hyperspectral remote sensing. Environmental Moni-
toring and Assessment, 81, 383–392.

Zacharias, M., Niemann, O., & Borstad, G. (1992). An
assessment and classification of a multispectral band-
set for the remote sensing of intertidal seaweeds.
Canadian Journal of Remote Sensing, 18(4), 263– 274.

Zhang, X. (1998). On the estimation of biomass of sub-
merged vegetation using Landsat thematic mapper
(TM) imagery: A case study of the Honghu Lake, PR
China. International Journal of Remote Sensing, 19(1),
11–20.

Zilioli, E., & Brivio, P. A. (1997). The satellite derived
optical information for the comparative assessment of
lacustrine water quality. The Science of Total Environ-
ment, 196, 229–245.


	Remote sensing of aquatic vegetation: theory and applications
	Abstract
	Introduction
	Optical remote sensing
	Spectral behavior of submerged vegetation
	Spectral behavior of emergent species
	Optical remote sensing applications to aquatic vegetation studies

	Synthetic aperture radar (SAR) systems
	Other remote sensing systems
	Conclusions
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


