
Electron Commerce Res (2007) 7:69–88

DOI 10.1007/s10660-006-0063-Y

A flexible model for tree-structured multi-commodity
markets

Per Carlsson · Arne Andersson

C© Springer Science + Business Media, LLC 2007

Abstract In this article we study tree-structured multi-commodity markets. The con-

cept is a way to handle dependencies between commodities on the market in a tractable

way. The winner determination problem of a general combinatorial market is well

known to be NP-hard.

It has been shown that on single-unit single-sided combinatorial auctions with tree-

structured bundles the problem can be computed in polynomial time. We show that it

is possible to extend this to multi-unit double-sided markets. Further it is possible to

handle the commodities of a bundle not only as complements but as perfect substitutes

too. Under certain conditions the computation time is still polynomial.

Keywords Multi commodity markets . Electronic markets . Computational

markets . Equilibrium markets . Resource allocation . Power markets . Bandwidth

markets . Computational complexity

Introduction

Actors on markets where multiple commodities are traded simultaneously typically

have dependencies between the traded commodities (complementarities and substi-

tutability). Hence, market mechanisms that support the expression of these depen-

dencies are highly interesting from an actors’ perspective. Traditional simultaneous

multi-commodity markets, single unit auctions as well as two-sided markets give no

P. Carlsson (�)

EnerSearch and Uppsala University, Office: Computer Science Department, Lund University,

Box 118, SE-221 00 Lund, Sweden

e-mail: Per.Carlsson@cs.lth.se

A. Andersson

Uppsala University, Box 311, SE-751 05 Uppsala, Sweden

e-mail: arnea@csd.uu.se

Springer

70 P. Carlsson, A. Andersson

or very limited support for the expression of dependencies between commodities.

Examples of situations where this is an issue are day-ahead power markets (e.g. the

Nordic NordPool market) and the often discussed radio frequency auctions (as run by

e.g. the FCC) [16].

The economical efficiency of a competitive market depends on the actors’ possibil-

ities to express their true valuations. The more they are able to express their valuations

in terms of complementarities and substitutability between commodities, the higher

is the potential efficiency of the market. Hence, the outcome of markets where there

are practically no opportunities to express dependencies may be clearly sub-optimal.

To reach optimal economical efficiency on the market the ideal would be to allow

all possible combinatorial bids expressing synergies and substitutability. Given that

the participants act price-takers, this would open for to compute an optimal price

vector and corresponding allocation (assuming that they exist). The bad news is that

this gives a computational problem that is known to be NP-hard, i.e. the worst case

computational complexity is too high. Hence, there is a conflict or tradeoff between

economical and computational efficiency.

Since the winner determination problem of the general combinatorial auction is

computationally hard, a number of simplifications and special cases have been studied

in the literature [11, 16, 17]. One natural case is tree-structured markets where any

two bundles either are disjoint or one is a proper subset of the other. As pointed out

by Rothkopf et al. [16], for a single-unit single-sided auction this type of bid structure

can be handled with a polynomial time algorithm.

In this article we study more general tree-structured market mechanisms1 handling

multi-commodity, multi-unit markets. As in the market described by Rothkopf et al.,

we allow for complementarities to be expressed for tree-structured bundles. However,

we also allow the following more general types of bids:� Multi-unit bidding. A bid on a predefined bundle is expressed as a demand curve,

which implies a multi-unit market.� Two-sided market. A demand curve can be buy, sell, or both.� Bidding for substitutes. Bidding for substitutes (XOR-type of bids) normally implies

that the winner determination becomes computationally intractable even for tree-

structured bids. We show that the problem is solvable in subexponential time also

when a bidder is allowed to express that the commodities in a bundle are perfect

substitutes, i.e. the volume in the bid’s demand curve is on the total allocation over

the commodities within the bundle.

Motivation for tree-structured markets

There are a number of reasons for studying markets with tree-structured bidding. Two

of these arguments are:� Expressibility vs. complexity. Tree-structured bids are significantly more expressive

than plain single-commodity bids. In our case, we manage to handle both com-

plemtens and substitutes. Compared to arbitrary combinatorial bids, the possibility

1 We use the notion of a market mechanism to denote the rules of the market, whereas market protocol
includes the behaviour of the actors on the market.

Springer

A flexible model for tree-structured multi-commodity markets 71

to compute winner determination in polynomial time makes an important differ-

ence. All in all, we achieve a tradeoff between expressibility and computational

complexity.� A natural structure. A hierarchical structure of commodities is natural and easy to

understand. For example, in many of today’s systems for e-Sourcing, such as online

B2B auctions a terminology of “lots”, grouped into “categories” is very common,

which clearly reflects an underlying tree-structure.

Structure

In the following section we present a small result on single-unit auctions. Then we move

on to multi-unit markets in section Multi-unit with demand curves. We give a sketch of

a market mechanism for tree-structured markets. After this we move to the main result

of this article, presented in section Main result. Here we present a novel approach to

tree structured markets that does not only handle bundling of complementarities on

a multi-unit market, but it handles substitutes too. In section Main idea we present

the main idea of the mechanism. In section Problem formulation we move to a more

precise problem formulation. After this we present an algorithm solving the problem in

section Algorithm, more detailed information on the algorithm is given in an appendix.

Experiences gained from a first test implementation are discussed in section Test

implementation and design experiences, after this we draw some general conclusions

in the final section.

Improving the results of Rothkopf et al

In a tree-structured single-unit single-sided market each commodity corresponds to a

leaf, and each multi-unit bundle corresponds to an internal node. There are no unary

nodes and therefore the total number of nodes is at most 2n − 1, n being the number

of commodities. Under the assumption that we know the best bid on each bundle we

only need to consider at most 2n − 1 bids, and we can express the complexity in terms

of n regardless of the number of bids.

Under these conditions Rothkopf et al presented an O(n2) time algorithm for win-

ner determination [16]. However, with a simple algorithm the computations can be

performed in linear time. We assume this to be folklore, but since we have not found

it in the literature we here provide a proof sketch.

Given a tree representing the bid structure we store one number in each node,

representing the best bid value on the bundle. The winner determination is computed

during two tree traversals:

1. Perform a postorder traversal of the tree, do the following at each non-leaf node: If

the sum of the children values is larger than the value stored in the node, mark the

node’s bid as replaced and replace the value with the sum of the children.

2. Make a partial preorder traversal and do the following at each visited node: If the

value in the node is not marked as replaced include it in the set of winning bids,

else proceed to its child nodes.

3. Present the set of winning bids.

Springer

72 P. Carlsson, A. Andersson

Fig. 1 Illustration of the linear winner determination algorithm for single unit single sided markets

Both traversals require O(n) time.

We summarise this with the following observation:

Observation 2.1. The winner determination problem of tree-structured single-unit

single-sided markets can be solved in time linear in the number of commodities.

An example is given in Fig. 1. The values inside the nodes represent the highest bid

on the corresponding bundle. A value to the left of the node corresponds to a replacing

value found during the first traversal. The nodes of the winning combination, i.e. the

topmost nodes with non-replaces values, are highlighted with a double ring (37, 12,

10, 7, and 50 summing to 116).

Multi-unit with demand curves

On a two-sided multi-commodity, multi-unit market with demand curves the opportu-

nities of the bidder are richer than in the above auction. Furthermore, computationally

it presents us with a more complex problem. Here, the bidder expresses his demand for

individual commodities as well as for predefined bundles as a function of price, and

supply is expressed as negative demand. (A bundle bid expresses the same demand for

all commodities of the bundle.) We assume that each demand function is a piecewise

linear function over a predefined, evenly distributed set of prices. Furthermore, we

assume that the function is continuous and decreasing in price.

A set of equilibrium prices can be established using a resource oriented algorithm.

As with the single unit auction we build the bundle tree, with each node representing

a predefined bundle. All nodes hold an aggregate excess demand function based on

the demand of all bidders. The root of the tree corresponds to a bundle including all

commodities. We determine the total demand for this bundle in a binary search. At

each step of the search, we recursively solve the complete problem for each sub-tree.

The goal is to establish a set of prices for the individual commodities, that renders an

equilibrium with respect to the demand expressed in all nodes of the tree.

Example 1. Consider a two commodity market where it is possible to express a (pos-

itive or negative) demand for each commodity separately, and for the combination,

Fig. 2. This creates three submarkets. Treated separately, the equilibrium prices of the

Springer

A flexible model for tree-structured multi-commodity markets 73

Fig. 2 A small market example, determination of equilibrium prices. For each submarket ‘a’ is the local

equilibrium price, and ‘b’ indicates the equilibrium price after adjusting so that the average price of the

single commodities equals the bundle price

three submarkets are {4, 4.5, 3} (dashed line ‘a’ in the figures). This set of prices is

clearly not efficient as the average price of the commodities is higher than the bundle

price. Instead, asserting a negative excess demand of 1 on the bundle, balanced by a

corresponding positive demand for each single commodity (‘b’ in the figures), we end

up with a new price vector {3, 4, 3.5}, where the average of the single commodities

equals the bundle price, i.e. an optimal set of prices.

If the bundle tree e.g. is a balanced binary tree the height of the tree is log n. If the

size of the search space over the above excess demand is s, the binary search of a node

requires �log(s + 1)� search steps. The total complexity satisfies:

T (1) = �log(s + 1)�
T (n) = �log(s + 1)�

(
2T

(n

2

))
= n �log(s + 1)�1+log n

= O
(
n1+log�log(s+1)� log s

)
,

where T (n) is the total number of comparisons and �log(s + 1)� is the number of

comparisons in one binary search. In the above we assume n to be an even power

of two. From this we derive that the time complexity is polynomial given that s is

constant. This gives the following theorem:

Theorem 3.1. The worst case time complexity of solving an n commodity multi-
commodity, multi-unit market with demand curves structured as a balanced tree is

O
(
n1+log�log(s+1)� log s

)
where s is the size of the excess demand space.

Proof: The complexity is given by the recursion above. �

Details are left to section Main result where we discuss a mechanism that also

handles substitutes.

Springer

74 P. Carlsson, A. Andersson

Fig. 3 The bidding possibilities

offered by the market

mechanism proposed in earlier

work [8]

Fig. 4 The tree-structured

market mechanism that is

presented in this article. In this

example a market with eight

commodities organised in a

binary structure

Main result

Allowing substitutes

Finally we add the possibility to bid for perfect substitutes. That is, the volumes in a

bid is on the total allocation over the commodities in the bundle.

The intuition behind is that when the commodities within the bundle are perfect

substitutes for the bidder, a buyer prefers to pick among the lowest price commodities,

and in a similar way a seller prefers to sell at highest possible price. In a practical

situation a bidder typically submits this type of bids as a complement to his other bids.

The practical usefulness of this type of bids is clear but it introduces a number

of computational problems. A first approximation of a market solution that would

enhance the market possibilities in this direction is presented in previous work [7] and

illustrated in Fig. 3.

The rest of this article is devoted to solving the problems of a tree-structured market

allowing bids on substitutes, a market mechanism—the CONSEC
2 mechanism—Fig. 4,

and an algorithm description.

Main idea

We consider a multi-commodity market organised in a hierarchical tree structure of

commodity bundles, Fig. 4.

A bidder could submit multiple bids according to the following:

1. single bids: demand curve for each commodity,

2. bundle bids: demand curve for a bundle, the same volume for each included com-

modity,

3. substitute buy bids: a curve describing a consumer demand that could be arbitrarily

distributed over a bundle (the consumer preference is to buy at lowest price),

4. substitute sell bids: symmetric to the substitute buy bids.

Demand is assumed to be continuous and decreasing in price.

2 CONSEC, a tree-structured market mechanism for e.g. a set of CONSECutive time periods.

Springer

A flexible model for tree-structured multi-commodity markets 75

Fig. 5 The demand functions of

each separate bidding track are

aggregated into one, giving full

information on supply and

demand of the system. Supply is

expressed as negative demand

The tree can be organised in different ways, with arbitrary degree in each node.

As an example consider a market with n commodities, where n is an even power of

two. If this market is organised a binary tree structure of bundles, each bidder can give

up to 4n − 3 different bids (demand functions), hence we say that there are 4n − 3

bidding tracks (one single track for each commodity/leaf node, and three tracks for

each bundle/internal node, type one and type two–four in the list above, respectively).

Please note that all demand functions of a track may be aggregated into a single

function giving the excess demand of the track as a function of price, see Fig. 5. This

aggregation is outside the scope of this paper, standard techniques are presented in

e.g. [2, 9, 10].

The four bids types allow for a fairly flexible market. Compared to a fully im-

plemented combinatorial market, the single bids are similar, bundle bids correspond

to traditional combinatorial bids expressing synergies, and the substitute bids corre-

sponds to XOR bids.

As shown below, although we combine single bids, bundle bids, and XOR-type of

bids, the market can be handled optimally in a computationally efficient way.

Problem formulation

Given a market with the bid types presented above, compute� a price p∗
i for each commodity i , and� an allocation for the substitute bids,

that renders an equilibrium, i.e. the excess demand for each commodity on the market

as a whole is zero, but it might well be non-zero on individual bidding tracks.

With demand expressed as above, section Multi-unit with demand curves, the bids

of the separate tracks are aggregated giving a set of demand functions, one for each

track. These functions give full information on supply and demand and an equilibrium

can be calculated without any further communication.3

Definitions

The market is organised in a tree structure, hence it is convenient to refer to single

commodities as leaf nodes and bundles of commodities as internal nodes (or bundle

3 This holds under the assumption that the optimal solution is within the price span of the given bids.

Springer

76 P. Carlsson, A. Andersson

nodes). We define the following (aggregate) demand functions describing the demand

of all bidding tracks:

Definition 4.1. Let� d j (p) or d j be the main demand function of node j as a function of a price p,� b j (p) or b j be the buying demand with the commodities of bundle node j viewed

as perfect substitutes, and� s j (p) or s j be the corresponding selling demand.

Note that b j and s j are only defined for bundle nodes.

We define the following demand that is expressed in the interaction between nodes

in the market tree:

Definition 4.2. Let� dch
j be the (positive or negative) demand of node j that it expresses towards its

children, and that they all have to meet,� dmin
j be the (negative) excess demand of node j induced by the minimum price set

by the parent, that it expresses towards the parent, and� dmax
j the corresponding (positive) excess demand induced by the maximum price

set by the parent.

Finally we define the following price notations:

Definition 4.3. Let� pmin
j be the minimum price imposed by node j on its child nodes,� pmax
j the corresponding maximum price,� p j be a price of node j , for a bundle node it is defined as the average price of the

children.

We now move on to a formal specification of the problem, proof of existence of an

equilibrium, and in section Algorithm an algorithm that computes an equilibrium.

Formal specification of the problem

The problem is to determine a price vector p∗

p∗ = {p∗
1, p∗

2, . . . , p∗
n} (1)

s.t.

∀ leaf nodes j with parent i :

d j (p∗
j) + dch

i − dmin
j − dmax

j = 0, (2)

pmin
i ≤ p∗

j ≤ pmax
i (3)

Springer

A flexible model for tree-structured multi-commodity markets 77

Fig. 6 The demand for

resources related to a leaf node

of a market tree. The arrows

indicate the origin of each

demand. With parent node i , dch
i

is a demand that this node has to

meet; if either the minimum or

the maximum price influences

the node, the induced excess

demand is expressed towards the

parent. With this the node is in

equilibrium, c.f. Eq. (2)

Fig. 7 The demand for resources related to a bundle node as given by Eq. (4)–Eq. (6). The arrows indicate

the origin of each demand. To maintain an equilibrium the internal bundle demand, d j together with the

demand of this node on its children dch
j has to meet the demand of the parent node, dch

i . Further, the children’s

demand,
∑

dmin/max
ch , induced by pmin/max

j is balanced by (b j − dmin
j) and (s j − dmax

j), respectively. If

pmin
j > pmin

i , dmin
j = 0, and if pmax

j < pmax
i , dmax

j = 0

∀ bundle nodes j with parent i and children v, w:

d j (p∗
j) + dch

i − dch
j = 0, (4)

b j + dmin
v + dmin

w − dmin
j = 0, (5)

s j + dmax
v + dmax

w − dmax
j = 0, (6)

if a bundle node has more than two children the equations are adjusted to take all

of them into account. Figs. 6 and 7 illustrate the equations (without the notational

assumption that a bundle node has no more than two children).

It should be noted that for bundle nodes the constraint that pmin
i ≤ p∗

j ≤ pmax
i is

secured by the definition of p j as the average price of its children, with no child price

outside the boundaries.

Springer

78 P. Carlsson, A. Andersson

The existence of an equilibrium

The nodes of the market tree interact with both higher and lower levels of the hierarchy

to enhance the market outcome. The root of the system and leaf nodes are special cases

with limited interaction.

In order to prove the existence of an equilibrium for the system, we prove the

existence of an equilibrium for an arbitrary node.

Lemma 4.1. For an arbitrary node j with parent i , given� a (positive or negative) demand expressed by the parent dch
i ,� a minimum price pmin

i , and� maximum price pmax
i

there exists� a price p j ,� a (negative) excess demand dmin
j generated by the minimum price, left for the parent

to meet, and� a corresponding (positive) demand dmax
j generated by the maximum price,

setting the node in balance with respect to the input variables. As a side effect the
system rooted in the node is set in balance too.

Proof: Leaf nodes, Eq. (2): An equilibrium in the node is obtained with a price p j

such that d j (p j) + dch
i = 0. The existence of such a p j follows from continuous and

decreasing demand.

If p j < pmin
i an imbalance is created when setting p j = pmin

i . The local balance

can be restored by setting dmin
j = dch

i + d j (pmin
i). Everything is symmetric in pmax

i
and dmax

j .

This fulfils Eq. (2) and the node is in equilibrium, c.f. Fig. 6.

Bundle nodes: The notion of an equilibrium in a bundle node is different from a leaf

node. Where a leaf node has a single demand function, affected by both dch
i , pmin

i , and

pmax
i , a bundle node has three different demand functions d j , b j , and s j , interacting

with dch
i , pmin

i , and pmax
i respectively, c.f. Fig. 7.

Eq. (4): The equation expresses an equilibrium regarding bundle demand (i.e. a de-

mand for the same resource over all commodities of the bundle). In the equation

dch
i is fixed. Let p j be the average price of the children as in Definition 4.3, given

dch
j . By continuous and decreasing demand we have that an increase in dch

j gives

a higher p j , and hence a lower d j (p j). Hence there exists a price p j , such that

d j (p j) + dch
i − dch

j = 0. As p j is given by the average price of the system rooted

in the node, this system is in balance too when this price is established.

Eq. (5): The equation expresses an equilibrium regarding the effects of minimum

prices and buying demand with substitutability. This demand is not affected by the

bundle price p j , but the minimum price of the child nodes.

With children v, w, there exists some lowest price plowest
j of the system rooted in

node j , such that the buyer demand with substitutability of this node is in balance

with the demand, dmin
v + dmin

w , expressed by its child nodes (independent of pmin
i ,

Springer

A flexible model for tree-structured multi-commodity markets 79

the minimum price given by node j’s parent). Depending on whether plowest
j > pmin

i

or plowest
j ≤ pmin

i , we get two cases:

1. plowest
j > pmin

i : this implies that b j (pmin
i) + dmin

v + dmin
w > 0. Let pmin

j =
plowest

j and dmin
j = 0, and

2. plowest
j ≤ pmin

i : this implies that b j (pmin
i) + dmin

v + dmin
w ≤ 0. Let pmin

j = pmin
i

and dmin
j = b j (pmin

i) + dmin
v + dmin

w ,

in both cases there exists pmin
j and dmin

j such that b j (pmin
j) + dmin

v + dmin
w = 0.

Eq. (6): Everything is symmetric when it comes to maximum prices, Eq. (6).

The node is in equilibrium when all three of Eq. (4)–Eq. (6) hold, i.e. then the node

and the system rooted in it is in balance given dch
i , pmin

i , and pmax
i .

All together this gives the lemma. �

From this lemma we get the following theorem on the existence of an equilibrium.

Theorem 4.1. There exists a price vector p∗ = {p∗
1, p∗

2, . . . , p∗
n}, rendering an equi-

librium on a CONSEC market.

Proof: We have from Lemma 4.1 that for a given triplet (dch
i , pmin

i , pmax
i), given by

its parent node i , there exists a price such that Eq. (2) holds for an arbitrary leaf node,

and such that Eq. (4)–Eq. (6) hold for an arbitrary bundle node. In both cases this

constitutes a local equilibrium of the node.

In particular, with a zero demand from the outside on the root node (which covers

all commodities), and without restricting minimum and maximum prices at the same

node, we have an equilibrium of the whole market when this node is in equilibrium, as

an equilibrium in one node is based on its child nodes being in equilibrium recursively.

�

From this we move on to the algorithm that we suggest for establishment of a market

equilibrium.

Algorithm

We describe the algorithm from the viewpoint of an arbitrary bundle node j with parent

i . Given a triplet consisting of (i) the demand from the parent node, (ii) a minimum

price, and (iii) a maximum price it returns a corresponding triplet consisting of (i)

an equilibrium price, (ii) a negative excess demand induced by the minimum price,

and (iii) a positive excess demand induced by the maximum price. The algorithm

mainly consists of a nested exponential-and-binary search.4 Each exponential-and-

binary search starts at the value of the last iteration.

4 In an exponential-and-binary search we start by performing an expanding inverted binary search, followed

by an ordinary binary search within the boundaries defined by the first search.

Springer

80 P. Carlsson, A. Andersson

Algorithm 4.1. (Equilibrium Search):
double [] findEquilibrium(dch

i , pmin
i , pmax

i){
do an exponential-and-binary search in dch

j
starting from the value of the previous call,
at each step in the search:{

do an exponential-and-binary search in pmin
j

starting from pmin
i , and

do an exponential-and-binary search in pmax
j

starting from pmax
i ,

at each step of the searches:{
/*recursive call*/
∀children :

findEquilibrium(dch
j , pmin

j , pmax
j);

use return values for these evaluations:
} until Eq. (5 & 6) are fullfilled

} until Eq. (4) is fullfilled
return {p j , dmin

j , dmax
j };

}

In practice the breaking conditions are that the solutions are sufficiently close to

optimal.

We give some further details on the algorithm in Appendix A, where we describe

the algorithm in terms of a few Java style methods.

The root node and a leaf node are special cases. By definition a leaf node does not

have any children and it does only have a single demand function. Hence it establishes

an equilibrium price corresponding to the given demand from the parent node. If this

price is lower than the imposed minimum price or higher than the maximum price it

is adjusted and any excess demand generated by this adjustment is expressed towards

its parent. To set a full market in balance the root node is set in balance, by definition

with no demand from above and no restricting minimum and maximum prices.

Algorithm 4.1 computes an optimal set of prices

What we need to prove is that Algorithm 4.1 computes a set of prices as in Theorem 4.1.

Theorem 4.2. Algorithm 4.1 correctly computes a set of prices p∗ = p∗
1, p∗

2, . . . , p∗
n

as in Theorem 4.1, and hence it establishes an equilibrium on a CONSEC market.

Proof:

Leaf nodes: For an arbitrary single commodity node j with parent node i , the actions

of the algorithm consists of the parent expressing a demand, dch
i , a minimum and a

maximum price, pmin
i and pmax

i respectively. Based on this input the node computes

a price p such that d j (p) + dch
i = 0 or in practice |d j (p), −dch

i | < ε for some

sufficiently small ε > 0. If p < pmin
i , p ← pmin

i and dmin
j ← d j (pmin

i) + dch
i to

compensate for this. If the maximum price is exceeded, a corresponding action is

taken. By this Eq. (2) is fullfilled for the given input, and the node is in balance.

Springer

A flexible model for tree-structured multi-commodity markets 81

Fig. 8 A market where 24 commodities are traded simultaneously, could for example be organised with

three eight commodity market structures that have a common root node. A day-ahead power market is a

good example of a real-world market where this fits well

Bundle nodes: For an arbitrary bundle node j with parent node i , given a triplet

(dch
i , pmin

i , pmax
i) the algorithm performs a three dimensional search in a nested loop.

The goal is to set a new triplet (dch
j , pmin

j , pmax
j) for its children (with pmin

j ≥ pmin
i and

pmax
j ≤ pmax

i) such that Eq. (4)–Eq. (6) hold at node j for the given input triplet. As

stated in Theorem 4.1, continuous and decreasing demand gives that such a triplet

exists. As above, in practice the search will be ended when sufficiently close to the

solution. The recursive approach gives that when the equilibrium is reached in the

node, the same holds for all nodes rooted in j .

When the root node of the system is in balance, the whole system is in balance, and

this concludes the proof. �

The complexity of Algorithm 4.1

The complexity of this market mechanism is highly dependent on the depth of the

market tree.

The bad news is that the worst case computational complexity of interesting markets

could be to high to be practical. An example is the market of Fig. 8, that could be a

natural extension of e.g. today’s day-ahead power markets. Our test implementation,

far from fine tuned, indicates that a straight-forward binary search implementation

that does not utilise prior knowledge in an iteration step is hardly practical. It is easy

to understand why, as the probability is high to reach a running time close to the worst

case.

On the other hand the good news is that algorithms that utilise expontential-and-

binary search, as the one we suggest, has shown to be fast in practice when it comes

to the same problem instances.

The analysis of the computational complexity presented here does not take the

advantages of the exponential-and-binary search of Algorithm 4.1 into account, but is

based on the simple binary search approach. When it comes to worst case behaviour,

this is correct, if we would try to give a theoretical evaluation of the average behaviour

it would not.

Springer

82 P. Carlsson, A. Andersson

In the worst case, the establishment of a local equilibrium of a bundle node renders

a full nested binary search in the three search variables, with recursive calls of the

child nodes at each search step.

Let s1 and s2 be the size of the search spaces in volume and prices, respectively (given

in a resolution such that the deviations from the true optimum are sufficiently small).

Then the worst case local search cost of a bundle node is 2 �log(s1 + 1)� �log(s2 + 1)�
comparisons (one search in bundle demand, with a nested parallel search in minimum

and maximum prices). The corresponding cost of a leaf node is �log(s1 + 1)�, as there

is a sole search for a price corresponding to the given demand expressed by the parent

node (here the work related to minimum and maximum prices is constant). With an

explicit inverse demand function the work of a leaf node reduces to a constant time

operation.

The total worst case cost depends on the depth of the market tree. The deepest tree

structure that makes sence is a binary tree, where we get the recursion:

T (1) = �log(s1 + 1)�
T (n) = (2 �log(s1 + 1)� �log(s2 + 1)�)

(
2T

(n

2

))
= (4 �log(s1 + 1)� �log(s2 + 1)�)

(
T

n

2

)
= (4 �log(s1 + 1)� �log(s2 + 1)�)log n log(s1 + 1)

= O
(
n(4+log�log(s1+1)�+log�log(s2+1)�) log s1

)
,

on a binary structured market where n commodities are traded. As in section Multi-

unit with demand curves, T (n) is the total number of comparisons and n is assumed

to be an even power of two.

This gives the following theorem on the complexity of Algorithm 4.1:

Theorem 4.3. The worst case complexity of Algorithm 4.1 on an n commodity market
is

O
(
n(4+log�log(s1+1)�+log�log(s2+1)�) log s1

)
where s1 and s2 are the sizes of the search spaces in volumes and prices, respectively.

Proof: The complexity is given by the recursion above. �

It is possible to speed up computations by an explicit representation of the inverse

demand function of leaf nodes. By this T (1) is reduced to a constant time operation

and we get the following complexity:

Theorem 4.4. The worst case complexity of Algorithm 4.1 on an n commodity market,
with an explicit representation of the inverse demand of leaf nodes is

O
(
n(4+log�log(s1+1)�+log�log(s2+1)�)

)
Springer

A flexible model for tree-structured multi-commodity markets 83

Table 1 Running time of the algorithm with sample arrays of

1000 price levels, eight and 24 commodity market setups. In this

test the algorithm was run ten times with each market setup, each

one with a new set of bids

Commodities # Samples in array Average running time

8 1000 One second

24 1000 Half a minute

where s1 and s2 are the sizes of the search spaces in volumes and prices, respectively.

Proof: Given by the recursion above, but with T (1) as a constant operation. �

In practice the algorithm runs significantly faster than this due to (i) the choice to

utilise prior knowledge in an iteration, and (ii) the search in minimum and maximum

prices only taking place when a local price has to be calculated.

Test implementation and design experiences

We have written a first test implementation of the algorithm in Java. The implemen-

tation gave valuable insight into the practical consequences of algorithm structure

and complexity. Our goal with this test implementation was to achieve some practi-

cal experience of the algorithm. A natural next step would be to evaluate the market

outcome using our market mechanism compared to the market outcome of alternative

approaches. This kind of evaluations are left for future research.

The advantage of exponential-and-binary search over plain binary search was

clearly demonstrated by a first preliminary Java implementation. With a plain binary

search approach there was no problem solving instances with an eight commodity bi-

nary structured market tree (c.f. Fig. 4) with bids expressed in sample vectors holding

1000 sample prices each. Moving to a corresponding 24 commodity market gave a run-

ning time in the order of hours.5 (The market was structured with a root node holding

three such eight commodity sub-markets, Fig. 8.) The introduction of an exponential-

and-binary search reduced the running time of such instances to a practical level, c.f.

Table 1.

Another idea is to use a dynamic programming approach, introducing caching at

lower levels. In our implementation the time—space tradeoff was not worthwhile,

but it might still be an alternative in some settings. We also note that tree-structured

algorithms are well suited for parallel computing.

We find the running times fully practical as a typical setting for such a market,

such as a day-ahead power market is not that time critical. Markets that are more time

critical probably handle a smaller number of commodities. An example might be a

balancing service in power grids, organised as a market.

5 The test implementation was run on a three GHz PC, Windows XP, and Java J2SE 1.4.2.

Springer

84 P. Carlsson, A. Andersson

A second and in many ways more interesting implementation is under development

within the CRISP project.6 This implementation will be used in a market algorithm

library and for simulations of supply—demand matching in power grids.

Conclusions

In this article we present a number of results ranging from tree-structured single-unit

auctions to tree-structured multi-unit multi-commodity markets. The main result is a

market mechanism suitable for e.g. markets handling time dependent commodities, the

CONSEC mechanism. By a number of predefined bid types, it offers useful flexibility

to the bidders. The article presents useful abstractions, holding the combinatorial

capabilities on a low level. A reason to keep the combinatorial capabilities of a market

mechanism down is to keep it easy to understand and to make it easy to convince oneself

that the pricing mechanism is correct. Furthermore, there are complexity reasons with

respect to communications as well as to computations to do this.

The main computational (and communicational) task of the mechanism is the ag-

gregation of demand. With the combinatorial capabilities of the mechanism expressed

as independent tracks (bids on single commodities, bundle bids and substitute bids)

the computational complexity of this part does not grow more than linear in the num-

ber of bidding tracks. The aggregation of bids is outside the scope of this article,

standard techniques are presented in e.g. [2, 9, 10]. We have shown preliminary re-

sults on scalability in the number of commodities traded. Scalability in the number

of participants is out of scope of this article as it depends on the aggregation of

bids.

A real world market setup of a large CONSEC market would likely be a highly

distributed market, i.e. most of the information needed for market computation is

spread over the network. Since the input to Algorithm 4.1 is aggregated demand, it is

natural to distribute a possibly heavy part of the computation—the aggregation—over

the network. By this, the communicational load is diminished radically.

In earlier work we have looked into distributed resource allocation and resource

allocation with non concave objective functions, [1–3], even applicable on markets

with non-continuous demand [6]. In this article we have assumed continuous demand.

Non-continuous demand on multi-commodity markets is left for future work.

An assumption of ours that may be hard for some actors entering bids for substitutes

is that their bids are assumed to be divisible, i.e. as soon as the price of more than

one commodity of the bundle equals the minimum (maximum) price, their allocations

might be split over these commodities. In practice we assume that the number of actors

entering bids for substitutes is large relative the volumes traded, hence the goods can

be handled as divisible. The case with non-divisible goods introduces conceptual

pricing problems as well as computational problems, and is beyond the scope of this

article.

The market mechanism has properties that are highly relevant in e.g. day-ahead

power markets [5, 13] and bandwidth markets [14, 15]. In a power setting, the big

6 See http://www.ecn.nl/crisp for a presentation of the project.

Springer

A flexible model for tree-structured multi-commodity markets 85

advantage of the mechanism (compared to the power markets of today, such as the

Nordic NordPool [12] and the Dutch APX [4]) comes with the possibility to set

up electronic markets with a huge number of participants. When a direct market

participation of a large number of presumably small size actors (formerly represented

by distributors) is introduced the market outcome can become considerably more

efficient. To reach this, one has to enhance the possibilities for actors on the market

to express dependencies and constraints between the traded time slots, we believe our

mechanism to be an interesting alternative when it comes to this.

The combinatorial possibilities given by the market mechanism enriches the pos-

sibilities of the actors. While being easy to understand and computationally feasible,

it scales well to markets with a huge number of participants.

Appendix: A Algorithm details

In this appendix we give a high level outline of the implementation of the algorithm.

We give it in terms of a few Java style methods. Some supportive methods performing

the actual search and recursive calls are left out of the description.

When the nodes have received the aggregated bids of their bidding tracks, the envi-

ronment calls the findEquilbrium method of the tree’s root node with a zero demand,

and minimum and maximum prices set to equal the borders of the search space (these

are for simplicity assumed to be sufficiently low and high, respectively). When this call

returns, equilibrium prices have been established and all that remains is to compute

the allocation of substitute bids (this simple computation is not described).

Algorithm A.1. (Hierarchical Binary Search):
{

rootNode.findEquilibrium(0, lowestValue, highestValue);
compute corresponding allocations of substitute demand;
announce prices & allocations;

}

The findEquilibrium method of a bundle node (Method A.1) performs a search in

the demand that it imposes on its children, i.e. this search is resource based. The goal of

the search is to find a price such that—given the input and its own bundle demand—it

is in equilibrium with the system rooted in the node.

Each search step of the {exp, bin}SearchMb methods involves a call of the search-
MinPrice method. Starting at the current value, the expSearchDemand method decides

on search direction and moves in that direction to establish lower and upper borders of

an ordinary binary search. At each iteration the step length is doubled. The exponential-

and-binary search phase is followed by an ordinary binary search within the defined

borders until the breaking condition is fulfilled (i.e. the difference between bundle

price and average single commodity prices is less than a predefined small ε > 0).

The return value of the findEquilibrium method holds information on the equilib-

rium price of the node, and what excess demand it expresses towards the parent due

to the imposed minimum and maximum prices. (The excess demand variables are set

by the search{Min, Max} methods, respectively.)

Springer

86 P. Carlsson, A. Andersson

As in section The complexity of algorithm, the parent node of current node is

denoted i , and the node itself j .

Method A.1. (Find Equilibrium, Bundle Nodes):
double [] findEquilibrium(double dch

i , double pmin
i , double pmax

i){
double [] borders ← expSearchDemand(dch

i , pmin
i , pmax

i);
return binSearchDemand(dch

i , pmin
i , pmax

i , borders);
}

The goal of the seachMinPrice method is to set the local minimum price of the child

nodes, such that buying demand for substitutes and/or the excess demand variable meet

the demand of theirs. The first check of the seachMinPrice method (Method A.2) is

whether the imposed minimum price renders a positive or negative excess demand. If

it is strictly positive, the local buyer demand for substitutes at the imposed minimum

price is greater than the corresponding excess demand of the child nodes. Hence a local

minimum price has to be established that gives a zero excess demand. A negative excess

demand at the imposed minimum price is left for the parent node to take care of. The

search for a higher local minimum price is similar to the search of the previous method.

Method A.2. (Search in Minimum Price):
double [] searchMinPrice(double dch

j , double pmin
i , double pmax

i){
double [] retVal ← searchMaxPrice(dch

j , pmin
i , pmax

i);
if(acDemand(pmin

i) + retVal[1]>0){
/*search for a higher local minimum price*/
double [] borders ← expSearchMinPrice(dch

j , pmin
i , pmax

i);
retVal ← binSearchMinPrice(dch

j , pmax
i , borders);

}
return retVal;

}

The searchMaxPrice method (Method A.3) is similar to searchMinPrice. The sup-

porting method callSubSystems performs a call of the findEquilibrium method of all

child nodes using the locally defined values on this nodes demand, minimum price,

and maximum price. Furthermore, the method is used to summarise the return values.

Method A.3. (Search in Maximum Price):
double [] searchMaxPrice(double dch

j , double pmin
j , double pmax

i){
double [] retVal ← callSubSystems(dch

j , pmin
j , pmax

i);
if(apDemand(pmax

i) + retVal[2]<0){
/*search for a lower local maximum price*/
double [] borders ← expSearchMaxPrice(dch

j , pmin
j , pmax

i);
retVal ← binSearchMaxPrice(dch

j , pmin
j , borders);

}
return retVal;

}
Springer

A flexible model for tree-structured multi-commodity markets 87

The findEquilibrium method of a leaf node (Method A.4) is straightforward. With

a simple binary search the price matching the demand of the parent is established as

the equilibrium price of the node. If this price is lower than the minimum price or

higher than the maximum price, the equilibrium price is set to equal the minimum

or maximum price, respectively. The excess demand generated by this operation is

exported with the return value of the method.

Method A.4. (Find Equilibrium, Leaf Nodes):
double[] findEquilibrium(double dch

i , double pmin
i , double pmax

i){
double[] retVal;/*initialised with zero values*/
double p ← binSearchDemand(dch

i);
if(p < pmin

i){
retVal[1] ← d j (pmin

i) + dch
i ;

p ← pmin
i ;

}
if(p > pmax

i){
retVal[2] ← d j (pmax

i) + dch
i ;

p ← pmax
i ;

}
retVal[0] ← p;
return retVal;

}

With an explicit inverse demand function (that could be pre-compiled) the computa-

tional work of a leaf node reduces to constant time work.

There are a lot of details left out in this description, we still want to give it to present

the major outline of an implementation of the algorithm.

Acknowledgement This article is based on work performed within the CRISP project (distributed intelli-

gence in critical infrastructures for sustainable power), financially supported by the European Commission,

contract nr ENK5-CT-2002-00673:CRISP, which is gratefully acknowledged.

References

1. Andersson, A., Carlsson, P., & Ygge, F. (2002). Resource allocation with wobbly functions. Computa-
tional Optimization and Applications, 23(2), 171–200.

2. Andersson, A., & Ygge, F. (1998). Managing large scale computational markets. In: El-Rewini, H.

(ed.), Proceedings of the Software Technology Track of the 31th Hawaiian International Confer-
ence on System Sciences (HICSS31), (vol. VII, pp. 4–14) IEEE Computer Society, Los Alamos,

ISBN 0-8186-8251-5, ISSN 1060-3425, IEEE Catalog Number 98TB100216. (Available from

http://www.enersearch.se/~ygge).

3. Andersson, A., & Ygge, F., (2001). Efficient resource allocation with non-concave objective functions.

Computational Optimization and Applications, 20, 281–298.

4. http://www.apx.nl.

5. Borenstein, S., Jaske, M., & Rosenfeld, A. (2002). Dynamic pricing, advanced metering and demand

response in electricity markets. (Available from http://www.ef.org).

6. Carlsson, P., Ygge, F., & Andersson, A. (2001). Extending equilibrium markets. IEEE Intelligent
Systems, 16(4), 18–26.

7. Carlsson, P., Ygge, F., & Andersson, A. (2003). A tractable mechanism for time dependent markets.

Technical Report 2003-027, Department of Information Technology, Uppsala University, (Available

from www.it.uu.se/research/reports/).

Springer

88 P. Carlsson, A. Andersson

8. Carlsson, P., Ygge, F., & Andersson, A. (2003). A tractable mechanism for time dependent markets. In:

Jen Yao Chung and Liang-Jie Zhang (ed.), CEC 2003, IEEE International Conference on E-Commerce
(pp. 31–34). IEEE Computer Society, Los Alamos.

9. Ibaraki, T., & Katoh, N. (1998). Resource Allocation Problems – Algorithmic Approaches. The MIT

Press, Cambridge, Massachusetts.

10. Katoh, N., & Ibaraki, T. Resource allocation problems. In: Du, D.-Z. & Pardalos, P.M. (eds.), Handbook
of Combinatorial Optimization. (vol. 2, pp. 159–260). chapter Resource Allocation Problems, Kluwer

Academic Publisher.

11. Nisan, N. (2000). Bidding and allocation in combinatorial auctions. In EC’00, Proceedings of the 2nd
ACM Conference on Electronic Commerce (pp. 1–12). The Association for Computing Machinery,

New York, USA.

12. http://www.nordpool.no.

13. Patrick, R.H., & Wolak, F.A. (2001). Using customer demands under spot market prices

for service design and analysis. Technical Report WO 2801-11, EPRI. (Available from

http://www.rci.rutgers.edu/~rpatrick/hp.html).

14. Rasmusson L. Evaluating resource bundle derivatives for multi-agent negotiation of resource allocation.

In Liu, J. & Ye, Y., (eds.), E-Commerce Agents, number 2033 in LNAI (pp. 154–165), Berlin Heidelberg,

Springer Verlag.

15. Rasmusson, L., & Paues, G. (2002). Network components for market-based network admission and

routing. Technical report, Swedish Institute of Computer Science, SICS, Kista, Sweden.

16. Rothkopf, M.H., Pekec, A., & Harstad, R.M. (1998). Computationally manageable combinatorial auc-

tions. Management Science, 44(8), 1131–1147.

17. Tennenholtz, M. (2000). Some tractable combinatorial auctions. In AAAI/IAAI 2000 Proceedings.

Per Carlsson has a broad background and he is currently a full time researcher

at Uppsala University. Previously he held a corresponding position at EnerSearch, an

energy business oriented research company.

Since the end of the -90s Dr. Per Carlsson has focused on resource allocation

in general and electronic markets in particular. The main goal of his is to develop

electricity markets to increase the efficiency of our electricity usage.

Currently he is involved in how to increase end user participation to even out

fluctuations in electricity demand over the day.

Arne Andersson is chaired professor in Computing Science at Uppsala University

and one of the founders of Trade Extensions.

Prof. Andersson is an internationally leading expert on algorithms and optimization

with an extensive track record of scientific publications, program committees, editorial

boards, etc. He is also key designer of Trade Extensions’ scenario analysis tool, and

has deep experience with a number of complex electronic negotiations both in public

and private sector.

Springer

